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Abstract. This paper reviews the new methodology for statistical inferences. Point estimators,
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distributions, which can be viewed as “distribution estimators”, are often convenient for constructing
all of the above statistical procedures and more.
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Introduction

If a procedure states one-to-one correspondence between the observed value of a
random variable and the confidence interval of any level of significance then we can
reconstruct a unique confidence density of the parameter and, correspondingly, a unique
confidence distribution. The confidence distribution is a very useful tool in statistical
reporting, and should be a competitive frequentist analogue of the Bayesian posterior
distribution.

The following example shows the construction by R.A. Fisher[1, 2].
A random variablex with parameterθ x ∼ N(θ ,1), where the symbol∼ means

“distributed as”. The probability density function (pdf) is

ϕ(x|θ) =
1√
2π

e−
(x−θ)2

2 . (1)

We can writex = θ + ε, whereε ∼ N(0,1) andθ is a constant.
Let x̂ be a single realization ofx. For a normal distribution it is an unbiased estimator

of parameterθ , i.e. θ̂ = x̂, thereforeθ |x̂ = x̂− ε.
As is known(−ε) ∼ N(0,1) due to the symmetry of the bell-shaped curve about its

central point, i.e.θ |x̂∼ N(x̂,1).
Thus we construct the confidence density of the parameter

ϕ̃(θ |x̂) =
1√
2π

e−
(x̂−θ)2

2 (2)

uniquely for each value of ˆx.
As pointed in paper [2] “Fisher [3, 4] gave correct interpretation of this “tempting”

result. But starting in 1935 [5], he really believed he had changed the status ofθ from



that of a fixed unknown constant to that of a random variable onthe parameter space
with known distribution”1. In principle, the parameterθ can be a random variable in the
case of the random origin of parameter. We will not discuss here this possibility.

The construction above is a direct consequence of the following identity

∫ x̂−α1

−∞
ϕ(x|x̂)dx+

∫ x̂+α2

x̂−α1

ϕ̃(θ |x̂)dθ +

∫ ∞

x̂+α2

ϕ(x|x̂)dx= 1, (3)

wherex̂ is the observed value of random variablex, andx̂−α1 andx̂+α2 are confidence
interval bounds for location parameterθ .

In the case of Poisson and Gamma-distributions we can also exchange the random
variable and the parameter, preserving the same formula forthe probability distribution:

f (i|θ) = f̃ (θ |i) =
θ ie−θ

i!

In this case we can use another identity to relate the pdf of random variable and
confidence density of the parameter for the unique reconstruction of confidence den-
sity [9, 10] (any other reconstruction is inconsistent withthe identity and, correspond-
ingly, breaks the probability conservation):

∞

∑
i=x̂+1

f (i|θ1)+
∫ θ2

θ1

f̃ (θ |x̂)dθ +
x̂

∑
i=0

f (i|θ2) = 1, (4)

for any realθ1 ≥ 0 andθ2 ≥ 0 and non-negative integer ˆx. Confidence densitỹf (θ |i) is
the pdf of Gamma-distributionΓ1,i+1 andx̂ is the number of observed events.

The presence of the identities of such type (Eqs. 3, 4) is a property of statistically dual
distributions [11, 12]2.

Confidence distributions (CDs), which can be viewed as "distribution estimators", are
often convenient for constructing all the above statistical procedures and more. The basic
notion of CDs traces back to the fiducial distribution of Fisher [3]; however, it can be
viewed as a pure frequentist concept. Indeed, as pointed outin [13] the CD concept
is a "Neymannian interpretation of Fisher’s fiducial distribution" [14]. Its development
has proceeded from Fisher [3] through various contributions, just to name a few, of
Kolmogorov [15], Pitman [16], Efron [17, 18], Fraser [19, 20], Lehmann [21], Singh,
Xie and Strawderman [22, 23], Schweder and Hjort [13, 24] andothers. Bityukov [9]
and Bityukov and Krasnikov [10, 11] developed the approach for reconstruction of the
confidence distribution densities by using the corresponding identities. The results were
further tested by Monte Carlo simulation [25].

1 The history and generalization of the last approach can be found in paper [6]. The fiducial argument is
very attractive notion and sometimes it reopen (see, as an example, [7] and corresponding critique [8]).
2 Let φ(x,θ ) be a function of two variables. If the same function can be considered both as a family of the
pdfsϕ(x|θ ) of the random variablex with parameterθ and as another family of pdfs̃ϕ(θ |x) of the random
variableθ with parameterx (i.e. φ(x,θ ) = ϕ(x|θ ) = ϕ̃(θ |x)), then this pair of families of distributions
can be named asstatistically dual distributions. If x andθ play the symmetric role then these distributions
can be named asstatistically self-dual distributions.



Another useful application of CD is for meta-analysis3. The consecutive theory of
combining information from independent sources through CDis proposed in [27]. Re-
cently Bickel [28] suggested a method for incorporating expert knowledge into frequen-
tist approach by combining generalized confidence distributions.

Confidence distributions

Basic definitions [27]

SupposeX1,X2, . . . ,Xn aren independent random draws from a populationF andχ the
sample space corresponding to the data setXn = (X1,X2, . . . ,Xn)

T . Let θ be a parameter
of interest associated withF (F may contain other nuisance parameters), and letΘ be
the parameter space.

Definition 1: A function Hn(·) = Hn(Xn,(·)) on χ ×Θ → [0,1] is called a confidence
distribution (CD) for a parameterθ if
(i) for each givenXn ∈ χ , Hn(·) is a continuous cumulative distribution function;
(ii) at the true parameter valueθ = θ0,Hn(θ0) = Hn(Xn,θ0), as a function of the sample
Xn, has the uniform distribution U(0,1).

The function Hn(·) is called an asymptotic confidence distribution (aCD) if require-

ment (ii) above is replaced by (ii)‘: atθ = θ0,Hn(Xn,θ0)
W→ U(0,1) as n→ +∞, and

the continuity requirement on Hn(·) is dropped.
We call, when it exists, hn(θ) = H

′
n(θ) a confidence or CD density.

Item (i) requires the functionHn(·) to be a distribution function for each given sample.
Item(ii) states that the functionHn(·) brings the information onto the probability scale

and thus provides confidence intervals andp−values.
A CD contains a wealth of information, somewhat comparable to, but different than,

a Bayesian posterior distribution. A CD (or aCD) derived from a likelihood function can
also be interpreted as an objective Bayesian posterior.

Example Normal mean and variance: SupposeX1,X2, . . . ,Xn is a sample from
N(µ,σ2), with bothµ andσ2 unknown. A CD forµ is

Hn(y) = Ftn−1(
y− X̄
sn/

√
n
), where X̄ and s2 are, respectively, the sample mean and the

sample variance, andFtn−1(·) is the cumulative distribution function of the Student

tn−1-distribution. A CD forσ2 is Hn(y) = 1−Fχ2
n−1

(
(n−1)s2

n

y
) for y≥ 0, whereFχ2

n−1
(·)

is the cumulative function of theχ2
n−1-distribution.

3 Meta-analysis is the modern term for combining results fromdifferent experiments or trials (see, for
example, [26]).



Confidence distributions and pivots [29]

Consider the statistical model for the dataX. The model consists of a family of
probability distributions forX, indexed by the vector parameter(ψ,χ), whereψ is a
scalar parameter of primary interest, andχ is a nuisance parameter (vector).

Definition 2: A univariate data-dependent distribution forψ, with cumulative distri-
bution function C(ψ;X) and with quantile function C−1(α;X) is an exact confidence
distribution if Pψχ(ψ ≤C−1(α;X)) = Pψχ(C(ψ;X)≤ α) = α for all α ∈ (0,1) and for
all probability distributions in the statistical model.

By definition, the stochastic interval(∞,C−1(α;X)) coversψ with probabilityα, and
is a one-sided confidence interval method with coverage probability α. The interval
(C−1(α;X),C−1(β ;X)) will for the same reason coverψ with probability β −α, and
is a confidence interval method with this coverage probability. When data have been
observed asX = x, the realized numerical interval(C−1(α;x),C−1(β ;x)) will either
cover or not cover the unknown true value ofψ. The degree of confidenceβ − α
that is attached to the realized interval is inherited from the coverage probability of
the stochastic interval. The confidence distribution has the same dual property.Ex ante
data, the confidence distribution is a stochastic entity with probabilistic properties.Ex
postdata, however, the confidence distribution is a distribution of confidence that can be
attached to interval statement.

The realized confidence (degree of confidence)C(ψ;x) is a p-value of the one-sided
hypothesisH0 : ψ ≤ ψ0 versusψ > ψ0 when data have been observed to bex. Theex
anteconfidence,C(ψ;X) is by definition uniformly distributed. The p-value is just a
transformation of the test statistic to the common scale of the uniform distributions (ex
ante). The realized p-value when testing the two-sided hypothesis H0 : ψ = ψ0 versus
ψ 6= ψ0 is 2 min{C(ψ0),1−C(ψ0)}.

Confidence distributions are easily found when pivots [30] can be identified4.
A function of the data and the interest parameter, p(X,ψ), is a pivot if the probability

distribution of p(X,ψ) is the same for all(ψ,χ), and the function p(X,ψ) is increasing
in ψ for almost all x.

If based on a pivot with cumulative distribution functionF, the cumulative confidence
distribution isC(X,ψ) = F(p(X,ψ)).

From the definition, a confidence distribution is exact if andonly if C(X,ψ) ∼U is a
uniformly distributed pivot.

Applications of the CD notion

Confidence intervals for signal with expected background [12]

The confidence density is a more informative notion than the confidence interval. For
example, the Gamma-distributionΓ1,n̂+1 is the confidence density of the parameter of

4 The self-duality in Eq. 3 is equivalent to the existence of a linear and symmetrically distributed pivot.



Poisson distribution in the case of the ˆn observed events from the Poisson flow of events.
It means that we can reconstruct any confidence interval (shortest, central, . . . ) by direct
calculation of the pdf of a Gamma-distribution. The following example illustrates the
advantages of the confidence density construction.

Let us consider the Poisson distribution with two components: a signal component
with a parameterµs and a background component with a parameterµb, whereµb is
known. To construct confidence intervals for the parameterµs in the case of observed
valuen̂, we must find the distributioñf (µs|n̂).

First let us consider the simplest case ˆn = ŝ+ b̂ = 1. Here ˆs is the number of signal
events and̂b is the number of background events among the observed numbern̂ of
events.

b̂ can be equal to 0 and 1. We know thatb̂ is equal to 0 with probability

p0 = P(b̂ = 0) =
µ0

b

0!
e−µb = e−µb

andb̂ is equal to 1 with probability

p1 = P(b̂ = 1) =
µ1

b

1!
e−µb = µbe−µb.

Correspondingly,

P(b̂ = 0|n̂ = 1) = P(ŝ= 1|n̂ = 1) =
p0

p0+ p1
and

P(b̂ = 1|n̂ = 1) = P(ŝ= 0|n̂ = 1) =
p1

p0+ p1
.

It means that the distribution of the confidence densityf̃ (µs|n̂ = 1) is equal to the
weighted sum of distributions

f̂ (µs|n̂ = 1) = P(ŝ= 1|n̂ = 1) f̃ (µs|ŝ= 1)+P(ŝ= 0|n̂ = 1) f̃ (µs|ŝ= 0), (5)

where the confidence densitỹf (µs|ŝ= 0) is the Gamma distributionΓ1,1 with the pdf

f̃ (µs|ŝ= 0) = e−µs

and the confidence densitỹf (µs|ŝ= 1) is the Gamma distributionΓ1,2 with the pdf

f̃ (µs|ŝ= 1) = µse
−µs.

As a result, we have the confidence density of the parameterµs

f̃ (µs|n̂ = 1) =
µs+ µb

1+ µb
e−µs.

Using this formula forf̃ (µs|n̂ = 1), we can construct the shortest confidence interval
of any confidence level trivially.

In this manner we can construct the confidence densityf̃ (µs|n̂) for any values of ˆn and
µb. From Eq. 4 we use the confidence densitiesf̃ (µs|ŝ= i), i = 0, n̂. Mixing together



the confidence densities with corresponding conditional probability weights (in analogy
with Eq. 5) yields the confidence density

f̃ (µs|n̂) =
(µs+ µb)

n̂

n̂!
n̂

∑
i=0

µ i
b

i!

e−µs.

We have obtained the known formula [31, 32, 33]. The numerical results of the
calculations of shortest confidence intervals using this confidence density coincide with
Bayesian confidence intervals constructed using the uniform prior.

Estimation of quality of planned experiment [10]

Let us consider the estimation of the quality of planned experiments as another
example of the use of confidence density. The approach is based on the analysis of
uncertainty, which will take place under the future hypotheses testing about the existence
of a new phenomenon in Nature. We consider the Poisson distribution with parameter
µ and we preserve the notation of the previous subsection. We test a simple statistical
hypothesisH0: new physics is present in Nature(i.e µ = µs + µb ) against a simple
alternative hypothesisH1: new physics is absent(i.e. µ = µb).

The value of uncertainty is determined by the values of the probability to reject the
hypothesisH0 when it is true (Type I errorα) and the probability to accept the hypothesis
H0 when the hypothesisH1 is true (Type II errorβ ). This uncertainty characterizes the
distinguishability of the hypotheses under the given choice of critical area.

Let both valuesµs and µb, which are defined in the previous Section, be exactly
known. In this simplest case the errors of Type I and II, whichwill take place in testing
of hypothesisH0 versus hypothesisH1, can be written as follows:



















α =
nc

∑
i=0

f (i|µs+ µb),

β = 1−
nc

∑
i=0

f (i|µb),

(6)

where f is a Poisson probability function andnc is a critical value.
Let the valueŝµs = ŝ and µ̂b = b̂ be known, for example, from Monte Carlo experi-

ment with integrated luminosity5 which is exactly the same as the data luminosity later
in the planned experiment. It means that we must include the uncertainties in valuesµs
andµb to the system of the equations Eqs. 6. As is shown [9] (see, also, the generalized
case in the same reference) we have the system

5 In scattering theory and accelerator physics, luminosity is the number of particles per unit area per unit
time times the opacity of the target. The integrated luminosity is the integral of the luminosity with respect
to time.

























α =

∫ ∞

0
f̃ (µ|ŝ+ b̂)

nc

∑
i=0

f (i|µ)dµ =
nc

∑
i=0

Ci
ŝ+b̂+i

2ŝ+b̂+i+1
,

β = 1−
∫ ∞

0
f̃ (µ|b̂)

nc

∑
i=0

f (i|µ)dµ = 1−
nc

∑
i=0

Ci
b̂+i

2b̂+i+1
,

wherenc is a critical value of the hypotheses testing about the observability of signal

andCi
N is

N!
i!(N− i)!

.

Note, here the Poisson distribution is a prior distributionof the expected probabilities
and the negative binomial (Pascal) distribution is a posterior distribution of the expected
probabilities of the random variable. This is a transformation of the estimated confidence
densitiesf̃ (µ|ŝ+ b̂) and f̃ (µ|b̂) (pdfs of the correspondingΓ−distributions) to the space
of the expected values of the random variable.

Conclusion

The notion of a confidence distribution, an entirely frequentist concept, is in essence
a Neymanian interpretation of Fisher’s fiducial distribution. It contains information
related to every kind of frequentist inference. The confidence distribution is a direct
generalization of the confidence interval, and is a useful format of presenting statistical
inference.
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