Multi-componets Data, Signal and Image Processing for Biological and Medical Applications

Ali Mohammad-Djafari

Laboratoire des Signaux et Systèmes
UMR 8506 CNRS - CS - Univ Paris Sud
CentraleSupélec, Gif-sur-Yvette.

djafari@lss.supelec.fr
http://djafari.free.fr

January 6, 2017
Summary 2.1: Time series

- Time serie and Fourier representation
 - Continuous / Discrete
 - Correlation, Inter-correlation, Inter-dependance
 - Stationarity / non-stationarity
 - Convolution and Deconvolution

- Filtering and Denoising

- Modelling and Prediction

- Parametric and Non parametric models

- Parametric models:
 - Least Squares
 - Maximum Likehood
 - Bayesian estimation
Summary 2.2: Images

- Continuous / Discrete
- Gray and Color images
 - 2D FT and FFT
 - 2D Correlation and inter-correlation
 - Stationarity / non-stationarity
 - 2D Convolution
- Filtering and Denoising
- Modelling and Prediction
- Simple Markovian models
- Contours and Regions
- Hierarchical Markov models
1D signals: Time series

- 1D Signal: Time series: \(x_i = f(t_i) \)
- In general no exchangeable.
- Time representation \(f(t) \), Fourier Transform and Fourier representation \(F(\nu) \), Auto Correlation function \(R(\tau) \), Power Spectral Density \(S(\nu) \)
- Stationary and non stationary
- STFT, Time-Frequency, Time-Scale, Wavelets, ...
- Smoothing, Noise removing, Filtering
- Periodic signals, estimation of the period, Fourier series
- Modeling:
 - Sum of sinusoids model and parameter estimation
 - Moving average (MA) model
 - Autoregressive (AR) model
Representation of signals and images

- **Signal:** $f(t), f(x), f(\nu)$
 - $f(t)$ Variation of temperature in a given position as a function of time t
 - $f(x)$ Variation of temperature as a function of the position x on a line
 - $f(\nu)$ Variation of temperature as a function of the frequency ν

- **Image:** $f(x, y), f(x, t), f(\nu, t), f(\nu_1, \nu_2)$
 - $f(x, y)$ Distribution of temperature as a function of the position (x, y)
 - $f(x, t)$ Variation of temperature as a function of x and t
 - ...

- **3D, 3D+t, 3D+\nu, ... signals:** $f(x, y, z), f(x, y, t), f(x, y, z, t)$
 - $f(x, y, z)$ Distribution of temperature as a function of the position (x, y, z)
 - $f(x, y, z, t)$ Variation of temperature as a function of (x, y, z) and t
 - ...

A. Mohammad-Djafari, Data, signals, images in Biological and medical application. Master ATSI, UPSa, 2015-2016, Gif, France, 5/51
Representation of signals

1D signal

2D signal = image

3D signal
Linear Transformations

\[g(s) = \int_D f(r) h(r, s) \, dr \]

\[f(r) \rightarrow \boxed{h(r, s)} \rightarrow g(s) \]

- **1–D**:
 \[g(t) = \int_D f(t') h(t, t') \, dt' \]
 \[g(x) = \int_D f(x') h(x, x') \, dx' \]

- **2–D**:
 \[g(x, y) = \iint_D f(x', y') h(x, y; x', y') \, dx' \, dy' \]
 \[g(r, \phi) = \iint_D f(x, y) h(x, y; r, \phi) \, dx \, dy \]
Linear and Invariant systems: convolution

\[h(r, r') = h(r - r') \]

\[f(r) \rightarrow [h(r)] \rightarrow g(r) = h(r) \ast f(r) \]

- 1–D:
 \[g(t) = \int_D f(t') h(t - t') \, dt' \]
 \[g(x) = \int_D f(x') h(x - x') \, dx' \]

- 2–D:
 \[g(x, y) = \iint_D f(x, y) h(x - x', y - y') \, dx' \, dy' \]

- \(h(t) \) impulse response
- \(h(x, y) \) Point Spread Function
Linear Transformations: Separable systems

\[g(s) = \int_D f(r) h(r, s) \, dr \]

\[h(r, s) = \prod_j h_j(r_j, s_j) \]

Examples:

- **2D Fourier Transform**

 \[g(\omega_x, \omega_y) = \iint f(x, y) \exp \left[-j(\omega_x x + \omega_y y) \right] \, dx \, dy \]

 \[h(x, y, \omega_x, \omega_y) = h_1(\omega_x x) \, h_2(\omega_y y) \exp \left[-j(\omega_x x + \omega_y y) \right] = \exp \left[-j(\omega_x x) \right] \exp \left[-j(\omega_y y) \right] \]

- **nD Fourier Transform**

 \[g(\omega) = \int f(x) \exp \left[-j\omega' x \right] \, dx \]
Fourier Transform

[Joseph Fourier, French Mathematicien (1768-1830)]

- **1D Fourier:** \mathcal{F}_1

\[
\begin{align*}
\begin{cases}
 g(\omega) &= \int f(t) \exp[-j\omega t] \, dt \\
 f(t) &= \frac{1}{2\pi} \int g(\omega) \exp[j\omega t] \, d\omega
\end{cases}
\end{align*}
\]

- **2D Fourier:** \mathcal{F}_2

\[
\begin{align*}
\begin{cases}
 g(\omega_x, \omega_y) &= \iint f(x, y) \exp[-j(\omega_x x + \omega_y y)] \, dx \, dy \\
 f(x, y) &= \left(\frac{1}{2\pi}\right)^2 \iint g(\omega_x, \omega_y) \exp[j(\omega_x x + \omega_y y)] \, d\omega_x \, d\omega_y
\end{cases}
\end{align*}
\]

- **nD Fourier:** \mathcal{F}_n

\[
\begin{align*}
\begin{cases}
 g(\omega) &= \int f(x) \exp[-j\omega' x] \, dx \\
 f(x) &= \left(\frac{1}{2\pi}\right)^n \int g(\omega) \exp[j\omega' x] \, d\omega
\end{cases}
\end{align*}
\]
1D Fourier Transform \mathcal{F}_1

\[
\begin{align*}
 g(\omega) &= \int f(t) \exp[-j\omega t] \, dt \\
 f(t) &= \frac{1}{2\pi} \int g(\omega) \exp[+j\omega t] \, d\omega
\end{align*}
\]

- $|g(\omega)|^2$ is called the spectrum of the signal $f(t)$
- For real valued signals $f(t)$, $|g(\omega)|$ is symmetric

Examples:

<table>
<thead>
<tr>
<th>$f(t)$</th>
<th>$g(\omega)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\exp[-j\omega_0 t]$</td>
<td>$\delta(\omega - \omega_0)$</td>
</tr>
<tr>
<td>$\sin(\omega_0 t)$</td>
<td>?</td>
</tr>
<tr>
<td>$\cos(\omega_0 t)$</td>
<td>?</td>
</tr>
<tr>
<td>$\exp[-t^2]$</td>
<td>?</td>
</tr>
<tr>
<td>$\exp\left[-\frac{1}{2}(t - m)^2/\sigma^2\right]$</td>
<td>?</td>
</tr>
<tr>
<td>$\exp[-t/\tau], , t > 0$</td>
<td>?</td>
</tr>
<tr>
<td>1 if $</td>
<td>t</td>
</tr>
</tbody>
</table>
2D Fourier Transform: \mathcal{F}_2

\[
\begin{align*}
g(\omega_x, \omega_y) &= \iiint f(x, y) \exp \left[-j(\omega_x x + \omega_y y)\right] \, dx \, dy \\
f(x, y) &= \left(\frac{1}{2\pi}\right)^2 \iiint g(\omega_x, \omega_y) \exp \left[j(\omega_x x + \omega_y y)\right] \, d\omega_x \, d\omega_y
\end{align*}
\]

$|g(\omega_x, \omega_y)|^2$ is called the spectrum of the image $f(x, y)$

- For real valued image $f(x, y)$, $|g(\omega_x, \omega_y)|$ is symmetric with respect of the two axes ω_x and ω_y.

Examples:

<table>
<thead>
<tr>
<th>$f(x, y)$</th>
<th>$g(\omega_x, \omega_y)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\exp \left[-j(\omega_{x0} x + \omega_{y0} y)\right]$</td>
<td>$\delta(\omega_x - \omega_{x0})\delta(\omega_y - \omega_{y0})$</td>
</tr>
<tr>
<td>$\exp \left[-(x^2 + y^2)\right]$</td>
<td>?</td>
</tr>
<tr>
<td>$\exp \left[-\frac{1}{2}[(x - m_x)^2/\sigma_x^2 + (y - m_y)^2/\sigma_y^2]\right]$</td>
<td>?</td>
</tr>
<tr>
<td>$\exp \left[-(</td>
<td>x</td>
</tr>
<tr>
<td>$1 \text{ if }</td>
<td>x</td>
</tr>
<tr>
<td>$1 \text{ if } (x^2 + y^2) < a$</td>
<td>?</td>
</tr>
</tbody>
</table>
nD Fourier Transform: \(\mathcal{F}_n \)

\[
\begin{align*}
g(\omega) &= \int f(x) \exp \left[-j\omega'x\right] \, dx \\
f(x) &= \left(\frac{1}{2\pi}\right)^n \int g(\omega) \exp \left[+j\omega'x\right] \, d\omega
\end{align*}
\]

- \(|g(\omega)|^2\) is called the spectrum of \(f(x)\)
- For real valued image \(f(x)\), \(|g(\omega)|\) is symmetric with respect of all the axis \(\omega_j\).

Examples:

<table>
<thead>
<tr>
<th>(f(x))</th>
<th>(g(\omega))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\exp \left[-j(\omega_0'x)\right])</td>
<td>(\delta(\omega - \omega_0))</td>
</tr>
<tr>
<td>(\exp \left[-x'x\right] = \exp \left[-</td>
<td></td>
</tr>
<tr>
<td>(\exp \left[-</td>
<td></td>
</tr>
<tr>
<td>(\exp \left[-\frac{1}{2}[(x - m)'\Sigma^{-1}(x - m)]\right])</td>
<td>?</td>
</tr>
<tr>
<td>1 if (</td>
<td></td>
</tr>
<tr>
<td>1 if (</td>
<td>x_j</td>
</tr>
</tbody>
</table>
Hilbert Transform: \(\mathcal{H} \)

[David Hilbert, German mathematicien (1862-1943)]

- **Definition:** If \(f \in L_2 \) on \((-\infty, \infty)\),

\[
 g(x) = \frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{f(t)}{t-x} \, dt
\]

\[
 f(t) = -\frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{g(x)}{x-t} \, dx
\]

The integrals are interpreted in the Cauchy principal value (CPV) sense at \(t = x \).

- **Alternate expression useful in signal processing:**

\[
 g(t) = \frac{1}{\pi} \lim_{\epsilon \to 0} \int_{\epsilon}^{\infty} \frac{f(t + \tau) - f(t - \tau)}{\tau} \, d\tau
\]
Hilbert Transform: \mathcal{H}

- If $f \in L_2$
 - $\mathcal{H}(\mathcal{H}(f)) = f$
 - f and $\mathcal{H}(f)$ are orthogonal, i.e.,
 \[
 \lim_{r \to \infty} \int_{-r}^{r} [f \mathcal{H}(f)](u) \, du = 0
 \]

- The Hilbert transform of a constant is zero.

- Hilbert and Fourier Transforms
 \[
 \mathcal{H}(f) = f \ast \frac{-1}{\pi t} \quad \longrightarrow \quad \mathcal{F}\{\mathcal{H}(f)\} = j\text{sgn}(\omega)F(\omega)
 \]
Radon Transform (RT): \mathcal{R}

- **Definition:**
 This transform is defined for the functions in 2 or more dimensions. Here we give the relations only in the 2–D case.

$$
\begin{align*}
g(r, \phi) &= \int_{L_{r,\phi}} f(x, y) \, dl \\
&= \int \int f(x, y) \delta(r - x \cos(\phi) - y \sin(\phi)) \, dx \, dy
\end{align*}
$$

- The Radon transform maps the spatial domain $(x, y) \in \mathbb{R}^2$ to the domain $(r, \phi) \in \mathbb{R} \times [0, \pi]$. Each point in the (r, ϕ) space corresponds to a line in the spatial domain (x, y).

- Note that (r, ϕ) are not the polar coordinates of (x, y). In fact if we note the polar coordinates corresponding to the (x, y) point (ρ, θ), then we have

$$
\begin{align*}
x &= \rho \cos \theta, \quad y = \rho \sin \theta, \quad r = \rho \cos(\phi - \theta)
\end{align*}
$$
X ray Tomography

\[
I = I_0 \exp \left[- \int f(x) \, dx \right]
\]

\[
- \ln \frac{I}{I_0} = \int f(x, y) \, dl
\]

\[
g(r, \phi) = \int f(x, y) \, dl
\]

\[
f(x, y) \rightarrow \text{Radon Transform} \rightarrow g(r, \phi)
\]

\[
g(r, \phi) \rightarrow \text{Image Reconstruction} \rightarrow f(x, y)
\]

A. Mohammad-Djafari, Data, signals, images in Biological and medical application. Master ATSI, UPSa, 2015-2016, Gif, France
Radon Transform: Some properties

[Johann K.A. Radon, Austrian mathematician (1887-1956)]

- Definition in cartesian coordinate system:

\[
f(x, y) \xrightarrow{\mathcal{R}} g(r, \phi) = \iint f(x, y) \delta(r - x \cos(\phi) - y \sin(\phi)) \, dx \, dy
\]

- Definition in polar coordinate system:

\[
f(\rho, \theta) \xrightarrow{\mathcal{R}} g(r, \phi) = \int_0^\infty \int_0^{2\pi} f(\rho, \theta) \delta(r - \rho \cos(\phi - \theta) \rho) \, d\rho \, d\theta
\]

- Inversion

\[
f(x, y) = \frac{1}{2\pi} \int_0^{2\pi} \int_0^\infty \frac{\partial g(r, \phi)}{\partial r} \cdot \frac{1}{r - x \cos(\phi) - y \sin(\phi)} \, dr \, d\phi
\]
Radon Transform: Inversion

Direct Inverse Radon Transform

\[g(r, \phi) \xrightarrow{\text{Differentiate}} \frac{1}{2\pi} D \xrightarrow{\text{Hilbert Transform}} \tilde{g}(r, \phi) \xrightarrow{\text{Back–projection}} f(x, y) \]

Convolution Back–projection method

\[g(r, \phi) \xrightarrow{\text{1–D Filter}} \tilde{g}(r, \phi) \xrightarrow{\text{Back–projection}} f(x, y) \]

Filter Back–projection method

\[g(r, \phi) \xrightarrow{\text{FT}} \mathcal{F}_1 \xrightarrow{\text{Filter}} \Omega \xrightarrow{\text{IFT}} \tilde{g}(r, \phi) \xrightarrow{\text{Back–projection}} f(x, y) \]
Radon Transform (RT) and Filtered Back-Projection (FBP) image reconstruction

a) original \(f(x, y) \)

b) RT \(g(r, \phi) \)

c) FBP reconstruction \(\hat{f}(x, y) \)
Radon Transform (RT), Back-Projection (BP) and Filtered Back-Projection (FBP) image reconstruction

a) $f(x, y)$

b) $\hat{f}(x, y)$ by BP

$\hat{f}(x, y)$ by FBP

A. Mohammad-Djafari, Data, signals, images in Biological and medical application. Master ATSI, UPSa, 2015-2016, Gif, France.
1D signals $f(t)$ and its FT $F(\nu)$

signal $f(t)$
Modulus of its FT $|F(\nu)|^2$
1D signals: Noise removing using FT

\[g(t) = f(t) + \epsilon(t) \]

\[g(t) \rightarrow \text{FFT} \rightarrow \text{Threshold} \rightarrow \text{IFFT} \rightarrow \hat{f}(t) \]

\[g(t) = f(t) + \epsilon(t) \rightarrow \text{FFT} \rightarrow \ \overline{G(\omega)} = \overline{F(\omega)} + \overline{E(\omega)} \]

\[\hat{f} \leftarrow \text{IFFT} \leftarrow \text{Thresholded} \overline{G(\omega)} \]
1D signals: Noise removing using FT

\[g(t) = f(t) + \epsilon(t) \quad \rightarrow \text{FFT} \rightarrow \quad G(\omega) = F(\omega) + E(\omega) \]
1D signals: Noise removing using FT

\[g(t) = f(t) + \epsilon(t) \]

\[\rightarrow \text{FFT} \rightarrow \]

\[G(\omega) = F(\omega) + E(\omega) \]

\[\hat{f} \]

\[\leftarrow \text{IFFT} \leftarrow \text{Thresholded } G(\omega) \]
Images denoising using FFT

\[f(x, y) \]

\[g(x, y) = f(x, y) + \epsilon(x, y) \]

\[F(u, v) \]

\[\hat{f}(x, y) \]

Thresholded \(G(u, v) \)

\[G(u, v) \]
Images: Pyramidal and Wavelet Transform

Pyramidal representation:
- Invertible Linear Transform
- image \rightarrow Coarse and Fine images
- B: Band Pass Filtering

![Diagram]

- Number of samples: $(1 + 1/2 + 1/4 + \ldots)$
- Overcomplete representation
Images: Pyramidal representations

Original

Pyramid

Pyramid
Images: QMF and Wavelet Transform

- Invertible Linear Transform
- image \rightarrow Coarse and Fine images
- Quadrature Mirror Filtering

![Diagram of QMF and Wavelet Transform]

- Number of samples: 1
- Complete representation
Images: Pyramidal representations

Original

Pyramid

Pyramid

WT 1

WT 2

WT 3
Images compression using WT
Images compression using WT

Original

WT 1

WT 2

WT 1-2

IWT 1-1

IWT 1-2
Images: Different representations

Original

FFT

WT 2

Pyramid

Pyramid

Laplacien

A. Mohammad-Djafari, Data, signals, images in Biological and medical application. Master ATSI, UPSa, 2015-2016, Gif, France,
Images: Space, Fourier and Wavelets representations
Sparse images (Fourier and Wavelets domain)

Image

Fourier

Wavelets

Image hist.

Fourier coeff. hist.

Wavelet coeff. hist.

bands 1-3

bands 4-6

bands 7-9
Temperature and activity Time series before, during and some treatment

BOD: before

BOD: during

BOD: after

A. Mohammad-Djafari, Data, signals, images in Biological and medical application. Master ATSI, UPSa, 2015-2016, Gif, France,
Temperatures, before, during and after changes
Simple questions for 1D time series

► Main question: Has something changed during and some medical action?
► In this study: effects of circadian cycle on cancer cells.

1. Is there any periodic components in these signals? Yes/No (Detection)? Confidence ?
2. If Yes, How many?
3. What are those components (Periods \(p_i \) or Frequencies \(\nu_i \), Amplitudes \(a_i \))?

► When questions 1 and 2 are answered, the problem becomes easier: Parameter estimation

► Trying to answer all the three questions at the same time: semi- or Non-Parametric modelling

► Biologists always need uncertainties \(\rightarrow \) Bayesian inference
Simple Analysis tools may not be successful even in very simple cases

Case of 1 sinusoid

Case of 2 sinusoids+noise

Case of 3 sinusoids+noise
Classical methods: Spectral estimation $S(\omega)$?

- **Fast Fourier Transform (FFT):**

 $g(t) \rightarrow FFT \rightarrow f(\omega) \rightarrow S(\omega) = |f(\omega)|^2$

 - **Advantages:** Well-known and understood, fast
 - **Drawbacks:** linear in frequencies ν, but not equidistance in periods

 $\nu = [0, \cdots, N - 1] \rightarrow p = [\infty, 1, \cdots, 1/(N - 1)]$

- **Autocorrelation function:** $\gamma(\tau)$

 - If $g(t)$ is periodic, then $\gamma(\tau)$ is also periodic, but much smoother

 $\gamma(0) = 1 \gamma(\tau) \leq \gamma(0), \forall \tau$

- **Power spectral density:** $\gamma(\tau) \rightarrow FFT \rightarrow S(\omega)$

- **Autoregressive (AR), Moving Average (MA) and ARMA models**

- **Non-stationary GARCH models**

- **Sum of sinusoidal components**
Parametric, Semi- and Non-Parametric models

► Parametric:

\[g(t) = \sum_{k=1}^{K} a_k \sin(2\pi \nu_k t + \phi_k) + \epsilon(t), \quad \theta = \{a_k, \phi_k, \nu_k\} \]

\[g(t) = \sum_{k=1}^{K} a_k \cos(2\pi \nu_k t) + b_k \sin(2\pi \nu_k t) + \epsilon(t), \quad \theta = \{a_k, b_k, \nu_k\} \]

\[g(t) = \sum_{k=1}^{K} c_k \exp[j2\pi \nu_k t] + \epsilon(t), \quad \theta = \{c_k, \nu_k\}, \quad t = 0, \ldots, T \]

► Semi-Parametric: \(\nu_k = k\nu_0, \nu_0 = 1/T, K = T \rightarrow \text{DFT} \)

► Non-Parametric: \(\nu_k \) fixed in a given interval with given precision, so \(K \) is fixed but can be as large as necessary.

\[g(t) = \sum_{k=1}^{K} c_k \exp[j2\pi \nu_k t] + \epsilon(t), \quad \theta = \{c_k\} \quad \text{Linear model} \]
Can we propose a unifying approach for all these problems?

My answer is Yes:

- Identify what you are looking for. (red color f)
- Identify what are the data: (blue color g)
- Consider the errors (modeling and measurement ϵ)
- Write the Forward model relating them: $g = Hf + \epsilon$
- Write the expression of the likelihood $p(g|f)$
- Translate your prior knowledge on the unknowns in $p(f)$
- Use the Bayes rule:

$$p(f|g) = \frac{p(g|f)p(f)}{p(g)} \propto p(g|f)p(f)$$

- Infer on f using the posterior $p(f|g)$:
 - Maximum A Posteriori (MAP): $\hat{f} = \arg\max_f \{p(f|g)\}$
 - Posterior Mean (PM): $\hat{f} = \int f p(f|g) \, df$
Estimating Periodic Components: Inverse Problems Approach

\[g(t) = \sum_{k=1}^{K} c_k \exp[j2\pi \nu_k t] + \epsilon(t), \quad \theta = \{c_k\} \text{ Linear model} \]

Slight changes of notations: use of periods \(p_n \) in place of frequencies \(\nu_k \) and \(f_n \) in place of \(c_k \):

\[g(t) = \sum_{n=1}^{N} f_n \exp[j2\pi/p_m t] + \epsilon(t), \quad t = m\Delta t, \quad m = 1, \ldots, M \]

Defining the vectors: \(g = [g_1, \ldots, g_M]' \), \(\epsilon = [\epsilon_1, \ldots, \epsilon_M]' \), \(f = [f_1, \ldots, f_N]' \) and the matrix \(H: H_{m,n} = \exp[j2\pi/p_m m\Delta t] \), we obtain:

\[g = Hf + \epsilon \]

The objective is to infer on \(f \).

A. Mohammad-Djafari, Data, signals, images in Biological and medical application. Master ATSI, UPSa, 2015-2016, Gif, France, 43/51
Inverse Problems Approach

\[g = Hf + \epsilon \]

Bayesian approach:

- Assign the Likelihood: \(p(g|f) \)
- Assign the prior law: \(p(f) \)
- Use the Bayes rule: \(p(f|g) \propto p(g|f)p(f) \)
- MAP:

\[\hat{f} = \arg \max_f \{ p(f|g) \} = \arg \min_f \{ J(f) \} \]

- Assuming Gaussian noise and Gaussian prior

\[p(f|g) = \mathcal{N}(f|\hat{f}, \Sigma) \text{ with } \hat{\Sigma} = (H'H + \lambda I)^{-1} \text{ and } \hat{f} = \arg \max_f \{ J(f) \} \]

\[J(f) = \|g - Hf\|^2 + \lambda \|f\|^2 \]

- Other priors (Generalized Gaussian, Student-t or Cauchy)

\[J(f) = \|g - Hf\|^2 + \lambda \Omega(f) \]
Bayesian estimation with priors enforcing sparsity

- Sparsity: For any periodic signal, the spectrum is a set of Diracs
- Biological signals related to clock genes: a few independent oscillators
- Spectrum has a few non zero elements in any given interval

\[g(m\Delta t) = \sum_{n=1}^{N} f_n \exp\left[-j\frac{2\pi}{p_m} m\Delta t\right] + \epsilon(t), \ m = 1, \ldots, M \]

\[g = Hf + \epsilon \quad \text{with} \ f \ \text{sparse} \]

- The question is now: How to translate sparsity?
- Two solutions: L1 regularization and Bayesian sparsity enforcing priors.
- Three main options in Bayesian: Generalized Gaussian, Student-t, mixtures models
Bayesian estimation with priors enforcing sparsity

- \(g = Hf + \epsilon \) with \(f \) sparse
- To translate this information use the heavy tailed prior law Student-t with its hierarchical structure and hidden variables

\[
St(f_j|\nu) \propto \exp \left[-\frac{\nu + 1}{2} \log \left(1 + \frac{f_j^2}{\nu} \right) \right]
\]

- Infinite Gaussian Scaled Mixture (IGSM) property:

\[
St(f_j|\nu) = \int_0^\infty \mathcal{N}(f_j|0,1/z_j) \mathcal{G}(z_j|\alpha,\beta) \, dz_j, \quad \text{with } \alpha = \beta = \nu/2
\]

- Hierarchical prior model:

\[
p(f_j|z_j) = \mathcal{N}(f_j|0,1/z_j), \quad p(z_j) = \mathcal{G}(z_j|\alpha,\beta)
\]

\[
\begin{cases}
p(f|z) = \prod_j p(f_j|z_j) \\
p(z) = \prod_j p(z_j) \quad \Rightarrow \quad p(f, z|g) \propto p(g|f)p(f|z)p(z)
\end{cases}
\]

\[
p(g|f) = \mathcal{N}(g|Hf, \sigma_\epsilon^2 I)
\]
Results on simulated and real activity data

Data BEFORE

Proposed method

FFT

Data DURING

Proposed method

FFT

Data AFTER

Proposed method

FFT

A. Mohammad-Djafari, Data, signals, images in Biological and medical application. Master ATSI, UPSa, 2015-2016, Gif, France.
Computed Tomography as Linear Inverse Problem

- f: all the pixels of the object put together in a vector;
- g: all the projection data put together in a vector;
- g_k: the projection at angle ϕ_k, so that $g = [g_1; g_2; \cdots, g_K]$;
- H: the forward problem matrix: $H_{i,j}$ is the length of the ray i in the pixel j;
- H_k: the forward problem matrix for the projection at angle ϕ_k, so that $H = [H_1; H_2; \cdots, H_K]$;
- ϵ: the noise over all the projection data;
- ϵ_k: the noise over the projection at angle ϕ_k so that $\epsilon = [\epsilon_1; \epsilon_2; \cdots, \epsilon_K]$.

$$g_k = H_k f + \epsilon_k \longrightarrow g = H f + \epsilon$$

with $H^t = [H_1^t, \cdots, H_K^t]$, $g^t = [g_1^t, \cdots, g_K^t]$, $\epsilon^t = [\epsilon_1^t, \cdots, \epsilon_K^t]$, where K is the number of projections at angles
$\phi = [\phi_1, \cdots, \phi_K]$.
Computed Tomography: BP and FBP

Back-Projection (BP)

\[\hat{f} = H^t g = \sum_{k=1}^{K} H_k^t g_k. \]

Filtered Back-Projection (FBP)

\[\hat{f} = H^t g = \sum_{k=1}^{K} H_k^t \tilde{g}_k. \]

where \(\tilde{g}_k \) is the \(|\Omega| \) filtered of \(g_k \).

It can also be regarded as the minimum norm solution of \(H f = g \):

\[
\begin{align*}
\text{minimize} & \quad \| \hat{f} \|_2^2 \\
\text{subject to} & \quad H \hat{f} = g
\end{align*}
\]

\[\hat{f} = H^t (H H^t)^{-1} g = \sum_{k=1}^{K} H_k^t (H_k H_k^t)^{-1} g_k. \]
Computed Tomography: LS and Regularization

Least-Square (LS) and Quadratic Regularization (QR) methods

\[\hat{f} = \arg \min_f \{ J(f) \} \]

with

\[J(f) = \| g - Hf \|^2_2 + \lambda \| Df \|^2_2 \]

which is given by

\[\hat{f} = (H^tH + \lambda D^tD)^{-1} H^tg. \]

\[J(f) = \sum_{k=1}^{K} \| g_k - H_kf \|^2_2 + \lambda \| Df \|^2_2 \]

\[\hat{f} = \sum_{k=1}^{K} (H_k^tH_k + \lambda D^tD)^{-1} H_k^tg. \]
Computed Tomography: Images, Contours, Regions

\[f(x, y) \]

\[z(x, y) \]

\[q(x, y) \]

Next week: Markovian and Hierarchical models