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Description of the problem

» Detecting a periodic component in a short duration signal,
estimating its period and its shape.
» Low noise example

> High noise example
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Description of the problem

>
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where M = KN + r where K is the number of complete
repetition of the periodic shape and r is the rest.

> This relation can be written as a linear relation:
g = Hpf
where H has the following structure
Hy = [In[In|.[In1(:, 12 7))

where Iy is the unitary matrix of size N x N and I(:;1:r) is
its first r columns.

g =Hnf + €
the vector € represents those errors.
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Description of the problem

» Also, we require some regularity in the shape of f. This
regularity can be modelled as

f=Df+£&—->(1-D)f=¢(->Cf=¢

where C can be of the form

1 -1 0 0
0 1 -1
CN: ... 0
0 -~ 0 1 -1
-1 0 -~ 0 1 |

» A criterion which measures the regularity can be ||Cf||?
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Deterministic regularization method

g=Hyf+e Cf=¢
With these two equations, we have at least two possibilities:

> Deterministic regularization:

F = argmin {J(F)} with J(F) = g = Hnf[3 + A Cnf13
f

The solution is given by:
f = [HyHy + ACyCpy] 'H)g
» The above criterion was given for a given value of N. We can
now try to define a criterion which depends explicitly on N :
J(N,F) = |lg = Hyf3 + A Cufl3

and try to optimize it to find both the seeked period N and
the shape f: A
(N, f) =argmin{J(N,f)}
(V,F)

A. Mohammad-Djafari, Approximate Bayesian Computation for Big Data, Tutorial at MaxEnt 2016, July 10-15, Gent, Belgium. 7/16



Bayesian approach

g=Hpf+e, Cf=¢

> Likelihood
p(glf) = N(glHnf, vel),
» Prior
p(f) = N(F10, ve(CHCn) ™)
» Poserior o
p(flg) o p(glf)p(f) = N (f|f, X)
with

f=arg max {p(f|g)} = argmin {J(f)}
f f
which is equivalent to the quadratic regularization as before
f = [HyHy + ACyCy] *Hyg

with X = v /ve.
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Bayesian approach

» Poserior o
p(flg) o< p(glf)p(f) = N(fIf,x)
with R
f = argmax{p(f|g)} = argmin {J(f)}
f f
and

% = [HyHpy + AC)Cal ™
which can be used to put error bars on the solution.

» Joint posterior p(/V, f|g) and and try to optimize it to find the
seeked solution

(N, F) = argmax{p(N, f|g)}
(v.f)

» We can do better.

A. Mohammad-Djafari, Approximate Bayesian Computation for Big Data, Tutorial at MaxEnt 2016, July 10-15, Gent, Belgium. 9/16



Bayesian approach with more appropriate priors

» Forward and prior model equations:
g=Hpyf+e Cf=¢

> ¢; and ; are Gaussian but with unknown variances that we
want to estimate to.

p(€i|‘/€i) = N(€i|0= Vfi)’ p(vfi|a€07 BEO) = Ig(vfi|a607 660)
p(fi|‘/£,’) = N(ff’O, Vﬁ,‘)a p(Vﬁi’aﬁovﬁﬁo) = Ig(vﬁ'|a§07/8£o)

» This can also be interpreted as a wish to model them by a
heavier tailed probability laws such as Student-t:

St(ei‘aﬂv 56,') = / N(6i|707 Vfi)z’-g(vfi’am?/@fo) dvff
0

St(jla, B) = / N(E1,0, ve)) T0(ve gy, By dve,
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Non stationary noise and sparsity enforcing model

— Forward model:
g = Hf+te, ¢; ~ N(€i|0,v..) = € ~ N(€|0,V.), V. = diag[ve1, -, vem])

— Prior model:
CNf = 5’ gj ~ N(£I|Oafj) — 5 ~ N(€|O7Vf),vf = dlag [Vfla to 7V§N])

{P(g\f,v ) =N(g[Hf,V.), V.= diag|v]

’O‘E(wﬁfo‘ e, Beo| | P(FIvr) = N(F]O, VECC) V¢ = diag [v¢]
@ {p(vé) = Hizg(vfi|a€o)ﬁeo)
p(ve) = I1; ZG(ve;log, Be)

o p(f,ve, velg) o< p(glf, ve) p(Flve) p(ve) p(ve)

H Objective: Infer (f, v, v¢)

— VBA: Approximate p(f,v., v¢|g)
e by g1(f) g2(ve) g3(ve)
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Results

N=96, period=29,
» By using Fourier Transform technic, no way to find the right
value of period.
» It is also difficult to estimate the shape of this repeating

scheme.
Low noise case:

High noise case:

Al | "SI»\J‘,I“HNI\‘M
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Results

N=96, period=29,
Low noise case:
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Results
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Results
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Conclusions

> the first step in any inference is to write down the relation
between what you observe (data g) and the unknowns f.

» The second step is to model and assign priors to account for
all uncertainties

» The third step is to use the Bayes rule to find the expression
of the joint probability law of all the unknowns given the data
and all the hyper parameters.

» Do the Bayesian computation, show the results
> Interpret your results

» Enjoy
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