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Sparsity?

I Signal and image representation and modelling:
Many real world signals, sounds, images can be represented by
a sparse model.

I Sparse modelling in Inverse problems and Machine learning:
Sparsity can be used as regularizer to avoid over fitting in
many machine learning problems:
Feature selection, SVMs, ...

I Sparsity as a tool for fast algorithms:
Sparsity can be exploited for fast computations
Matrix factorisation for recommender systems
Sparse solutions in kernel machines
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Sparse signals and images
I Sparse signals: Direct sparsity

I Sparse images: Direct sparsity

B& W text Cell Colony embryos
A. Mohammad-Djafari, Sparsity in signal and image processing, Keynote talk at SITIS 2016, Napoli, Italy 4/65



Sparse signals and images

I Sparse signals in a Transform domain

I Sparse images in a Transform domain
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Sparse signals and images
I Sparse signals in Time and Fourier domain

Time domain Fourier domain

I Sparse images in Space and Fourier domain
Space domain Fourier domain
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Sparse signals and images

I Sparse signals: Sparsity in a Transform domaine
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Sparse signals and images
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Sparse signals and images (Fourier and Wavelets domain)

Image Fourier Wavelets

Image hist. Fourier coeff. hist. Wavelet coeff. hist.
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Finite and Sparse representation: some references
I 1948: Shannon:

Sampling theorem and reconstruction of a band limited signal
I 1993-2007:

I Mallat, Zhang, Candès, Romberg, Tao and Baraniuk:
Non linear sampling, Compression and reconstruction,

I Fuch: Sparse representation
I Donoho, Elad, Tibshirani, Tropp, Duarte, Laska:

Compressive Sampling, Compressive Sensing
I 2007-2016: Deterministic

Algorithms for sparse representation and Compressive
Sampling: Matching Pursuit (MP), Projection Pursuit
Regression, Pure Greedy Algorithm, OMP, Basis Poursuit
(BP), Dantzig Selector (DS), Least Absolute Shrinkage and
Selection Operator (LASSO), Iterative Hard Thresholding...

I 2003-2016: Bayesian
Bayesian approach to sparse modeling
Tipping, Bishop: Sparse Bayesian Learning,
Relevance Vector Machine (RVM), Sparsity enforcing priors,...
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Modelling and representation

I Modelling via decomposition
(basis, codebook, dictionary, Design Matrix)

g(t) =
N∑
j=1

f j φj(t), t = 1, · · · ,T −→ g = Φ f

g(t) φj(t) fj

T = 100 [100× 35] N = 35(7nonzero)
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Modelling and representation

g(t) =
∑

j φj(t) fj

g = Φ f

T = 100 [100× 35] N = 35
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Modelling and representation
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∑
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Modelling and representation
I Modelling via a basis (codebook, dictionary, Design Matrix)

g(t) =
N∑
j=1

f j φj(t), t = 1, · · · ,T −→ g = Φ f

I When T ≥ N

f̂ j = arg min
fj


T∑
t=1

∣∣∣∣∣∣g(t)−
N∑
j=1

f j φj(t)

∣∣∣∣∣∣
2 −→

f̂ = arg min
f

{
‖g −Φf‖22

}
= [Φ′Φ]−1Φ′g

I When orthogonal basis: Φ′Φ = I −→ f̂ = Φ′g

f̂ j =
N∑
t=1

g(t)φj(t) =< g(t), φj(t) >

I Application in Compression, Transmission and Decompression
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Modelling and representation
I When over complete basis N > T : Infinite number of

solutions for Φf = g. We have to select one.
Minimum norm solution:

f̂ = arg min
f : Φf=g

{
‖f‖22

}
or writing differently:

minimize ‖f‖22 subject to Φf = g

resulting to:
f̂ = Φ′[ΦΦ′]−1g

I Again if ΦΦ′ = I −→ f̂ = Φ′g.
I No real interest if we have to keep all the N coefficients:
I Sparsity:

minimize ‖f‖0 subject to Φf = g

or
minimize ‖f‖1 subject to Φf = g
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Sparse decomposition (MP and OMP)

I Strict sparsity and exact reconstruction

minimize ‖f‖0 subject to Φf = g

‖f‖0 is the number of non-zero elements of f

I Matching Pursuit (MP) [Mallat & Zhang, 1993]

I MP is a greedy algorithm that finds one atom at a time.

I Find the one atom that best matches the signal;
Given the previously found atoms, find the next one to best
fit, Continue to the end.

I Orthogonal Matching Pursuit (OMP) [Lin, Huang et al., 1993]
The Orthogonal MP (OMP) is an improved version of MP that
re-evaluates the coefficients after each round.
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Sparse decomposition (BP,PPR,BCR,IHT,...)

I Sparsity enforcing and exact reconstruction

minimize ‖f‖1 subject to Φf = g

I This problem is convex (linear programming).

I Very efficient solvers has been deployed:
I Interior point methods [Chen, Donoho & Saunders (95)],
I Iterated shrinkage [Figuerido & Nowak (03), Daubechies,

Defrise, & Demole (04), Elad (05), Elad, Matalon, &
Zibulevsky (06), Marvasti et al].

I Basis Pursuit (BP)
I Projection Pursuit Regression
I Block Coordinate Relaxation (BCR)

I Greedy Algorithms
I Iterative Hard Thresholding (IHT)
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Sparse decomposition algorithms
I Strict sparsity and exact reconstruction

minimize ‖f‖0 subject to g = Φf

I Strict sparsity and approximate reconstruction

minimize ‖f‖0 subject to ‖g −Φf‖22 < c

I NP-hard. Looking for other solutions:
I Sparsity promoting and exact reconstruction:

Basis Pursuit (BP)

minimize ‖f‖1 subject to Φf = g

I Sparsity promoting and approximate reconstruction:

minimize ‖f‖1 subject to ‖g −Φf‖22 < c

or equivalently (LASSO):

f̂ = arg min
f
{J(f)} with J(f) =

1

2
‖g −Φf‖22 + λ‖f‖1
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Sparse Decomposition Applications

I Denoising: g = f + ε with f = Φz

J(z) =
1

2
‖g −Φz‖22 + λ‖z‖1

When ẑ computed, we can compute f̂ = Φẑ.

I Compressed Sensing and Linear Inverse problems:

g = Hf + ε with f = Φz

J(z) =
1

2
‖g −HΦz‖22 + λ‖z‖1

When ẑ computed, we can compute f̂ = Φẑ.

I Linear Inverse problems with piecewise constant prior:

g = Hf + ε with Df = z and z j ∼ DE(λ) Sparse

J(f) =
1

2
‖g −Hf‖22 + λ‖Df‖1
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Sparse Decomposition algorithms (Unitary decomposition)

J(z) =
1

2
‖g −Φz‖22 + λ‖z‖1

I When ΦΦ′ = Φ′Φ = I

J(z) =
1

2
‖Φ′g−Φ′Φz‖22+λ‖z‖1 =

1

2
‖z0−z‖22+λ‖z‖1 with z0 = Φ′g

which is a separable criterion:

J(f) =
1

2
‖z− z0‖22 + λ‖z‖1 =

∑
j

1

2
|z j − z0j |2 + λ|z j |1

I Closed form solution: Shrinkage

z j =

{
0 |z0j | < λ
z0j − sign(z0j)λ otherwise
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Sparse Decomposition Algorithms (Lasso and extensions)
I LASSO:

J(f) = ‖g −Φf‖22 + λ
∑
j

|f j |

I Other Criteria
I Lp

J(f) = ‖g −Φf‖22 + λ1
∑
j

|f j |p, 1 < p ≤ 2

I Elastic net

J(f) = ‖g −Φf‖22 +
∑
j

(
λ1|f j |+ λ2|f j |2

)
I Group LASSO

J(f) = ‖g −Φf‖22 + λ1
∑
j

|f j |+ λ2
∑
j

|f j − f j−1|2

I Weighted L1:

J(f) = ‖g −Φf‖22 + λ
∑
j

|wj f j |

wj =
λ

|f̂ j |+ ε
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Advanced Algorithms

Many optimisation algorithms have been developed based on the
facts that: J(f) is composed of a first term which is sum of strictly
convex terms and the second term is convex but not derivable at
the origin.

I Alternating Direction Method of Multipliers (ADMM) is based
on the splitting variables and augmented Lagrangian [Boyd et
al. 2011,...]

I Iterative Shrinkage Thresholding Algorithm (ISTA) and its
accelerated version Fast ISTA (FISTA) are based on the
duality, convex conjugate property, level set and minmax
theorem [Beck and Teboulle 2009, Parikh and Boyd, 2014,...]

I Cyclic or Bloc Coordinate Descent method (CCD or BCD) are
based on bloc coordinate optimization of the criterion [Saha
and Tewari, 2010] .
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Algorithms:
Alternating Direction Method of Multipliers (ADMM)

I ADMM is based on the splitting variables and augmented
Lagrangian [Boyd et al., 2011]

J(f) =
1

2
‖g −Φf‖22 + λ‖f‖1 s.t. f − z = 0

L(f, z,µ) =
1

2
‖g −Φf‖22 + λ‖z‖1 + µ′(f − z) +

ρ

2
)‖f − z‖22

Stationary point of L can be reached by an alternate
optimization with respect to f, z and µ gives the algorithm.

f(k+1) = arg minf
{
Lc(f, z(k),µ(k))

}
z(k+1) = arg minz

{
Lc(f(k), z,µ(k))

}
µ(k+1) = µ(k) + τ(f(k) − z(k))
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Algorithms: Iterative Shrinkage Thresholding Algorithm
(ISTA)

ISTA and its accelerated version Fast ISTA (FISTA) are based on
the duality, convex conjugate property, level set and MinMax
theorems and can be summarized in two steps:

J(f) = J0(f) + λ‖f‖1 with J0(f) =
1

2
‖g −Φf‖22

I Prox Linear approximation:

J(f) = λ‖f‖1 +
〈
∇J0(f(k)), (f − f(k))

〉
+

1

2δ(k)
‖f − f(k)‖22

I Shrinkage:

f(k+1) = S
(

f(k) − δ(k)∇J0(f), f(k), λδ(k)
)

whre S(z j , t) = max(|z j | − t, 0)sign(z j)
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Other criteria

J(f) = ‖g −Φf‖22 + λ
∑
j

φ(f j)

Convex criteria:

I Lp : φ(f j) = |f j |p, 1 ≤ p ≤ 2

I Hubber: φ(f j) =

{
f 2j |f j | < s

s2 + |f j − s| otherwise

Non Convex criteria:

I fractional power: φ(f j) = |f j |p, 0 < p < 1

I Truncated quadratic: φ(f j) =

{
f 2j |f j | < s

s2 otherwise

I Cauchy: φ(f j) = s ln(1 + |f j |/s)

I φ(f j) = |f j |+ s ln(1 + |f j |/s)
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Dictionary learning

I Given a set of training data (gk(t), fjk) related by:

gk(t) =
N∑
j=1

φj(t) fjk , t = 1, · · · ,T , k = 1, · · · ,K

or equivalently, given

gk = Φ fk , k = 1, · · · ,K

determine Φ.

I Objective criterion:

J(Φ) =
∑
k

∑
t

∣∣∣∣∣∣gk(t)−
∑
j

φj(t)fjk

∣∣∣∣∣∣
2

+ λ
∑
t

∑
j

|φj(t)|2

J(Φ) =
∑
k

‖gk −Φfk‖22 + λ‖Φ‖22
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Dictionary learning

I Optimizing

J(Φ) =
∑
k

‖gk −Φfk‖22 + λ‖Φ‖22

gives

Φ̂ =

[∑
k

gkg′k + λI

]−1
g′k fk

I Looking for sparse dictionary, we can use

J(Φ) =
∑
k

‖gk −Φfk‖22 + λ‖Φ‖1

and we can again use an iterative algorithm to find the
solution.
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Joint Dictionary learning and sparse reconstruction
I Given a set of data gk modelled as

gk = Φ fk , k = 1, · · · ,K
determine both the dictionary Φ and the compositions fk .

I Joint criterion

J(Φ, fk) =
∑
k

‖gk −Φfk‖22 + λ0|Φ‖22 + λ1
∑
k

‖fk‖22

I Alternate optimization: Φ̂ = [
∑

k gkg′k + λ0I]−1 g′k f̂k

f̂k =
[
Φ̂
′
Φ̂ + λ1I

]−1
Φ̂
′
kgk

I Looking for sparse dictionary and sparse coefficients we can
use

J(Φ) =
∑
k

‖gk −Φfk‖22 + λ0‖Φ‖1 + λ1
∑
k

‖fk‖1

and we can again use an iterative algorithm to find the
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Multi Dimensional signals: PCA, SPCA, BSS, ...

g i (t) =
N∑
j=1

Φij f j(t), i = 1, · · · ,M, t = 1, · · · ,T

g(t) = Φ f(t), t = 1, · · · ,T
G = Φ F, with G [M × T ], Φ [M × N], F [N × T ]

I f j(t) factors, sources, codes
I Φ Loading matrix (Factor Analysis),

Mixing matrix (Blind Sources Separation),
Design matrix (Sparse coding, Compressed Sensing)

I Objective: Find Φ and f j(t)

J(f(t),Φ) =
∑
t

‖g(t)−Φf(t)‖22+λ1
∑
i

∑
j

|Φij |+λ2
∑
t

∑
j

|f j(t)|

J(F,Φ) = ‖G−ΦF‖22 + λ1‖Φ‖1 + λ2‖F‖1
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Matrix Decomposition or Approximation

I Matrix approximation:
Find an approximate matrix Ĝ = ΦF for G with some degrees
of sparsity in the elements of Φ and F.

J(F,Φ) = ‖G−ΦF‖22 + λ1‖Φ‖1 + λ2‖F‖1

I Low rank Matrix decomposition:

Ĝ =
K∑

k=1

dkukv′k = UDV

with some degrees of sparsity in the elements of u and v.

J(U,V) = ‖G−UDV‖22 + λ1‖U‖1 + λ2‖V‖1
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Bayesian approach

I Bayesian approach: g = Φf + ε

p(f|g) =
p(g|f) p(f)

p(g)
∝ p(g|f) p(f)

I Priors: Gaussian noise and Double Exp (DE) for f{
p(g|f) = N (g|Φf, σ2ε ) ∝ exp

[
−1
2σ2
ε
‖g −Φf‖22

]
p(f) = DE(f|γ) ∝ exp [−γ‖f‖1]

I Maximum A Posteriori (MAP):

f̂ = arg max
f
{p(f|g)} = arg min

f
{J(f)}

J(f) = ‖g −Φf‖22 + λ‖f‖1 with λ = 2γσ2ε

I MAP = LASSO
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Sparse decomposition: Regularization or MAP
I Regularization: J(f) = ‖g −Φf‖22 + λ‖f‖1
I With fixed λ: Find a good optimization algorithm
I How to choose λ ?
I L-Curve, Cross Validation, adhoc λ = 1, ...
I ——————————————————————-
I MAP: p(f|g) ∝ p(g|f) p(f)

f̂ = arg maxf {p(f|g)} = arg minf {J(f)} with

J(f) = ‖g −Φf‖22 + λ‖f‖1 with λ = 2γσ2ε

I How to estimate γ and σ2ε ? θ = (γ, σ2ε )
I Bayesian: p(f,θ|g) ∝ p(g|f, σ2ε ) p(f|γ)p(γ))p(σ2ε )

Joint MAP, Expectation-Maximization, MCMC,
Variational Bayesian Approximation,...

I Advantages of the Bayesian approach:
I More probabilistic modelling for sparsity enforcing
I Hyperparameter estimation
I Uncertainty handling and quantification
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Sparsity enforcing prior models

I Simple heavy tailed models:
I Generalized Gaussian, Double Exponential
I Student-t, Cauchy
I Generalized hyperbolic
I Symmetric Weibull, Symmetric Rayleigh
I Elastic net

I Hierarchical mixture models:
I Mixture of Gaussians
I Bernoulli-Gaussian
I Mixture of Gammas
I Bernoulli-Gamma
I Mixture of Dirichlet
I Bernoulli-Multinomial
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Simple heavy tailed models
• Generalized Gaussian, Double Exponential

p(f|γ, β) =
∏
j

GG(fj |γ, β) ∝ exp

−γ∑
j

|fj |β


β = 1 Double exponential or Laplace.
0 < β < 2 are of great interest for sparsity enforcing.

Generalized Gaussian family
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Simple heavy tailed models
• Student-t and Cauchy models

p(f|ν) =
∏
j

St(fj |ν) ∝ exp

−ν + 1

2

∑
j

log
(
1 + f 2j /ν

)
Cauchy model is obtained when ν = 1.

Student-t and Cauchy families
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Simple heavy tailed models

• Generalized hyperbolic (GH) models

p(f|δ, ν, β) =
∏
j

(δ2 + f 2j )(ν−1/2)/2 exp [βx)]Kν−1/2(α
√
δ2 + f 2j )

Generalized hyperbolic family
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Mixture models
• Mixture of two Gaussians (MoG2) model

p(f|α, v1, v0) =
∏
j

[αN (fj |0, v1) + (1− α)N (fj |0, v0)]

• Bernoulli-Gaussian (BG) model

p(f|α, v) =
∏
j

p(fj) =
∏
j

[αN (fj |0, v) + (1− α)δ(fj)]

Mixture of 2 Gaussians families
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• Mixture of Gammas

p(f|λ, v1, v0) =
∏
j

[λG(fj |α1, β1) + (1− λ)G(fj |α2, β2)]

• Bernoulli-Gamma model

p(f|λ, α, β) =
∏
j

[λG(fj |α, β) + (1− λ)δ(fj)]

• Mixture of Dirichlets model

p(f|λ,Φ1,α1,Φ2,α2) =
∏
j

[λD(fj |H1,α1) + (1− λ)D(fj |H2,α2)]

D(fj |H,α) =
K∏

k=1

Γ(α)

Γ(α0)Γ(αK )
aαk−1
k , αk ≥ 0, ak ≥ 0

where H = {a1, · · · , aK} and α = {α1, · · · , αK}
with

∑
k αk = α and

∑
k ak = 1.

• Bernoulli-Multinomial (BMultinomial) model

p(f|λ,H,α) =
∏
j

[λδ(fj) + (1− λ)Mult(fj |H,α)]
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Hierarchical models and hidden variables

I All the mixture models can be modelled via hidden variables z.

p(f ) =
K∑

k=1

αkpk(f ) −→
{

p(f |z = k) = pk(f ),
P(z = k) = αk ,

∑
k αk = 1

I Example 1: MoG model: pk(f ) = N (f |mk , vk)
2 Gaussians: p0 = N (0, v0), p1 = N (0, v1), α0 = λ, α1 = 1−λ

p(fj |λ, v1, v0) = λN (fj |0, v1) + (1− λ)N (fj |0, v0)

Bernouilli-Gaussian model:{
p(fj |z j = 0, v0) = N (fj |0, v0),
p(fj |z j = 1, v1) = N (fj |0, v1),

and

{
P(z j = 0) = λ,
P(z j = 1) = 1− λ p(f|z) =

∏
j p(fj |z j) =

∏
j N

(
fj |0, vz j

)
∝ exp

[
−1

2

∑
j

f 2j
vzj

]
p(z) = λn1(1− λ)n0 , n1 =

∑
j δ(zj − 1), n0 =

∑
j δ(zj)
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Hierarchical models and hidden variables

I Example 2: Student-t model

St(f |ν) ∝ exp

[
−ν + 1

2
log
(
1 + f 2/ν

)]
I and its Infinite Gaussian Scaled Mixture IGSM model:

St(f |ν) ∝=

∫ ∞
0
N (f |, 0, 1/z)G(z |α, β) dz , with α = β = ν/2

p(f |z) = N (f |0, 1/z), p(z) = G(z |α, β)

p(f|z) =
∏

j p(fj |z j) =
∏

j N (fj |0, 1/z j) ∝ exp
[
−1

2

∑
j z j f

2
j

]
p(z|α, β) =

∏
j G(z j |α, β) ∝

∏
j z

(α−1)
j exp [−βz j ]

∝ exp
[∑

j(α− 1) ln z j − βz j
]

p(f, z|α, β) ∝ exp
[
−1

2

∑
j z j f

2
j + (α− 1) ln z j − βz j

]
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Hierarchical models and hidden variables

p(f j |z j) = N (f |0, 1/z j), p(z j) = G(z j |α, β)

More general hierarchical models:
(BG, IGSM, Gauss-Markov-Potts)
p(g|f) = N (g|Φf, σ2ε I)

p(f|z) =
∏

j p(f j |z j) or Markovian

p(z) =
∏

j p(z j) or Markovian (Potts)

→ p(f, z|g) ∝ p(g|f)p(f|z)p(z)

I With Hyperparameters θ we have:
I Simple priors

p(f,θ|g) ∝ p(g|f,θ1) p(f|θ2) p(θ)

I Hierarchical priors

p(f, z,θ|g) ∝ p(g|f,θ1) p(f|z,θ2) p(z|θ3) p(θ)
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Bayesian Computation and Algorithms

I When the expression of p(f,θ|g) or of p(f, z,θ|g) is obtained,
we have following options:

I Joint MAP: (needs optimization algorithms)

(̂f, θ̂) = arg max
(f ,θ)

{p(f,θ|g)}

I MCMC: Needs the expressions of the conditionals
p(f|z,θ, g), p(z|f,θ, g), and p(θ|f, z, g)

I Variational Bayesian Approximation (VBA):
Approximate p(f, z,θ|g) by a separable one

q(f, z,θ|g) = q1(f) q2(z) q3(θ)

and do any computations with these separable ones.
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Joint MAP

p(f,θ|g) ∝ p(g|f,θ1) p(f|θ2) p(θ)

I Objective:
(̂f, θ̂) = arg max

(f ,θ)
{p(f,θ|g)}

I Alternate optimization: f̂ = arg maxf

{
p(f, θ̂|g)

}
θ̂ = arg maxθ

{
p(̂f,θ|g)

}
θ(0) −→ θ̂−→ f̂ = arg maxf

{
p(f|θ̂, g)

}
−→ f̂

↑ ↓

θ̂←− θ̂ = arg maxθ

{
p(θ|̂f, g)

}
←−f̂

I Uncertainties are not propagated.
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MCMC based algorithm

p(f, z,θ|g) ∝ p(g|f, z,θ) p(f|z,θ) p(z) p(θ)

General scheme (Gibbs Sampling):

I Generate samples from the conditionals:

f̂ ∼ p(f|ẑ, θ̂, g) −→ ẑ ∼ p(z|̂f, θ̂, g) −→ θ̂ ∼ (θ|̂f, ẑ, g)

I Waite for convergency

I Compute empirical statistics (means, variances, modes,
medians)
from the samples {fm+1, · · · , fm+N}

f̂ = E {f} ≈ 1

N

m+N∑
n=m+1

f(n)
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Variational Bayesian Approximation
I Approximate p(f,θ|g) by q(f,θ|g) = q1(f|g) q2(θ|g)

and then continue computations.
I Criterion KL(q(f,θ|g) : p(f,θ|g))

KL(q : p) =

∫∫
q ln

q

p
=

∫∫
q1q2 ln

q1q2
p

I Iterative algorithm q1 −→ q2 −→ q1 −→ q2, · · · q1(f) ∝ exp
[
〈ln p(g, f,θ;M)〉q2(θ)

]
q2(θ) ∝ exp

[
〈ln p(g, f,θ;M)〉q1(f)

]
q̂
(0)
2 −→ q̂2−→ q1(f) ∝ exp

[
〈ln p(g, f,θ;M)〉q2

]
−→ q̂1(f) −→ f̂

↑ ↓

θ̂ ← q̂2(θ)←− q2(θ) ∝ exp
[
〈ln p(g, f,θ;M)〉q1

]
←−q̂1

I Uncertainties are propagated (Message Passing methods)
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Summary of Bayesian approach
I Simple priors ↓ α,β

Hyper prior model p(θ|α,β)

p(θ2|α2, β2)
?

p(f|θ2)

Prior

�

p(θ1|α1, β1)
?

p(g|f,θ1)

Likelihood

−→p(f,θ|g,α,β)

Joint Posterior

→

JMAP

MCMC

VBA

−→ f̂

−→ θ̂

I Hierarchical priors

↓ α,β,γ

Hyper prior model p(θ|α,β,γ)

p(θ3|α3, β3)
?

p(z|θ3)

Hidden variable

�

p(θ2|α2, β2)
?

p(f|z,θ2)

Prior

�

p(θ1|α1, β1)
?

p(g|f,θ1)

Likelihood

−→ p(f, z,θ|g)

Joint Posterior

−→

JMAP

MCMC

VBA

−→ f̂
−→ ẑ

−→ θ̂
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Advantages of the Bayesian Approach

I More possibilities to model sparsity

I More tools to handle hyperparameters

I More tools to account for uncertainties

I More possibilities to understand and to control many ad hoc
deterministic algorithms

I Hierarchical models give still more modelling possibilities
I Bernouilli-Gaussian: strict sparsity
I Bernouilli-Gamma: strict sparsity + positivity
I Bernouilli-Multinomial: strict sparsity + discrete values (finite

states)
I Independent Mixture models: sparsity enforcing
I Mixture of multivariate models: group sparsity enforcing
I Gauss-Markov-Potts models: indirect sparsity enforcing
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Seeing inside of a body: Computed Tomography

I f (x , y) a section of a real 3D body f (x , y , z)

I gφ(r) a line of observed radiographe gφ(r , z)

I Forward model:
Line integrals or Radon Transform

gφ(r) =

∫
Lr,φ

f (x , y) dl + εφ(r)

=

∫∫
f (x , y) δ(r − x cosφ− y sinφ) dx dy + εφ(r)

I Inverse problem: Image reconstruction

Given the forward model H (Radon Transform) and
a set of data gφi (r), i = 1, · · · ,M
find f (x , y)
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2D and 3D Computed Tomography

3D 2D

gφ(r1, r2) =

∫
Lr1,r2,φ

f (x , y , z) dl gφ(r) =

∫
Lr,φ

f (x , y) dl

Forward probelm: f (x , y) or f (x , y , z) −→ gφ(r) or gφ(r1, r2)
Inverse problem: gφ(r) or gφ(r1, r2) −→ f (x , y) or f (x , y , z)
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Inverse Problems with:
non stationary noise and sparse dictionary prior

αz0 , βz0
?

vz����
?

z����
?D

αε0 , βε0
?

vε����
?

αξ0 , βξ0
?
v ξ����
?

����
ξ

@
@R f����

�
��	

ε����
?

H

����
g

g = Hf + ε, f = Dz + ξ, z sparse
p(g|f, vε) = N (g|Hf,Vε), Vε = diag [vε]
p(f|z) = N (f|Dz, v ξI),
p(z|vz) = N (z|0,Vz), Vz = diag [vz ]
p(vε) =

∏
i IG(v εi |αε0 , βε0)

p(vz) =
∏

i IG(vz j |αz0 , βz0)
p(v ξ) = IG(v ξ|αξ0 , βξ0)

p(f, z, vε, vz |g) ∝p(g|f, vε) p(f|zf ) p(z|vz)
p(vε) p(vz) p(v ξ)

JMAP:

(̂f, ẑ, v̂ε, v̂z , v̂ ξ) = arg max
(f ,z,vε,vz ,vξ)

{p(f, z, vε, vz , v ξ|g)}

Alternate optimization.

VBA: Approximate
p(f, z, vε, vz , v ξ|g) by q1(f) q2(z) q3(vε) q4(vz) q5(v ξ)
Alternate optimization.
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Results

Original f Data g Initial. BP f̂
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Gauss-Markov-Potts prior models for images

f (r) z(r) c(r) = 1− δ(z(r)− z(r′))γ

?
z����
?

αε0 , βε0

?
vε����
?

a0
m0, v0
α0, β0
?

����
θ

@
@R f����

�
��	

ε����
?

H

����
g

g = Hf + ε
p(g|f, vε) = N (g|Hf, vεI)
p(vε) = IG(vε|αε0 , βε0)

p(f (r)|z(r) = k ,mk , vk) = N (f (r)|mk , vk)
p(f|z,θ) =

∑
k

∏
r∈Rk

akN (f (r)|mk , vk),
θ = {(ak ,mk , vk), k = 1, · · · ,K}

p(θ) = D(a|a0)N (a|m0, v0)IG(v|α0, β0)

p(z|γ) ∝ exp
[
γ
∑

r
∑

r′∈N (r) δ(z(r)− z(r′))
]

Potts

p(f, z,θ|g) ∝ p(g|f, vε) p(f|z,θ) p(z|γ)

MCMC: Gibbs Sampling

VBA: Alternate optimization.

p(z) ∝ exp

γ∑
r∈R

∑
r′∈V(r)

δ(z(r)− z(r′))


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Results

Original Backprojection Filtered BP LS

Gauss-Markov+pos GM+Line process GM+Label process

c z c
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Application in Microwave imaging

g(ω) =

∫
f (r) exp [−j(ω.r)] dr + ε(ω)

g(u, v) =

∫∫
f (x , y) exp [−j(ux + vy)] dx dy + ε(u, v)

g = Hf + ε

f (x , y) g(u, v) f̂ IFT f̂ Proposed method
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Images fusion and joint segmentation

(with O. Féron)
gi (r) = fi (r) + εi (r)
p(fi (r)|z(r) = k) = N (mi k , σ

2
i k)

p(f|z) =
∏

i p(f i |z)

g1

g2

−→ f̂1

f̂2

ẑ
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Data fusion in medical imaging
(with O. Féron)

gi (r) = fi (r) + εi (r)
p(fi (r)|z(r) = k) = N (mi k , σ

2
i k)

p(f|z) =
∏

i p(f i |z)

g1

g2

−→ f̂1

f̂2

ẑ
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Conclusions
I Sparsity: a great property to use in signal and image

processing
I Origine: Sampling theory and reconstruction, modeling and

representation Compressed Sensing, Approximation theory
I Deterministic Algorithms: Optimization of a two termes

criterion, penalty term, regularization term
I Probabilistic: Bayesian approach
I Sprasity enforcing priors: Simple heavy tailed and Hierarchical

with hidden variables.
I Gauss-Markov-Potts models for images incorporating hidden

regions and contours
I Main Bayesian computation tools: JMAP, MCMC and VBA
I Application in different imaging system (X ray CT,

Microwaves, PET, ultrasound and microwave imaging)

Current Projects:
I Efficient implementation in 2D and 3D cases
I Comparison between MCMC and VBA methods
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Questions, Discussions, Open mathematical problems
I Sparsity representation, low rank matrix decomposition

I Sparsity and positivity or other constraints
I Group sparsity
I Algorithmic and implementation issues for great dimensional

applications (Big Data)
I Joint estimation of Dictionary and coefficients

I Optimization of the KL divergence for Variational Bayesian
Approximation

I Convergency of alternate optimization
I Other possible algorithms

I Properties of the obtained approximation
I Does the moments of q’s corresponds to the moments of p?
I How about any other statistics: entropy, ...

I Other divergency or Distance measures?
I Using Sparsity as a prior in Inverse Problems
I Applications in Medical imaging, Non Destructive Testing

(NDT) Industrial Imaging, Communication, Geophysical
imaging, Radio Astronomy, ...
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