Confidence distributions in statistical inference
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Abstract. This paper reviews the new methodology for statistical rieriees. Point estimators,
confidence intervals ang—values are fundamental tools for frequentist statisteia®onfidence
distributions, which can be viewed as “distribution estiong”, are often convenient for constructing
all of the above statistical procedures and more.
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Introduction

If a procedure states one-to-one correspondence betweeobsgerved value of a
random variable and the confidence interval of any level ghificance then we can
reconstruct a unique confidence density of the parametercan@spondingly, a unique
confidence distribution. The confidence distribution is ayuwgseful tool in statistical
reporting, and should be a competitive frequentist anaogfuthe Bayesian posterior
distribution.

The following example shows the construction by R.A. FidheP].

A random variablex with parameterf x ~ N(6,1), where the symbok means
“distributed as”. The probability density function (pd$) i

px0)= 7 &
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We can writex = 0 + &, wheree ~ N(0,1) and@ is a constant.

LetxXbe a single | reallzatlon of For a normal distribution it is an unbiased estimator
of paramete®, i.e. 6 = %, therefore|X = X —&.

As is known(—¢) ~ N(0,1) due to the symmetry of the bell-shaped curve about its
central point, i.eB|X ~ N(X,1).

Thus we construct the confidence density of the parameter
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uniquely for each value of.”
As pointed in paper [2] “Fisher [3, 4] gave correct interptein of this “tempting”
result. But starting in 1935 [5], he really believed he hadrafed the status @& from



that of a fixed unknown constant to that of a random variablé¢henparameter space
with known distribution™. In principle, the parameté can be a random variable in the
case of the random origin of parameter. We will not discuss Has possibility.

The construction above is a direct consequence of the folpwlentity
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wherexis the observed value of random variakl@ndx— a1 andx+ a, are confidence
interval bounds for location paramei@r
In the case of Poisson and Gamma-distributions we can aldwmaege the random
variable and the parameter, preserving the same formutadqgsrobability distribution:

gie?
il

f(ile) = f(eli) =

In this case we can use another identity to relate the pdf mdom variable and
confidence density of the parameter for the unique recartgtruof confidence den-
sity [9, 10] (any other reconstruction is inconsistent whk identity and, correspond-
ingly, breaks the probability conservation):
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for any realf; > 0 and@, > 0 and non-negative integer Confidence density(8)i) is
the pdf of Gamma-distributiofiy i1 andxXis the number of observed events.

The presence of the identities of such type (Eqgs. 3, 4) is jpgoty of statistically dual
distributions [11, 12]°.

Confidence distributions (CDs), which can be viewed as tithstion estimators”, are
often convenient for constructing all the above statispcacedures and more. The basic
notion of CDs traces back to the fiducial distribution of fesf3]; however, it can be
viewed as a pure frequentist concept. Indeed, as pointethdaB] the CD concept
is a "Neymannian interpretation of Fisher’s fiducial distition” [14]. Its development
has proceeded from Fisher [3] through various contribgtignst to name a few, of
Kolmogorov [15], Pitman [16], Efron [17, 18], Fraser [19,]20ehmann [21], Singh,
Xie and Strawderman [22, 23], Schweder and Hjort [13, 24] atfeérs. Bityukov [9]
and Bityukov and Krasnikov [10, 11] developed the approactrdéconstruction of the
confidence distribution densities by using the correspunaientities. The results were
further tested by Monte Carlo simulation [25].

1 The history and generalization of the last approach can twedfin paper [6]. The fiducial argument is
very attractive notion and sometimes it reopen (see, asamgbe, [7] and corresponding critique [8]).

2 Let @(x, ) be a function of two variables. If the same function can besiztered both as a family of the
pdfs¢ (x|0) of the random variablewith paramete® and as another family of pdf(6|x) of the random
variablef with parametex (i.e. ¢(x,8) = ¢(x|0) = ¢(0|x)), then this pair of families of distributions
can be named adatistically dual distributionslf xand@ play the symmetric role then these distributions
can be named a#tatistically self-dual distributions



Another useful application of CD is for meta-analy3isThe consecutive theory of
combining information from independent sources throughi€proposed in [27]. Re-
cently Bickel [28] suggested a method for incorporatingeskgnowledge into frequen-
tist approach by combining generalized confidence digiobs.

Confidence distributions

Basic definitions [27]

Supposey, Xo, ..., Xy arenindependent random draws from a populaticandy the
sample space corresponding to the dat&get (X1,Xo,...,Xn)T. Let 8 be a parameter
of interest associated with (F may contain other nuisance parameters), an®lee
the parameter space.

Definition I A function H(-) = Hn(Xn, (-)) on x x © — [0,1] is called a confidence
distribution (CD) for a paramete# if
(i) for each givenX, € x, Hn(+) is a continuous cumulative distribution function;

(i) at the true parameter valué = 6y, Hn(60) = Hn(Xn, 6p), as a function of the sample
Xn, has the uniform distribution (D, 1).
The function H(-) is called an asymptotic confidence distribution (aCD) ifuizg-

ment (i) above is replaced by (ii)': af = 6y, Hn(Xn, 6p) W U(0,1) as n— 4o, and
the continuity requirement ongtt) is dropped.
We call, when it exists,8) = H,(6) a confidence or CD density

Item (i) requires the functiohl,(-) to be a distribution function for each given sample.

Item (ii) states that the functidfy(-) brings the information onto the probability scale
and thus provides confidence intervals gndvalues.

A CD contains a wealth of information, somewhat comparat|dut different than,
a Bayesian posterior distribution. A CD (or aCD) derivedira likelihood function can
also be interpreted as an objective Bayesian posterior.

Example Normal mean and variance: SuppoXe Xo,...,X, IS a sample from

N(u,0?), with bothy andag? unknown. A CD foru is
Hn(y) = R, ,( y=X ), where X and s? are, respectively, the sample mean and the

S/

sample variance, ang, ,(-) is the cumulative distribution function of the Student

tn_1-distribution. A CD fora? is Hn(y) = 1— F2 (%) fory>0, whereF,. ()

is the cumulative function of thg?2 ,-distribution.

3 Meta-analysis is the modern term for combining results fidifferent experiments or trials (see, for
example, [26]).



Confidence distributions and pivots [29]

Consider the statistical model for the data The model consists of a family of
probability distributions forX, indexed by the vector paramet@ap, x), wherey is a
scalar parameter of primary interest, gnts a nuisance parameter (vector).

Definition 2: A univariate data-dependent distribution fgi, with cumulative distri-
bution function G;X) and with quantile function C'(a;X) is an exact confidence
distribution if Ry (¢ < C1(a; X)) = Pyy (C(y; X) < a) = a forall a € (0,1) and for
all probability distributions in the statistical model.

By definition, the stochastic intervab, C~1(a; X)) coversy with probabilitya, and
is a one-sided confidence interval method with coveragegitity a. The interval
(CY(a;X),CL(B; X)) will for the same reason covey with probability 3 — a, and
is a confidence interval method with this coverage probgbMWhen data have been
observed aX = x, the realized numerical intervaC—1(a;x),C~%(B;x)) will either
cover or not cover the unknown true value ¢f The degree of confidencg — o
that is attached to the realized interval is inherited frdra toverage probability of
the stochastic interval. The confidence distribution hasstime dual propertix ante
data, the confidence distribution is a stochastic entity wrbbabilistic propertieEx
postdata, however, the confidence distribution is a distributibconfidence that can be
attached to interval statement.

The realized confidence (degree of confider@@g); x) is a p-value of the one-sided
hypothesiHy : ¢ < ) versusy > o when data have been observed toxb&he ex
ante confidenceC(y; X) is by definition uniformly distributed. The p-value is just a
transformation of the test statistic to the common scalé@efuniform distributionsex
antg. The realized p-value when testing the two-sided hypathds: ¢ = (i versus
Y # Yo is 2min{C(4p),1—C(yo) }-

Confidence distributions are easily found when pivots [20] be identified.

A function of the data and the interest parametéX ap), is a pivot if the probability
distribution of g X, ) is the same for al{y, x ), and the function (X, ) is increasing
in ¢ for almost all x.

If based on a pivot with cumulative distribution functibnthe cumulative confidence
distribution isC(X, @) = F(p(X, )).

From the definition, a confidence distribution is exact if antly if C(X, ) ~U is a
uniformly distributed pivot.

Applications of the CD notion

Confidence intervals for signal with expected backgrour] [1

The confidence density is a more informative notion than tdmdidence interval. For
example, the Gamma-distributidn 1 is the confidence density of the parameter of

4 The self-duality in Eq. 3 is equivalent to the existence dhadr and symmetrically distributed pivot.



Poisson distribution in the case of thebserved events from the Poisson flow of events.
It means that we can reconstruct any confidence intervattgstocentral, .. .) by direct
calculation of the pdf of a Gamma-distribution. The follagiexample illustrates the
advantages of the confidence density construction.

Let us consider the Poisson distribution with two composeatsignal component
with a parameteyps and a background component with a paramekgrwhere iy, is
known. To construct confidence intervals for the paramgten the case of observed
valueri, we must find the distributiof(Lis|A).

First let us consider the simplest case- S+ b = 1. Heres'is the number of signal
events and is the number of background events among the observed nuinber
events. A

b can be equal to 0 and 1. We know tlhes equal to O with probability

A I‘lo
po=P(b=0)="ReH =g

o
andb is equal to 1 with probability
A ul
p1=P(b=1) 1—?e‘“b = UpeHo
Correspondingly,
P(B=0A=1)=PE=1A=1)= " and
Po+ P1
° o A A P1
Plb=1h=1)=P(§=0|A=1) = .
(b=1 )=P(§=0| ) ———

It means that the distribution of the confidence den$itys|i = 1) is equal to the
weighted sum of distributions

f(uln=1)=P(E=1a=1)f(uls=1) +PE=0A=1)f(ls=0), (5
where the confidence densifyps|$ = 0) is the Gamma distributiofi; ; with the pdf
f(kel8=0) =et
and the confidence densifyus|$= 1) is the Gamma distributioh » with the pdf

f(usls=1) = pse™*s.
As a result, we have the confidence density of the paramgter

_ Hs—+ ube—us
I+

Using this formula forf (us|A = 1), we can construct the shortest confidence interval
of any confidence level trivially. .

In this manner we can construct the confidence derigjty|) for any values oh’and
Up. From Eq. 4 we use the confidence densifiggs|S=1i), i = 0, A. Mixing together

f(usli=1)



the confidence densities with corresponding conditionabability weights (in analogy
with Eqg. 5) yields the confidence density

- + )"
f(us|A) = Me Hs.
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We have obtained the known formula [31, 32, 33]. The numenesults of the
calculations of shortest confidence intervals using thigidence density coincide with
Bayesian confidence intervals constructed using the unifoior.

Estimation of quality of planned experiment [10]

Let us consider the estimation of the quality of planned erpents as another
example of the use of confidence density. The approach isib@sd¢he analysis of
uncertainty, which will take place under the future hypstgetesting about the existence
of a new phenomenon in Nature. We consider the Poissonldistrn with parameter
U and we preserve the notation of the previous subsectione¥featsimple statistical
hypothesisHy: new physics is present in Natu(ee u = Us+ Up ) against a simple
alternative hypothesid;: new physics is abse(ite. u = ).

The value of uncertainty is determined by the values of tlodglility to reject the
hypothesisdg whenitis true (Type | erromr) and the probability to accept the hypothesis
Ho when the hypothesid; is true (Type Il errorB). This uncertainty characterizes the
distinguishability of the hypotheses under the given ohoiccritical area.

Let both valuesus and u,, which are defined in the previous Section, be exactly
known. In this simplest case the errors of Type | and I, whiglhtake place in testing
of hypothesidHg versus hypothesids, can be written as follows:

Nc
o= f(ilks+ k),
2,k

B-1-3 flil)

wheref is a Poisson probability function amd is a critical value.

Let the valuegis = § and [i, = b be known, for example, from Monte Carlo experi-
ment with integrated luminositywhich is exactly the same as the data luminosity later
in the planned experiment. It means that we must include ticertainties in valuegs
and i, to the system of the equations Egs. 6. As is shown [9] (see, thls generalized
case in the same reference) we have the system

5 In scattering theory and accelerator physics, luminosithe number of particles per unit area per unit
time times the opacity of the target. The integrated lumigas the integral of the luminosity with respect
to time.



— s+b+|
a—/o (Hls+b) %f [H)du = %2%b+|+1
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wheren; is a crltlcal value of the hypotheses testing about the ebbdity of signal

andCl, is m

Note, here the Poisson distribution is a prior distributibthe expected probabilities
and the negative binomial (Pascal) distribution is a pastelistribution of the expected
probabilities of the random variable. This is a transfoiinraof the estimated confidence
densitiesf (H1|S+ b) andf (u|b) (pdfs of the correspondirig—distributions) to the space
of the expected values of the random variable.

Conclusion

The notion of a confidence distribution, an entirely fregigrconcept, is in essence
a Neymanian interpretation of Fisher’s fiducial distrilouti It contains information
related to every kind of frequentist inference. The confadedistribution is a direct
generalization of the confidence interval, and is a usefuhéd of presenting statistical
inference.
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