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Abstract. We introduce a novel approach for evaluation of neuronal tuning functions, which can be
expressed by the conditional probability of observing a spike given any combination of independent
variables. This probability can be estimated out of experimentally available data. By maximizing
the mutual information between the probability distribution of the spike occurrence and that of the
variables, the dependence of the spike on the input variables is maximized as well. We used this
method to analyze the dependence of neuronal activity in cortical area MSTd on signals related to
movement of the eye and retinal image movement.
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INTRODUCTION

Neurons code the information they transmit using a binary code. The so called action
potentials, or spikes, are the only form of neuronal membrane potential fluctuation that
can propagate over long distances. It is usually assumed that the information is conveyed
in the rate of spiking activity [1, 2].

Neuronal tuning functions are typically defined by the functional relation between the
rate of spiking activity and uni- or multivariate independent variables. Tuning functions
have provided a first-order description of virtually every sensory system, from orienta-
tion colums in the vertebrate visual cortex up to wind-detecting neurons in the cricket
cercal system [2, 3, 4].

A difficulty in the analysis of neuronal data is the estimation of proper latency
values between any of the variables and the neuronal activity. Appropriate estimation
of neuronal latencies is important, since the choice of these latency values has great
influence on the tuning function [5, 6].

A common approach to the problem of latency estimation is minimizing the residual
error in regression analysis using a linear, quadratic, or any other model [7, 8, 9].
To overcome the limitations of model-based system identification we developed an
information based approach for evaluating the dependence of neuronal activity of single
cells on combinations of one or multiple independent variables.



The proposed approach is similar to a method used for the registration of medical im-
ages: the relative position and orientation of two different images is adjusted by trans-
forming one of the images until the mutual information between both intensity distribu-
tions is maximized [10, 11]. Analogous to the spatial alignment used in this methods,
our method performs temporal alignment of two random variables by maximizing the
mutual information.

THE MAXIMUM MUTUAL INFORMATION METHOD

Basically, our approach consists of two components: first, a method for the determina-
tion of a neuronal tuning function, and second, an information-theoretic technique for
estimating neuronal latencies and selecting those variables that show the greatest depen-
dence on the neuronal activity.

Tuning function determination

A neuronal tuning function describes the rate of spiking activity in a neuron depending
on one or multiple independent variables. This dependence is ideally expressed by the
conditional probability pS|V (s|v) of observing a spike given any combination of the
variables. By multiplying with the sampling rate, this probability translates directly into
an expectation value of the rate of spiking activity. Using Bayes’ theorem, pS|V (s|v) can
be expressed as the quotient of the joint probability mass function pV,S(v,s) divided by
pV (v):

pS|V (s|v) =
pV,S(v,s)

pV (v)
,

where pV (v) is the marginal probability mass function of observing any combination of
variables. The normalization on pV (v) allows the estimation of the tuning function in
unbalanced designs (unequal number of observations across independent variables).

Estimates of pV (v) and pV,S(v,s) can be attained by histogramming the experimen-
tal data. Note, that the joint probability mass function pV,S(v,s) critically depends on
the assumed neuronal latency. For optimal bin width estimation we adapted an algo-
rithm proposed by Knuth [12]. According to this, the optimal bin width is defined by
the Bayesian estimate of the number of segments of a piecewise constant probability
function that is limited to a fixed interval. For smoothing the histogramms, we used a
symmetrical Gaussian low-pass filter with a standard deviation of two bin widths. Bins
containing a number of values less than 0.5 percent of total spike count were omitted in
the analysis.

The amount of data needed for histogramming increases exponentially with the num-
ber of dimensions. However, the duration one single neuron can be recorded is restricted
due to experimental and physiological constraints. Hence, there is a limitation in the
number of variables this method for tuning function determination can be applied on.



Mutual information maximization

Applied to the two random variables V and S from previous section, the mutual
information I(V ;S) can be stated as

I(V ;S) = H(S)−H(S|V).

with H(S) being the entropy of S and H(S|V ) the conditional entropy of S given V , also
referred to as noise entropy. These are defined by

H(S) = −∑
s

pS(s) log pS(s)

H(S|V) = −∑
v

pV (v)∑
s

pS|V (s|v) log pS|V (s|v),

where pS(s) denotes the probability mass function of spike occurence. The conditional
probability pS|V (s|v) denotes the tuning function, determined by the method mentioned
in the previous section. This probability and herewith H(S|V) depend on both, the
choice of variables analyzed, and the choice of latencies between these variables and
the neuronal activity.

The proposed approach chooses the latency in such a way, that the dependence of the
neuronal activity on the independent variables is maximized by maximizing the mutual
information between V and S. As H(S) is defined by the neuronal activity alone, the
maximization is achieved by minimizing the noise entropy H(S|V).

We define the mutual information rate

IR(V ;S) =
I(V ;S)
H(S)

.

This measure specifies the percentage of information about S that can be gathered by
knowledge of V .

Due to the limitation in the number of variables mentioned in previous section, in
practice the dimension of the tuning function will not exceed values of two or three. To
investigate the dependence of a spike on a higher number of independent variables, we
determined the tuning functions of a single neuron for any pairwise selection Vk of those
variables. For each of these pairs neuronal latencies of both variables were estimated by
maximizing the mutual information I(Vk;S). As I(Vk;S) quantifies the dependence of the
spike on the selected pair of variables, those two variables that are most related to the
spiking activity can be determined by comparing the maximal mutual information rates
of the two-dimensional tuning functions.

APPLICATION

The data presented in this paper consists of a 400 s long extracellular recording in
cortical area MSTd from a behaving monkey (Macaca mulatta, 5-7 kg), born in captivity
at the Yerkes National Primate Research Center (Atlanta, GA). Experimental procedures
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FIGURE 1. Noise entropy H(S|V ) against various latencies of image and eye velocity.

are explained in detail in [13]. During the experiments the monkey was seated in a
primate chair with his head fixed in the horizontal stereotaxic plane in a completely
dark room. Single unit activity was recorded with customized epoxy-coated tungsten
microelectrodes. Using a hardware window discriminator a total number of 26015 action
potentials was detected and sampled at 1 kHz. Eye movements were detected with
standard electro-magnetic methods using scleral search coils [14]. The recorded eye
position traces were filtered with a Gaussian low-pass (cutoff frequency 10 Hz) and
three-point differentiated to obtain the velocity traces. Saccades were detected and
removed with a slow-phase estimation algorithm as described in [15].

The stimulus consisted of a moving large field (35◦ x 35◦) random dot pattern. For
optimal coverage of the value range, we used quasi random motion with a flat frequency
spectrum (white noise) with maximal eccentricity of 25◦ and velocity up to 100◦/s.
During presentation of the visual motion the monkey had to fixate a small target spot at
the center of gaze, though large-field stimulation always produces slight optokinetic eye
movements.

We related the neuronal activity to variables, supposed to be potentially coded in
MSTd during visual stimulation [16, 17, 18]. The retinal variables consisted of image
velocity and acceleration, whereas the group of extraretinal variables contained eye po-
sition, velocity and acceleration. Data were acquired only for those movement directions
that were previously identified to be the preferred direction of the neuron. This means,
the direction which elicits maximal spiking activity for a moving large field stimulus in
the analyzed neuron.



FIGURE 2. Tuning function determination. Dividing pV,S(v,s) (B) by pV (v) (A) yields the conditional
probability pS|V (s|v) of observing a spike given any combination of the variables (C).

RESULTS

Figure 1 shows the noise entropy H(S|V) against various latencies of the variables retinal
image velocity and eye velocity. Both variables were shifted in the range between -
200 and +200 ms relative to spiking activity, with negative and positive delay meaning
backwards and forwards shifts, respectively. For the image velocity latency of +60 ms
and eye velocity latency of 0 ms H(S|V ) had a minimum of 0.3268 bits. With H(S) =
0.3456 bits, the mutual information I(V,S) accounted for 0.0189 bits for these estimates
of neuronal latency. The mutual information rate IR(V,S) was 5.46 %, meaning that this
portion of information contained in the spiking activity was the maximum that could be
explained by the information of that variable pair.

Figure 2 demonstrates the determination of the neuronal tuning function for the vari-
able pair image velocity & eye velocity by application of Bayes’ rule. The estimated
probability mass function pV (v) of the occurrence of combinations of the independent
variables image velocity and eye velocity is plotted in Fig. 2A. Figure 2B shows the
estimated joint probability mass function pV,S(v,s) of coincident variable and spike oc-
currence. Note that both variables were shifted relative to the neuronal activity according
to the estimated neuronal latencies. Dividing pV,S(v,s) by pV (v) yields the conditional
probability pS|V (s|v) of observing a spike given any combination of the variables (Fig.
2C).

In the same way the neuronal tuning functions were determined for all variable combi-
nations (Fig. 3). Neuronal activity in area MSTd is non-linearly related to combinations
of the considered eye movement and retinal image movement variables. In the analyzed



FIGURE 3. Two-dimensional tuning functions for all pairs of analyzed variables. Here, colors indicate
the expected rate of spiking activity, which results by multiplying the conditional probability p SV (s|v)
with the sample rate of 1 kHz. Each axis is labeled by respective variable and the estimated latency in
regard to the neuronal activity.



neuron the mutual information rate IR(V,S) for the variable combination image veloc-
ity & eye velocity was larger then any other combination. Hence, this combination was
most related to spiking activity. The estimated latencies agree well with results based
on other approaches [16, 19]. The latencies of all variables depended only little on the
combination, except that of image acceleration. This is related to the low dependence of
spiking activity on image acceleration, also apparent in the respective tuning functions.

CONCLUSIONS

The proposed method for tuning function determination allows the identification of any
neuronal tuning function. It can be applied in unbalanced designs and allows quantifica-
tion of any possible dependence of the neuronal activity on the independent variables.
However, the dimension of the tuning function is limited by the length of the neuronal
recording.

Analyzing the mutual information is the adequate tool for evaluating tuning func-
tions defined in this probabilistic framework. This method is independent of model as-
sumptions. Maximizing the mutual information allows estimation of neuronal latency
and comparison of the coherence between spiking activity and different variable com-
binations. Since neuronal tuning functions can be versatile and highly non-linear, the
proposed method is especially suitable for analyzing these.

ACKNOWLEDGMENTS

This work was supported by the Bernstein Center for Computational Neuroscience Grant
BMBF 011GQ0440 and NIH Grants EY013308, RR00166.

REFERENCES

1. E. D. Adrian, J. Physiol. 61 (1926).
2. P. Dayan, and L. F. Abbott, Theoretical Neuroscience, MIT Press, 2001.
3. F. Rieke, D. Warland, R. de Ruyter van Steveninck, and W. Bialek, Spikes: Exploring the Neural

Code, MIT Press, 1999.
4. D. A. Butts, and M. S. Goldman, PLoS Biol 4, 639–646 (2006).
5. J. Seal, D. Commenges, R. Salamon, and B. Bioulac, Brain Research 278, 382–386 (1983).
6. H. S. Friedman, and C. E. Priebe, J. Neurosc. Methods 83, 185–194 (1998).
7. S. Ono, V. E. Das, J. R. Economides, and M. J. Mustari, J. Neurophysiol. 93, 108–116 (2004).
8. U. J. Ilg, S. Schumann, and P. Thier, Neuron 43, 145–151 (2004).
9. M. C.-K. Wu, S. V. David, and J. L. Gallant, Annu. Rev. Neurosci. 29, 477–505 (2006).
10. A. Collignon, F. Maes, D. Delaere, D. Vandermeulen, P. Suetens, and G. Marchal, Information

Processing in Medical Imaging 3, 263–274 (1995).
11. W. M. Wells, and P. Viola, Med. Image Anal. 1, 35–51 (1996).
12. K. H. Knuth, ArXiv Physics e-prints (2006), arXiv:physics/0605197.
13. S. Ono, L. Brostek, U. Nuding, S. Glasauer, U. Büttner, and M. J. Mustari, J. Neurophysiol. 103

(2010).
14. A. F. Fuchs, and D. A. Robinson, J. Appl. Physiol. 21, 1068–1070 (1966).
15. J. Ladda, T. Eggert, S. Glasauer, and A. Straube, Exp. Brain Res. 182, 343–356 (2007).
16. W. T. Newsome, R. H. Wurtz, and H. Komatsu, J. Neurophysiol. 60 (1988).



17. F. Bremmer, U. J. Ilg, A. Thiele, C. Distler, and K.-P. Hoffmann, J. Neurophysiol. 77, 944–961
(1997).

18. S. B. Hamed, W. Page, C. Duffy, and A. Pouget, J. Neurophysiol. 90, 549–558 (2003).
19. K. Kawano, M. Shidara, Y. Watanabe, and S. Yamane, J. Neurophysiol. 71, 2305–2324 (1994).


