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Deterministic and probabilistic modelling

I Deterministic: the value of X (t) at time t is always the same.

X (t) = sin(2ωt) + .4 sin(3ωt), ω = π
12

I Stochastic or Random: the value of X (t) at time t is not
always the same.
X (t) is defined as a random variable with a probability law,
mean, variance, ...

X (t) = sin(2ωt) + .4 sin(3ωt) + ε(t), ε(t) ∼ N (0, 1).
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Stochastic process

I Formal definition:
Given a probability space (Ω,F ,P) and a measurable space
(S ,Σ), an S-valued stochastic process is a collection of
S-valued random variables on Ω, indexed by a totally ordered
set T (”time”). That is, a stochastic process X is a collection

{Xt : t ∈ T}

where each Xt is an S-valued random variable on Ω. The
space S is then called the state space of the process.

I Finite-dimensional distributions:
Let X be an S-valued stochastic process. For every finite
sequence T = (t1, . . . , tn) ∈ T n, the n-tuple
XT = (Xt1 ,Xt2 , . . . ,Xtn ) is a random variable taking values in
Sn. The distribution PT (·) = P(X−1T (·)) of this random
variable is a probability measure on Sn. This is called a
finite-dimensional distribution of X .
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Second order stochastic process

When the stochastic process XT = (Xt1 ,Xt2 , . . . ,Xtn ) can be
characterized by its first and second order statistics, we have:

I First order moments (expected values):

E {XT} = (X̄t1 = E {Xt1} , X̄t2 = E {Xt2} , · · · , X̄tn = E {Xtn})

I Second order moments (Variances):

Var {XT} = (Var {Xt1} ,Var {Xt2} , · · · ,Var {Xtn})

I Covariance matrix:

[V(XT )]m,n =
[
E
{

(Xtm − X̄tm ) (Xtn − X̄tn )
}]

I Correlation matrix:

[C(XT )]m,n = [E {(Xtm Xtn}]
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Second order random signals

For continuous case, we define a random function X (t) and so:

I First order moments (expected values):

X̄ (t) = E {X (t)}

I Second order moments (Variances):

Var {X (t)} = E
{

(X (t)− X̄ (t))2
}

I (auto)-correlation function:

RXX (t, τ) = E {(X (t) X (t + τ)}

I (inter)-correlation function:

RXY (t, τ) = E {(X (t) Y (t + τ)}
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Second order stationary random signals
I Strict sense stationary: A random signal X (t) is said to be

stationary if the expression of its probability distribution does
not depend on time t.

I Wide sense stationary: A random signal X (t) is said to be
stationary if the expression of its probability distribution
depend only on the two first moments and that these
moments do not depend on time t.

I First order moments (expected values):

X̄ (t) = µ, ∀t, (Centered signal:µ = 0)

I (auto)-correlation function:

RXX (τ) = E {X (t)X (t + τ)}

I power spectral density function

SXX (ω) =

∫
RXX (τ) exp {−jωτ} dτ
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Stationary/Non Stationary

X (t) ∼ N (0, 1), ∀t −→ E {X (t)} = 0,Var {X (t)} = 1,∀t

X (t) = a1 sin(2ωt) + a2 sin(3ωt), ω = π
12 , a1, a2 ∼ U(0, 1)
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Second order stationary random signals
For centred random functions X (t) and Y (t) we have:

I First order moments (expected values):

X̄ (t) = Ȳ (t) = 0,∀t

I (auto)-correlation function:

RXX (τ) = E {X (t)X (t + τ)}

I power (auto)-spectral density function

SXX (ω) =

∫
RXX (τ) exp {−jωτ} dτ

I (inter)-correlation function:

RXY (τ) = E {X (t)Y (t + τ)}

I power (inter)-spectral density function:

SXY (ω) =

∫
RXY (τ) exp {−jωτ} dτ
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Second order stationary discrete time random signals
Replace X (t) with X (n) assuming sampling interval is equal to
unity:

I First order moments (expected values):

X̄ (n) = E {X (n)} = µ, ∀n

I Second order moments (Variances):

Var {X (n)} = E
{

(X (n)− X̄ (n))2
}

= σ2, ∀n

I autocorrelation function:

rXX (k) = E {(X (n) X (n + k)} , ∀n

I power spectral density function

SXX (ω) =
∑

k

rXX (k) exp {−jkω}
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Second order stationary discrete time random signals
For centred random discrete time signals X (n) and Y (n) we have:

I First order moments (expected values):

X̄ (n) = Ȳ (n) = 0, ∀n

I (auto)-correlation function:

rXX (k) = E {X (n)X (n + k)}
I power (auto)-spectral density function

SXX (ω) =
∑

k

rXX (k) exp {−jkω}

I (inter)-correlation function:

RXY (k) = E {X (n)Y (n + k)}
I power (inter)-spectral density function:

SXY (ω) =
∑

k

RXY (k) exp {−jkω}
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Exercises

Compute the autocorrelation function R(τ) and the power spectral
density function S(ω) for the following signals

1. U(t) is a strictly stationary white Gaussian random signal with
zero mean and variance one: p(U(t)) = N (0, 1), ∀t

2. X (t) is obtained by X (t) =
∑K

k=0 h(k)U(t − k) where U(t) is
a strictly stationary white Gaussian random signal with zero
mean and variance one: p(U(t)) = N (0, 1), ∀t. Take first
K = 1 and then extend.

3. X (t) is obtained by X (t) = aX (t − 1) + U(t) where U(t) is a
strictly stationary white Gaussian random function with zero
mean and variance one: p(U(t)) = N (0, 1),∀t
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Answers
Case 1: white strict stationary Gaussian process:

U(t) is a strictly stationary white Gaussian random signal with
zero mean and variance one: p(U(t)) = N (0, 1),∀t

R(τ) = E {U(t)U(t + τ)} =

{
1 τ = 0
0 else

R(τ) = δ(τ) −→ S(ω) = 1,∀ω

Matlab:
N = 200; t = [0 : N − 1]; u = randn(N, 1); figure(1), plot(t, x)
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Answers
Case 2 MA Gaussian Process:

X (t) is obtained by X (t) =
∑K

k=0 h(k)U(t − k) where U(t) is a
stationary Gaussian random function with zero mean and variance
one: p(U(t)) = N (0, 1),∀t. For numerical computation take
h(k) = exp {−γk} with γ = .1 and K = 7.
First take K = 1:

R(τ)=E {X (t)X (t + τ)}
=E {[h(0)U(t) + h(1)U(t − 1)][h(0)U(t + τ) + h(1)U(t + τ − 1)}
=E
{

[h2(0)U(t)U(t + τ)
}

+E {h(0)h(1)U(t)U(t + τ − 1)}
+E {h(1)h(0)U(t − 1)U(t + τ)}
+E
{

h2(1)U(t − 1)U(t + τ − 1)
}

τ = 0 : R(0) = h2(0) + 0 + 0 + h2(1) + 0
τ = 1 : R(1) = 0 + h(0)h(1) + 0
τ > 1 : R(τ) = 0 + 0 + 0 + 0
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Answers
Case 2 MA Gaussian Process:

R(τ) = E {X (t)X (t + τ)}
= E

{
[
∑K

k=0 h(k)U(t − k)][
∑K

k ′=0 h(k ′)U(t − k ′ + τ)]
}

= E
{

[
∑K

k=0

∑K
k ′=0 h(k)h(k ′)U(t − k)U(t − k ′ + τ)]

}
=

∑K
k=0

∑K
k ′=0 h(k)h(k ′)E {U(t − k)U(t − k ′ + τ)}

=
∑K

k=0

∑K
k ′=0 h(k)h(k ′), if k ′ − τ = k , 0, else

τ = 0 : R(0) =
∑K

k=0 h2(k)

τ = 1 : R(1) =
∑K

k=0 h(k)h(k + 1)

τ = 2 : R(2) =
∑K

k=0 h(k)h(k + 2)
...

R(τ) =
K∑

k=0

h(k)h(k + τ) −→ S(ω) =

∣∣∣∣∣
K∑

k=0

h(k) exp {−jkω}

∣∣∣∣∣
2
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Answers
Case 3 First order AR Gaussian Process:

X (t) is obtained by X (t) = aX (t − 1) + U(t) where U(t) is a
stationary Gaussian random function with zero mean and variance
one: p(U(t)) = N (0, 1),∀t.

R(τ) = E {X (t)X (t + τ)}
= E {(aX (t − 1) + U(t))(aX (t + τ − 1) + U(t + τ))}

R(0) = E {X (t)X (t)}
= E {(aX (t − 1) + U(t))(aX (t − 1) + U(t))}
= a2E {X (t − 1)X (t − 1)}+ σ2

= a2R(0) + σ2 −→ R(0)(1− a2) = σ2 −→ R(0) = σ2

1−a2

R(1) = aR(0)
R(2) = aR(1)
...

R(τ) = σ2

1−a2
(a)|τ | −→ S(ω) = 1√

2π
σ2

1−a2
γ

π(γ2+ω2)
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Correlation matrix and its properties
For a centred wide sense stationary random discrete time signals
X (n):

I First order moments (expected values): X̄ (n) = 0, ∀n
I (auto)-correlation function: rXX (k) = E {X (n)X (n + k)}
I If we define a M × 1 vector

x(n) = [X (n),X (n − 1), · · · ,X (n −M + 1)]′,
then the M × M correlation matrix R is defined by

R = E
{
x(n)xH(n)

}
where the superscript H denotes Hermitian transposition.
This matrix has the form:

R =


r(0)
r(−1)
...
r(M − 1)

r(1)
r(0)
...
r(M − 2)

· · ·
· · ·
. . .
...

r(−M + 1)
r(−M + 2)
...
r(0)


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Properties of the correlation matrix of a stationary
discrete-time stochastic process

I R is Hermitian: r(−k) = r∗(k) −→ RH = R
I R is Toeplitz: All the diagonal elements are the same.
I R is definite positive: For any arbitrary M × 1 vector a we

have aHRa ≥ 0
I R is nonsingular: det(R) 6= 0. This is due to
|r(l)| < r(0), ∀l 6= 0.
This property is important for computational implication

R−1 =
adj(R)

det(R)

I If we define a Backward M × 1 vector
xB(n) = [X (n −M + 1),X (n −M + 2), · · · ,X (1)]′

of x(n) = [X (n),X (n − 1), · · · ,X (n −M + 1)]′, then

R = E
{
x(n)xH(n)

}
and R = E

{
xB(n)xBH

(n)
}

= RT
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Properties of the correlation matrix of a stationary
discrete-time stochastic process

I If we define the Backward (M + 1)× 1 vectors
x(n) = [X (n),X (n − 1), · · · ,X (n −M + 1),X (n −M + 2)]′

and
xB(n) = [X (n−M+2),X (n−M+1),X (n−M+2), · · · ,X (1)]′,
then

RM+1 =

 r(0)
· · ·
r

...

...

...

rH

· · ·
RM

 =

 RM

· · ·
rBT

...

...

...

rB∗

· · ·
r(0)


where r = [r(1), r(2), · · · , r(M)]′

and rBT
= [r(−M),X (−M + 1), · · · , r(−1)]′.
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Exercises

1. Consider the vector x(n) = [X (n),X (n − 1)]′ where X (n) is a
stationary discrete time Gaussian process: p(x(n)) = N (0, 1).
Write down the expression of correlation matrix R2.

2. Now consider the vector xB(n) = [X (n − 1),X (n)]′. Write
down the expression of correlation matrix RB

2 .

3. Now, consider the vectors x(n) = [X (n),X (n − 1),X (n − 2)]′

and xB(n) = [X (n − 2),X (n − 1),X (n)]′. Write down the
expression of correlation matrix R3 and RB

3 .

4. What relations exist between R3 and RB
3 and R2 and RB

2 ?
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Answers

Consider the real valued vector x(n) = [X (n),X (n − 1)]′ where
X (n) is a real stationary discrete time Gaussian process:
p(x(n)) = N (0, 1). Write down the expression of correlation
matrix R2.

R2 = Rt
2 = R2 =

[
r(0 r(1)
r(1) r(0)

]
Now consider the vector xB(n) = [X (n − 1),X (n)]′. Write down
the expression of correlation matrix RB

2 .

RB
2 =

[
r(0 r(1)
r(1) r(0)

]
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Answers

Now, consider the real vectors x(n) = [X (n),X (n − 1),X (n − 2)]′

and xB(n) = [X (n − 2),X (n − 1),X (n)]′. Write down the
expression of correlation matrix R3 and RB

3 .

R3 = RB′
3 =

r(0) r(1) r(2)
r(1) r(0) r(2)
r(2) r(1) r(0)


What relations exist between R3 and RB

3 and R2 and RB
2 ?

R3 = R′3 =

r(0) | r′

· · · · · · · · ·
r | R2


with r′ = [r(1), r(2)]

A. Mohammad-Djafari, Introduction to Communication, Control and Signal Processing, 2016, Huazhong, Wuhan, China. 22/82



Exercises: Correlation of a sine wave plus noise

Consider X (n) = a exp {jωn}+ ε(n), n = 0, · · · ,N − 1 with
ε(n) ∼ N (0, σ2)

1. Compute its autocorrelation function r(k)

2. Given a set of samples x = [x(n), x(n−1), · · · , x(n−M + 1)]′,
write down its correlation matrix RM

3. Can we determine a and ω from these samples?

4. If now, we consider two sine waves
X (n) = a1 exp {jω1n}+a2 exp {jω2n}+ε(n), n = 0, · · · ,N−1.
How can we determine a1, a2 and ω1 and ω2?

5. Extend this result to the general case of K sine waves
X (n) =

∑K
k=1 ak exp {jωk n}+ ε(n), n = 0, · · · ,N − 1.
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Answers: Correlation of a sine wave plus noise

x(n) = a exp {jωn}+ ε(n)

r(k) = E {x(n)x∗(n + k)}
= E {[a exp {jωn}+ ε(n)][a exp {jω(n + k)}+ ε(n + k)]∗}
= E {[a exp {jωn}+ ε(n)][a∗ exp {−jω(n + k)}+ ε∗(n + k)]}

r(k) =

{
|a|2 + σ2 = |a|2(1 + 1

ρ) k = 0, ρ = |a|2
σ2,

|a|2 exp {jωk} k 6= 0

When having M samples, we can make the correlation matrix:

R = |a|2


1 + 1

ρ exp {jω} · · · exp {jω(M − 1)}
exp {jω} 1 + 1

ρ · · · exp {jω(M − 2)}
...

...
. . .

...
exp {jω(M − 1)} exp {jω(M − 2)} · · · 1 + 1

ρ


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Stochastic models

ε(n) −→ Discrete-time
linear filter

−→ x(n)

with ε(n) purely random (stationary, white process):

E {ε(n)} = 0, E {ε(n)ε∗(n + k)} =

{
σ2 if k = 0
0 else

.

x(n) can be:

I a combination of past values of u(n)
(Moving Average (MA) model)

I a combination of past values of x(n) and present value of u(n)
(Autoregressive (AR) model)

I a combination of past values of x(n) and past and present
values of u(n)
(Autoregressive Moving Average (ARMA) model)
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Stochastic models: Moving Average (MA)

x(n) =

q∑
k=0

b(k)ε(n − k), ∀n

ε(n)−→ B(z) =

q∑
k=0

b(k)z−k −→x(n)

Sxx (ω) =

∣∣∣∣∣
q∑

k=0

b(k) exp {−jkω}

∣∣∣∣∣
2

MA, q = 15, v = 1, bk = exp
{
−.05 ∗ k2

}
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Stochastic models: AutoRegressive (AR)

x(n) =

p∑
k=1

a(k) x(n − k) + ε(n), ∀n

p∑
k=0

b(k) x(n − k) = ε(n), with b(0) = 1, b(k) = −a(k)

x(n)−→ B(z) =

p∑
k=0

b(k) z−k −→ε(n)

ε(n)−→ H(z) =
1

1−
∑p

k=1 a(k) z−k
−→x(n)

Sxx (ω) =
1∣∣1−∑p

k=1 a(k) exp {−jkω}
∣∣2
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Stochastic models: AutoRegressive (AR)

x(n) =

p∑
k=1

a(k) x(n − k) + ε(n), ∀n

ε(n)−→ H(z) =
1

1−
∑p

k=1 a(k) z−k
−→x(n)

Sxx (ω) =
σ2∣∣1−∑p

k=1 a(k) exp {−jkω}
∣∣2

AR1, a = .7, v = 1.
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Stochastic models: ARMA

x(n) =

p∑
k=1

a(k) x(n − k) +

q∑
l=0

b(l) ε(n − l)

ε(n)−→ H(z) =
B(z)

A(z)
=

∑q
k=0 b(k)z−k

1−
∑p

k=1 a(k) z−k
−→x(n)

ε(n)−→ Bq(z) −→ 1

Ap(z)
−→x(n)

Sxx (ω) =

∣∣∑q
k=0 b(k) exp {−jkω}

∣∣2∣∣1−∑p
k=1 a(k) exp {−jkω}

∣∣2

ARMA(1,2), q = 1, v = 1, b1 = 1, a1 = 1, a2 = .8
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Autocorrelation of a Stationary AR process

x(n) =

p∑
k=1

ak x(n − k) + ε(n) −→
p∑

k=0

bk x(n − k) = ε(n)

with b0 = 1, bk = −ak , k = 1, · · · , p.

p∑
k=0

bk x(n − k)x(n − l) = ε(n)x(n − l), l > 0

E

{
p∑

k=0

bk x(n − k)x(n − l)

}
= E {ε(n)x(n − l)} , l > 0

p∑
k=0

bk E {x(n − k)x(n − l)} = 0 −→
p∑

k=0

bk r(l − k) = 0, l > 0
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Autocorrelation of a Stationary AR process

p∑
k=0

bk r(l − k) = 0, l > 0 −→ r(l) =

p∑
k=1

ak r(l − k), l > 0

I This difference equation has a general form solution:

r(l) =

p∑
k=1

ck pl
k

with ck are constants and pk the roots of the Characteristic
function

p∑
k=0

bk z−k = 0 or 1−
p∑

k=1

ak z−k = 0

I Asymptotic stationarity condition: |pk | < 1
I All the poles of the AR filter lie inside of the unit circle in the

z-plane.
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Wold decomposition

Wold (1938): Any stationary discrete-time stochastic process x(n)
may be decomposed into the sum of a general linear process and a
predictable process, with these two process being uncorrelated.

x(n) = u(n) + s(n)

where

I u(n) and s(n) are uncorrelated;

I u(n) is a general linear MA process:

u(n) =
∞∑

k=0

b∗kε(n − k)

with b0 = 1,
∑∞

k=0 |bk |2 <∞ and E {ε(n)s∗(k)} = 0,∀(n, k).

I s(n) is a predictable process, i.e. it can be predicted from its
own pqst with zero prediction error.
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Parameter estimation: Yule-Walker equations

p∑
k=0

bk r(l − k) = 0, l > 0 with b0 = 1 −→ r(l) =

p∑
k=1

ak r(l − k)

r(l) =

p∑
k=1

ak r(l − k), l = 1, 2, · · · , p −→
r(1) = r(0)a1 +r(−1)a2 + · · · +r(−p + 1)ap

r(2) = r(1)a1 +r(0)a2 + · · · +r(−p + 2)ap
...

r(p) = r(p)a1 +r(p − 1)a2 + · · · +r(0)ap




r(1)
r(2)

...
r(p)

 =


r(0) r(−1) · · · r(−p + 1)
r(1) r(0) · · · r(−p + 2)

...
r(p) r(p − 1) · · · r(0)




a1
a2
...

ap


r = Ra −→ Ra = r
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Parameter estimation: Yule-Walker equations

Ra = r −→ a = R−1r

If R is non singular, we have a unique relationship between

a = {a1, a2, · · · , ap}

and the normalized correlation coefficients

ρ = {ρ1, ρ2, · · · , ρp}

with ρk = r(k)/r(0).
Conclusion: Given r(0), r(1), · · · , r(p), we can compute
{ρ1, ρ2, · · · , ρp}, then compute {a1, a2, · · · , ap} and also the
variance of the noise

σ2 =

p∑
k=0

ak r(k)

with a0 = 0.
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Exercise

1. Consider a first order AR model x(n) = a1x(n − 1) + ε(n)
with ε(n) ∼ N (0, σ2). First compute r(0) and r(1). Then
construct the YW equation and find the solution for a1 and
σ2.

2. Consider now a second order AR model
x(n) = a1x(n − 1) + a2x(n − 2) + ε(n) with ε(n) ∼ N (0, σ2).
First compute r(0), r(1) and r(2). Then construct the YW
equation and find the solution for a1, a2 and σ2.
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Answers

First order AR model x(n) = a1x(n − 1) + ε(n)

r(0) = E {x(n)x(n)}
= E {(a1x(n − 1) + ε(n))(a1x(n − 1) + ε(n))}
= a21r(0) + σ2

r(1) = E {x(n)x(n + 1)}
= E {x(n)(a1x(n) + ε(n + 1))}
= a1r(0)

Yule-Walker: [
r(0)

] [
a1
]

=
[
r(1)

]
−→ a1 =

r(1)

r(0)

r(0) = a21r(0) + σ2 −→ σ2 = (1− a21)r(0) = r(0)− a1r(1)

Numerical example: r(0) = 1, r(1) = .9:
a1 = .9, σ2 = (1− .92) = 1− .81 = .19
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Answers
Second order x(n) = a1x(n − 1) + a2x(n − 2) + ε(n)

r(0) = E {x(n)x(n)}
= E {x(n)(a1x(n − 1) + a2x(n − 2) + ε(n))}
= a1r(−1) + a2r(−2)

r(1) = E {x(n)x(n + 1)}
= E {x(n)(a1x(n) + a2x(n − 1) + ε(n + 1))}
= a1r(0) + a2r(−1)

r(2) = E {x(n)x(n + 2)}
= E {x(n)(a2x(n) + a1x(n + 1) + ε(n + 2))}
= a2r(0) + a1r(1)[

r(0) r(1)
r(1) r(0)

] [
a1
a2

]
=

[
r(1)
r(2)

]
When r(0), r(1) and r(2) computed, we can compute

σ2 =
2∑

k=0

ak r(k) = r(0) + a1r(1) + a2r(2)
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Answers: Recursive computation

r(l) =

p∑
k=1

ak r(l − k), r(0) =

p∑
k=1

ak r(−k) + σ2

By dividing both sides of the first one by r(0) we obtain:

ρl =

p∑
k=1

akρ(l−k)

p = 1 :
r(1) = a1r(0) −→ a1 = ρ1 ρ1 = a1

p = 2 :
r(1) = a1r(0) + a2r(−1) ρ1 = a1

1−a2
r(2) = a2r(0) + a1r(0)
Using recursion:
ρ2 = a1ρ1 + a2ρ0 = a1

a1
1−a2

+ a2

ρ2 =
a21−a22+a2

1−a2
...
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Power spectral density
Given a discrete time stationary process u(n) and a symmetric
window observation
uN = {u(−N), · · · , u(−1), u(0), u(1), · · · , u(N)}
and defining its DFT:

UN(ω) =
N∑

n=−N

u(n) exp {−jωn}

and

E
{
|UN(ω)|2

}
=

N∑
n=−N

N∑
m=−N

E {u(n)u∗(m)} exp {−jω(n −m)}

=
N∑

n=−N

N∑
m=−N

r(m − n) exp {−jω(n −m)}

it can be shown that

lim
N 7→∞

1

N
E
{
|UN(ω)|2

}
7→

∞∑
k=−∞

r(k) exp {−jωk}
4
= S(ω)
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Power spectral density
Direct definition:

S(ω) = lim
N 7→∞

1

N
E
{
|UN(ω)|2

}
Definition through autocorrelation coefficients:

r(k) = E {u(n)u∗(n + k)}

S(ω) =
∞∑

k=−∞
r(k) exp {−jωm} , −π ≤ ω ≤ π

r(m) =
1

2π

∫ π

−π
S(ω) exp {−jωm} dω, m = 0,±1,±2, · · ·

Properties:
I S(ω) is periodic
I S(ω) for a stationary discrete-time process is real.
I S(ω) for a real stationary discrete-time process is symmetric.
I r(0) = 1

2π

∫ π
−π S(ω) dω

I S(ω) ≥ 0, ∀ω.
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Power spectral density through a linear filter

x(n) −→ Linear
Filter

−→ y(n) = h(n) ∗ x(n)

Deterministic signals: Ordinary DFT:

y(n) = h(n) ∗ x(n) =
∑

k

h(k)x(n − k) −→ Y (ω) = H(ω)X (ω)

Stochastic signals:

rXX (k)
SYY (ω)

−→ Linear
Filter

−→ rYY (k)
SYY (ω)

rYY (m) =
∑

l

∑
k

h(l)h∗(k)rXX (k − l + m)

SYY (ω) = |H(ω)|2SXX (ω) SYX (ω) = H∗(ω)SXX (ω)
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Power spectral estimation

Given a set of samples from a stochastic process x(n), estimate its
power spectral density function (called also power spectrum)
SXX (ω)
Periodogram-based (Direct computation)

S(ω) = lim
N 7→∞

1

N
E
{
|UN(ω)|2

}
I Take a very large window of the data, compute its DFT, look

at the amplitude power 2 as the power spectrum.

I If a great number of samples are available, cut them in M
blocs of each N samples. For each bloc compute |UN(ω)|2
and then average them to obtain the power spectrum.
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Power spectral estimation

Use the autocorrelation coefficients r(k):

S(ω) =
∞∑

k=−∞
r(k) exp {−jωm} , −π ≤ ω ≤ π

I Try first to estimate r(k) for k = 0, 1, · · · ,K with K as great
as possible, then use this approximation

S(ω) =
K∑

k=−K

r(k) exp {−jωm} , −π ≤ ω ≤ π

which is good if r(k) = 0, k > K .
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Power spectral estimation

Model based (AR process)
Choose a model order p, estimate r(k), k = 0, 1, · · · , p, deduce the
parameters of the model {a1, a2, · · · , ap} and the noise variance σ2

using Yule-Walker relation and then compute

Sxx (ω) =
σ2∣∣1−∑p

k=1 a(k) exp {−jkω}
∣∣2

Examples:

I AR0:
Sxx (ω) = σ2

I AR1:

Sxx (ω) =
σ2

|1− a1 exp {−jω}|2
=

σ2

1 + a21 − 2a1 cos(ω)
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Power spectral estimation

AR2:

Sxx (ω) =
σ2

|1− a1 exp {−jω} − a2 exp {−j2ω}|2

I a1 > 0 Low pass filter around 0

I a1 < 0 High pass filter around ω = π

I −1 < a2 < 1− |a1| the process is stable

Sxx (f ) =
σ2

1 + a21 + a22 − 2a1(1− a2) cos(2πf )− 2a2 cos(4πf )
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Power spectral estimation
Model based (AR process) with direct estimation of the model
parameters
Estimate directly the parameters of the model from the data using
a Least Square (LS) criterion

LS(a) =
1

2

∑
n

∣∣∣∣∣x(n)−
p∑

k=1

ak x(n − k)

∣∣∣∣∣
2

(or any other criteria as we will see later) and then use it.

∂LS(a)

∂ak
= −

∑
n

x(n − k)

(
x(n)−

p∑
k=1

a(k) x(n − k)

)
= 0

∑
n

x(n − k)x(n) =
∑

n

x(n − k)

p∑
k=1

a(k) x(n − k)

Solve these equations either simultaneously or recursively.
When a obtained use the theoretical expressions.
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Linear prediction and AR modelling

I {x(1), · · · , x(n − 1)} observed samples of a signal.
Predict x(n)

I Prediction or innovation Erreur: εn = x(n)− x̂(n)

I The linear predictor:

x̂(n) =

p∑
k=1

a(k) x(n − k), ∀n

I Mean Square Errors (MSE):
MSE =

∑
n |εn|2 =

∑
n |x(n)− x̂(n)|2

I Least Mean Squares (LMS) Error

x̂(n) = arg min
x(n)
{MSE}

MSE =
∑

n

|x(n)− x̂(n)|2 =
∑

n

∣∣∣∣∣x(n)−
p∑

k=1

a(k) x(n − k)

∣∣∣∣∣
2
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Minimum Variance Estimation

I x(n), An n sample of a signal

I AR model:
x̂(n) =

∑
k

a(k) x(n − k)

I modelling errror
εn = x(n)− x̂(n)

I Criterium

β2 = min E
{
|εn|2

}
= min E

{
[x(n)− x̂(n)]2

}
I Orthogonality Condition

E

{
[x(n)−

∑
k ′

a(k ′) x(n − k ′)] x(n − k)

}
= β2 δ(k), k = 1, . . . , p

r(k)−
∑

k ′

a(k ′) r(k ′ − k) = β2 δ(k)
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Minimum Variance Estimation

I Correlation matrix

R =



r(0) r(1) r(2) · · · · · · r(p − 1)

r(1)
. . .

. . .
. . .

...

r(2)
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . r(2)
...

. . .
. . .

. . . r(1)
r(p − 1) · · · · · · r(2) r(1) r(0)


r = [r(1), . . . r(p)]t , a = [a(1), . . . , a(p)]t ,

I Normal equations

Ra = r
r(0)− atr = β2
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Levinson algorithm

The reverse Levinson-Durbin recursion implements the step-down
algorithm for solving the following symmetric Toeplitz system of
linear equations for r, where r = [r(0), · · · , r(p)]′.

r(0) r(1) · · · r(p − 1)
r(1) r(0) · · · r(p − 2)

...
. . .

. . .
...

r(p − 1) r(p) · · · r(0)




a1
a2
...

ap




r(0)
r(1)

...
r(p)


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Great Exercise: Generation, Characterization, Modelling,
Transmission and input Estimation by Wiener Filter

Source
generator

→ Transmitter
Characterization

→ Transmission
Channel

→ Receiver
Characterization

Step 1: Generation of a signal:

1. We want to generate a signal using a first order AR Gaussian
process. x(n) = ax(n − 1) + u(n), where x(0) ∼ N (0, 1) and
u(n) ∼ N (0, 1), n = 1, · · · ,N.

2. Take the numerical example: N = 200 and two different
values a = 0.1 and a = 0.9 and call them X and Y . Plot
these two signals.

3. plot X (t),Y (t). What do you remark?
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Great Exercise: Generation, Characterization, Modelling,
Transmission and input Estimation by Wiener Filter

Source
generator

→ Transmitter
Characterization

→ Transmission
Channel

→ Receiver
Characterization

Step 2: Characterization of generated signals:

1. Compute the theoretical expressions of the autocorrelation
functions rXX (k) and rYY (k) and their corresponding power
spectral density functions Sxx (ω) and Syy (ω).

2. plot all these quantities and interpret them. What do you
remark?
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Great Exercise: Generation, Characterization, Modelling,
Transmission and input Estimation by Wiener Filter

Step 3: Modelling

1. Given the generated signals X (n) and (Y (n), assuming that
they can be modelled with a first order AR processes, estimate
their corresponding parameters. Compare the parameters with
those used to generate them. Give your conclusion.

2. Now, assume that these signals can be modelled wit fifth
order MA processes: X (n) =

∑5
k=0 b(k)u(n − k) where

u(n) ∼ N (0, 1). Estimate then the corresponding parameters
for X and for Y .

3. Compute now the correlation functions and the power spectral
density functions. Compare with the original and the AR
model ones.
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Great Exercise: Generation, Characterization, Modelling,
Transmission and input Estimation by Wiener Filter

Source
generator

→ Transmitter
Characterization

→ Transmission
Channel

→ Receiver
Characterization

Step 4: Transmission through a FIR channel

1. Now, we want to transmit X (n) through a channel. We model
the channel as a FIR model with
h(k) = exp(−.1k), k = 0, · · · , 5. If we call Z (n) the received
signal, write the relation between X and Z .

2. Give the relations which existent between X (n) and Z (n),
between rZZ (k), rXX (k) and RZX (k), between RZZ (ω),
RXX (ω) and RZX (ω).

3. Do the same with Y (n).

A. Mohammad-Djafari, Introduction to Communication, Control and Signal Processing, 2016, Huazhong, Wuhan, China. 54/82



Great Exercise: Generation, Characterization, Modelling,
Transmission and input Estimation by Wiener Filter

Source
generator

→ Transmitter
Characterization

→ Transmission
Channel

→ Receiver
Characterization

Step 5: Receiver (No noise channel)

1. We want to retrieve the transmitted signal X from the
received signal Z . Is it possible?

2. First assume that the channel does not add any noise. Use the
relations between the quantities RZZ (ω), RXX (ω) and RZX (ω)
to design an Inverse Filter to retrieve the original signal.
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Great Exercise: Generation, Characterization, Modelling,
Transmission and input Estimation by Wiener Filter

Source
generator

→ Transmitter
Characterization

→ Transmission
Channel

→ Receiver
Characterization

Step 5: Receiver (Noisy channel)

1. Now assume that the channel adds an additive noise ε(n) with
p(ε(n)) = N (0, σ2ε ) with σ2ε = 0.01.

2. Design a Wiener filter to do this operation. Again write and
use the relations between the quantities RZZ (ω), RXX (ω) and
RZX (ω) to design a Wiener Filter to retrieve the original
signal.

3. Discuss the implementation issues.

4. Other possible solutions?

5. Recursive methods

6. Kalman filtering
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Wiener Filtering
Objective: a signal f (t) is transmitted through a media which is
assumed to act as a linear and invariant system. The transmission
canal is also noisy. We receive the noisy signal g(t). We want to
estimate the transmitted signal f̂ (t).

f (t)- H(ω) - j+ - g(t)
?
ε(t)

g(t) −→ Wiener filter → f̂ (t)

g(t) = h(t) ∗ f (t) + ε(t)

E {ε(t)} = 0,E {f (t)} = 0→ E {g(t)} = h(t)∗E {f (t)}+E {ε(t)} = 0

Rgg (τ) = E {g(t) g(t + τ)}
Rff (τ) = E {f (t) f (t + τ)}
Rgf (τ) = Rfg (−τ) = E {g(t) f (t + τ)}

ε(t) is assumed to be centred and independent of f (t).

E {ε(t)} = 0,E {ε(t)ε(t + τ)} =

{
σ2ε if τ = 0
0 else
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Wiener Filtering

f (t)- H(ω) - j+ - g(t)
?
ε(t)

g(t) −→ Wiener filter → f̂ (t)

Rgg (τ) = h(t) ∗ h(t) ∗ Rff (τ) + Rεε(τ)

Rgf (τ) = h(t) ∗ Rff (τ)

Sgg (ω) = |H(ω)|2Sff (ω) + Rεε(ω)

Sgf (ω) = H(ω)Sff (ω)

Sfg (ω) = H∗(ω)Sff (ω)

g(t)→ W (ω) → f̂ (t) or g(t)→ w(t) → f̂ (t)

f̂ (t) = w(t) ∗ g(t)

A. Mohammad-Djafari, Introduction to Communication, Control and Signal Processing, 2016, Huazhong, Wuhan, China. 58/82



Wiener Filtering

MSE = E
{

[f (t)− f̂ (t)]2
}

= E
{

[f (t)− w(t) ∗ g(t)]2
}

∂MSE

∂w(t)
= −2E {[f (t)− w(t) ∗ g(t)]g(t + τ)} = 0

E {[f (t)− w(t) ∗ g(t)] g(t + τ)} = 0 ∀t, τ −→

Rfg (τ) = w(t) ∗ Rgg (τ) −→ Sfg (ω) = W (ω)Sgg (ω)

W (ω) =
Sfg (ω)

Sgg (ω)
=

H∗(ω) Sff (ω)

|H(ω)|2 Sff (ω) + Sεε(ω)

W (ω) =
H∗(ω)Sff (ω)

|H(ω)|2Sff (ω) + Sεε(ω)
=

1

H(ω)

|H(ω)|2

|H(ω)|2 + Sεε(ω)
Sff (ω)
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Wiener filtering

f (x , y)- H(u, v) - m+ -g(x , y)
?

ε(x , y)

g(x , y) −→ Wiener filter → f̂ (x , y)

Signal Image

W (ω) =
Sfg (ω)

Sgg (ω)
W (u, v) =

Sfg (u, v)

Sgg (u, v)

f (x , y) and ε(x , y) are assumed to be centred and non correlated

Sfg (u, v) = H ′(u, v) Sff (u, v)

Sgg (u, v) = |H(u, v)|2 Sff (u, v) + Sεε(u, v)

W (u, v) =
H ′(u, v)Sff (u, v)

|H(u, v)|2Sff (u, v) + Sεε(u, v)

Signal Image

W (ω) =
1

H(ω)

|H(ω)|2

|H(ω)|2 + Sεε(ω)
Sff (ω)

W (u, v) =
1

H(u, v)

|H(u, v)|2

|H(u, v)|2 + Sεε(u,v)
Sff (u,v)
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Wiener Filtering: Discrete version

Objective: a signal f is transmitted through a media which is
assumed to act as a linear system. The transmission canal is also
noisy. We receive the noisy signal g. We want to estimate the
transmitted signal f̂.

f - H - j+ - g
?
ε

g −→ W → f̂

g = Hf + ε

E {ε} = 0,E {f} = 0→ E {g} = HE {f}+ E {ε} = 0

Rεε = E {εε′} Rff = E {f f ′}
Rεf = R′f ε = E {ε f} = 0 Rgf = R′fg = E {g f} = H′Rff

Rgg = E {g g′} = [HRff H
′ + Rεε]
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Wiener Filtering: Discrete version

Mean Square Error (MSE):

MSE = E
{

[̂f − f]′ [̂f − f]′
}

= E
{

[Wg − f]′[Wg − f]
}

= E
{
‖Wg − f‖22

}
Orthogonality: ∂MSQE

∂W = 0

E
{

[̂f − f]g′
}

= E
{

[Wg − f]g′
}

= 0→ E
{
gg′
}
W = E

{
fg′
}

W = E
{
fg′
}

[E
{
gg′
}

]−1 = Rfg [Rgg ]−1

Rfg = Rff H
′, Rgg = HRff H

′ + Rεε

W = Rfg [Rgg ]−1 = Rff H
′[HRff H

′ + Rεε]
−1
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Wiener Filtering: Discrete version

I Matrix Inversion Lemma:

W = Rff H
′[HRff H

′ + Rεε]
−1 = [H′R−1εε H + R−1ff ]−1H′R−1εε

I Rεε = σ2ε I (white noise)

W = Rff H
′[HRff H + σ2ε I]

−1 = [H′H + σ2εR
−1
ff ]−1H′

I Particular Case: σ2b = 0 (No noise channel)

W =

{
[H′H]−1H′ −→ f̂ = [H′H]−1H′g

Rff H
′[HRff H

′]−1 −→ f̂ = Rff H
′[HRff H

′]−1g
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Generalized Wiener filter using unitary transforms

W = [H′H + σ2bR
−1
ff ]−1H′

P
4
= [H′H + σ2bR

−1
ff ]−1

Consider a unitary transform F such that F′F = FF′ = I

f̂ = F′[FPF′]FH′g
4
= F′P̄z

P̄
4
= [FPF′], z

4
= FH′g

g −→ H′ −→ F −→ z −→ P̄ = [FPF′] −→ ẑ −→ F′ −→ f̂

For an appropriate unitary transforms P̄ becomes an almost
diagonal matrix

ẑ = P̄z =⇒ ẑ(k) ' p̄(k) z(k)
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2. modelling: parametric and non-parametric, MA, AR and
ARMA models

I modelling ? for what ?

I Deterministic / Probalistic modelling

I Parametric / Non Parametric

I Moving Average (MA)

I Autoregressive (AR)

I Autoregressive Moving Average (ARMA)

I Classical methods for parameter estimation (LS, WLS)
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modelling ? What for ? 1D signals

I 1D signals:
I Is it periodic? What is the period?
I Is there any structure?
I Has something changed before, during and after some

traitement
I Can we compress it? How? How much?
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modelling ? What for ? 2D signals (Images)

I Images:
I Is there any structure?
I Contours? Regions?
I Can we compress it? How? How much?
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modelling ? What for ? multi dimensional time series
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modelling ? What for ? multi dimensional time series

I Multi Dimentionsional signals g1(t), · · · , gn(t)
I Dependancy: Are they all independent?

If not, which ones are related?
I Dimensionality reduction: Can we reduce the dimensionality?
I Principal Components Analysis (PCA):

What are the principal components?
I Independent Components Analysis (ICA):

What are the independent components?
I Factor Analysis (FA): What are the principal factors?
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Deterministic / Probalistic modelling

I Deterministic:
I The signal is a sinusoid X (t) = a sin(ωt + φ). We need just to

determine the three parameters a, ω, φ.
I The signal is periodic

X (t) =
∑K

k=1 ak cos(kω0t) + bk sin(kω0t).
If we know ω0, then, we need just to determine the parameters
(ak , bk ), k = 1, · · · ,K .

I The signal represents a Gaussian form spectra
X (t) =

∑K
k=1 ak N (mk , vk ). We need just to determine the

parameters (ak ,mk , vk ), k = 1, · · · ,K .
I In the last two cases, one great difficulty is determining K

I Probabilistic:
I The shape of the signal is more sophisticated.
I 1 Sinusoid + noise X (t) = a sin(ωt + φ) + ε(t)
I K Sinusoids + noise X (t) =

∑K
k=1 ak sin(ωk t + φk ) + ε(t)

I No specific shapes: MA, AR, ARMA, ...
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Determinist/Probabilist

X (t) = a sin(ωt + φ), a = 1, ω = 2π, φ = 0

ARMA(1,2), q = 1, v = 1, b1 = 1, a1 = 1, a2 = .8
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Stationary/Non Stationary

X (t) ∼ N (0, 1), ∀t −→ E {X (t)} = 0,Var {X (t)} = 1, ∀t

f3(t) = a1 sin(2ωt) + a2 ∼ (3ωt), ω = π/12, a1, a2 ∼ U(0, 1)
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Parametric / Non Parametric

I Parametric
I K Sinusoids + noise X (t) =

∑K
k=1 ak sin(ωk t + φk ) + ε(t).

The parameters are (ak , ωk , φk ), k = 1, · · · ,K and vε.
I K Complex exponentials + noise

X (t) =
∑K

k=1 ck exp {−jωk t}+ ε(t). The parameters are
(ck , ωk ), k = 1, · · · ,K and vε.

I Sum of K Gaussian shapes: X (t) =
∑K

k=1 ak N (mk , vk ). The
parameters are (ak ,mk , vk ), k = 1, · · · ,K and vε.

I Non-Parametric
I The shape of the signal is more sophisticated.
I The shape is composed of as much as the number of data of

Complex exponentials + noise
X (t) =

∑N
n=1 cn exp {−jnω0t}+ ε(t). If we know ω0, then,

the parameters are cn, n = 1, · · · ,N and vε.
I Sum of the Gaussian shapes: X (t) =

∑K
k=1 anN (mn, vn). The

parameters are (an,mn, vn), n = 1, · · · ,N and vε.
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Moving Average (MA)

Continuous: x(t) = b(t) ∗ ε(t) =

∫
b(τ)ε(t − τ) dτ

Discrete: x(n) =

q∑
k=0

b(k)ε(n − k), ∀n

ε(n)−→ B(z) =

q∑
k=0

b(k)z−k −→x(n)

MA, q = 15, v = 1, bk = exp
{
−.05 ∗ k2

}
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Autoregressive (AR)

x(t) =

p∑
k=1

a(k) x(t−k∆t)+ε(t) −→ x(n) =

p∑
k=1

a(k) x(n−k)+ε(n), ∀n

E {ε(n)} = 0, E
{
|ε(n)|2

}
= β2,

E {ε(n) x(m)} = 0, m 6= n

ε(n)−→ H(z) =
1

A(z)
=

1

1−
∑p

k=1 a(k) z−k
−→x(n)

AR1, a = .7, v = 1.
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Autoregressive Moving Average (ARMA)

x(n) =

p∑
k=1

a(k) x(n − k) +

q∑
l=0

b(l) ε(n − l)

εn−→ H(z) =
B(z)

A(z)
=

∑q
k=0 b(k)z−k

1−
∑p

k=1 a(k) z−k
−→x(n)

εn−→ Bq(z) −→ 1

Ap(z)
−→x(n)

ARMA(1,2), q = 1, v = 1, b1 = 1, a1 = 1, a2 = .8
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Causal ou Non-Causal AR models

I Causal :

x(n) =

q∑
k=1

a(k) x(n − k) + εn, ∀n

A(z) = 1−
q∑

k=1

a(k) z−k −→ εn−→ H(z) =
1

A(z)
−→x(n)

I Non–causal :

x(n) =

+q∑
k=−p

k 6=0

a(k) x(n − k) + εn, ∀n

A(z) = 1−
+q∑

k=−p

k 6=0

a(k) z−k −→ εn−→ H(z) =
1

A(z)
−→x(n)
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2D AR Models

A(z1, z2) = 1−
∑
(k,l)

∑
∈S

a(k , l)z−k
1 z−k

2

f (m, n) =
∑
(k,l)

∑
∈S

a(k , l) f (m − k , n − l) + ε(m, n)

I Non–causal
S = {l ≥ 1,∀k} ∪ {l = 0, k 6= 0}

I Semi–ausal
S = {l ≥ 1,∀k} ∪ {l = 0, k ≥ 1}

I Causal
S = {(k , l) 6= (0, 0)}
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2D AR Models

I Causal
I S = {l ≥ 1,∀k} ∪ {l = 0, k 6= 0}
I Recursive Filtre
I Finite Differential Equations with initial conditions
I Hyperbolic Partial Differential Equations

I Semi–causal
I S = {l ≥ 1,∀k} ∪ {l = 0, k ≥ 1}
I Semi–recursif Filters
I Finite Differential Equations with initial conditions in one

dimention and limit conditions in other dimension
I Parabolic Partial Differential Equations

I Non–causal
I S = {(k, l) 6= (0, 0)}
I Non-recursive Filtre
I Finite Differential Equations with limit conditions in both

dimensions
I Elliptic Partial Differential Equations
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Causal/Non-Causal Prediction

I Causal :
x̂(n) =

∑
k

a(k) x(n − k)

I Non-Causal :

x̂(n) =

+q∑
k=−p

k 6=0

a(k) x(n − k)
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2D AR models and 2D prediction

A(z1, z2) = 1−
∑
(k,l)

∑
∈S

a(k , l)z−k
1 z−k

2

f (m, n) =
∑
(k,l)

∑
∈S

a(k , l) f (m − k , n − l) + ε(m, n)

I Non–causal

I Semi–ausal

I Causal
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2D AR models and 2D prediction

I Causal
I S = {l ≥ 1,∀k} ∪ {l = 0, k 6= 0}
I Recursive Filtering
I Finite Difference Equation (FDE) with initial conditions
I Partial Differential Equations (Hyperbolic)

I Semi–causal
I S = {l ≥ 1,∀k} ∪ {l = 0, k ≥ 1}
I Filtre semi–récursif
I FDE with initial conditions in one direction and limit

conditions in other direction.
I Partial Differential Equations (Parabolic)

I Non–causal
I S = {(k, l) 6= (0, 0)}
I Non-Recursive Filtering
I FDE with limit conditions in both directions
I Partial Differential Equations (Elliptic)
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