
An Investigation of Likelihoods and Priors for
Bayesian Endmember Estimation

Alina Zare and Paul Gader

CISE Dept., University of Florida, Gainesville, FL 32611
(azare@cise.ufl.edu, pgader@cise.ufl.edu)

Abstract. A Gibbs sampler for piece-wise convex hyperspectral unmixing and endmember de-
tection is presented. The standard linear mixing model used for hyperspectral unmixing assumes
that hyperspectral data reside in a single convex region. However, hyperspectral data is often non-
convex. Furthermore, in standard unmixing methods, endmembers are generally represented as a
single point in the high dimensional space. However, the spectral signature for a material varies as
a function of the inherent variability of the material or environmental conditions. Therefore, it is
more appropriate to represent each endmember as a full distribution to incorporate the variability
and utilize this information during spectral unmixing. A Gibbs sampler that searches for several sets
of endmember distributions, i.e. a piece-wise convex representation, is presented. The hyperspectral
data is partitioned among the sets of endmember distributions using a Dirichlet process prior that
also estimates the number of needed sets. The proposed likelihood follows from a convex combina-
tion of normal endmember distributions with a Dirichlet prior on the abundance values. A normal
distribution is also applied as a prior for the mean values of the endmember distributions.

The Gibbs sampler that is presented partitions the data into convex regions, determines the
number of convex regions required and determines endmember distributions and abundance values
for all convex regions. Results are presented on hyperspectral data that indicate the ability of the
method to effectively estimate endmember distributions and the number of sets of endmember
distributions.

Keywords: Hyperspectral, Unmixing, Endmember, Gibbs, Metropolis-in-Gibbs, Dirichlet Process

INTRODUCTION

Hyperspectral images are three-dimensional data cubes containing both spatial and spec-
tral information about the image scene. A hyperspectral image can be viewed as a stack
of two-dimensional images collected over a range of narrow, contiguous wavelengths.
Given a hyperspectral image, the task of endmember detection is to estimate the “pure”
spectral signatures of the materials found in a hyperspectral scene. Furthermore, the task
of spectral unmixing determine the proportion (or abundance) of each endmember found
in every hyperspectral pixel. The standard model applied during hyperspectral unmixing
is the linear mixing model [1]. In the linear mixing model, the spectral signatures in a
hyperspectral scene are modeled as convex combinations of the endmember signatures.
This model can be written as follows.

xi =
M

∑
k=1

pikek + εi (1)

where N is the number of pixels, M is the number of endmembers, εi is an error term, pik
is the abundance of endmember k in pixel i, and ek is the kth endmember. The abundances



of this model satisfy the following constraints.

pik ≥ 0 ∀k = 1, . . . ,M (2)
∑

M
k=1 pik = 1 (3)

Given the input hyperspectral data, X, endmember detection estimates the spectral
signatures of the endmembers, E, and spectral unmixing determines the values of the
proportions (or abundances) P of each endmember in every hyperspectral data point. By
following this model, finding endmembers amounts to estimating the spectral signatures
whose convex hull enclose the hyperspectral data.

Several methods have been developed for endmember detection based on the linear
mixing model. These include methods that rely on the pixel purity assumption and
assume the endmembers can be found within the data set [2, 3, 4, 5]. Methods have also
been developed based on Non-Negative Matrix Factorization [6, 7, 8, 9], Independent
Components Analysis [10, 11] and others [12, 13, 14]. However, all of these methods
search for a single set of endmembers and, therefore, a single convex region to describe a
hyperspectral scene. Since these algorithms assume a single convex region, they cannot
find appropriate endmembers for non-convex data sets.

When examining many hyperspectral images, it is found that they are often non-
convex and groups of pixels in the image are convex combinations of subsets of the
endmembers in the scene. Consider the image shown in Figure 1. This real hyperspectral
data set is non-convex and would be better represented with a piece-wise convex repre-
sentation of the data. By examining these non-convex hyerspectral images, endmembers
may appear within the convex hull defined by the other endmembers in the scene. These
interior endmembers cannot be recovered using methods based on the standard linear
mixing model. However, methods based on a piece-wise convex representation are able
to recover interior endmembers. The use of a piece-wise convex representation was first
presented in [15] and [16]. The proposed method differs from the algorithms in [15]
and [16] in that a fully stochastic endmember detection and spectral unmixing method is
presented. Previous methods also rely on the Dirichlet Process for partitioning the data,
however, these methods rely on a stochastic EM-type algorithm in which the partition-
ing of data points into endmember sets are sampled using a Dirichlet Process whereas
endmember and proportions were estimated by maximizing an objective function. The
proposed algorithm provides a fully stochastic extension of these methods by using a
Gibbs sampling approach to sample all desired parameters. This proposed algorithm,
Sampling Piece-wise Convex Endmember Detection (S-PCE), estimates several sets of
endmembers, the abundances for each data point, and the number of endmembers sets
needed to represent a hyperspectral image.

THE SAMPLING PIECE-WISE CONVEX ENDMEMBER
DETECTION METHOD

The S-PCE method uses a Metropolis-within-Gibbs sampling technique to estimate sets
of endmember distributions, abundance values for each data point, and the number of
endmember distribution sets needed to represent the hyperspectral scene. The number



FIGURE 1. The June 1992 AVIRIS Indian Pines “Scene 4” data set [17]. These data were collected
over the Indian Pines test site in an agricultural area of northern Indiana. The image has 145×145 pixels
with 220 spectral bands. The data contains approximately two-thirds agricultural land and one-third forest
and other elements [18]. The crops were at early growth stages and, thus, have approximately 5% crop
cover with varying levels of residue from previous crops. (a) Figure showing band 10 (approximately
0.49 µm) and the ground truth for this data set. (b) The AVIRIS Indian Pines hyperspectral data set after
applying Maximum Noise Fraction dimensionality reduction to two dimensions [19]. This illustrates that
the Indian Pines hyperspectral data set is not convex but, instead, appears to be piece-wise convex.

of endmember distribution sets is determined by applying a Dirichlet Process prior. Fur-
thermore, hyperspectral endmembers are often represented as single points in a high
dimensional space. However, the spectral signatures for a material varies within hy-
perspectral data collections due to environmental factors such as illumination or atmo-
spheric effects as well as due to the inherent variability of a material. In order to repre-
sent this variability, rather than estimating a single point for each endmember, endmem-
bers are represented as full distributions. In the current implementation, the endmem-
bers are modeled using normal distributions with a fixed isotropic diagonal covariance,
êk,r ∼ N

(
êk,r|ek,r,Sk,r

)
where ek,r is the mean value for the kth endmember distribution

in the rth endmember distribution set and Sk,r is the covariance for the kth endmember
distribution in the rth partition. In the current implementation, all endmember distribu-
tions are given the same fixed isotropic diagonal covariance, S.

Then, given the linear mixing model, each data point is a convex combination of
these normally-distributed endmembers. This results in the following likelihood for a
data point assigned to a single convex region

f
(
x j|z j = r,Er,p j

)
∝ exp

−1
2
(
x j−p jEr

)T

(
Mr

∑
k=1

p2
jkSk,r

)−1 (
x j−p jEr

) (4)

where x j is the jth data point, z j is the label indicating the partition to which the data
point x j is assigned, r is the indicator variable for the rth set of endmembers, Er is
the rth set of endmember means, and p j is the vector of proportion values associated
with the jth data point where p jk is the kth element of this proportion vector, and Mr

is the number endmember distributions in the rth partition. Therefore, given all sets of
endmembers and all the data points in the scene which are assumed to be independent,
the overall likelihood can be written as ∏

R
r=1 ∏ j∈Ir f (x j|z j = r,Er,p j) where R is the



number of convex sets, Ir =
{

j|z j = r
}
⊂ {1, . . . ,N} denotes the set of indices of the

data points that are assigned to the rth convex set, X = [x1, . . . ,xN ], z = [z1, . . . ,zN ], and
E = {E1, . . . ,ER} where E is the set of endmember mean matrices.

For each endmember distribution set, the mean of the endmember distributions is
assumed to have a normal prior distribution.

ek,r ∼ N
(
ek,r|µr,Ce

)
(5)

where µr is the mean vector for the rth set of endmembers and Ce is the fixed covariance
used in the prior for all endmember sets. Using this prior distribution on the mean of
the endmembers distributions for partition encourages the endmember distributions for
each partition to have a smaller enclosed volume. In other words, the mean endmembers
for each endmember set share a prior distribution that encourages the endmember dis-
tributions to have a tight fit around the data. Furthermore, the prior on all of the means
over all sets, µ , is given by a Normal distribution whose mean is fixed at the mean of the
input hyperspectral data and whose covariance, Cµ = Iσµ where σµ is fixed to a large
value.

µr ∼ N

(
µr

∣∣∣∣∣ 1
N

N

∑
j=1

x j,Cµ

)
(6)

The proportion values for all the data point in the image are given a Dirichlet prior
with α values fixed to 1. By fixing the alpha values to 1, the endmembers are further
encouraged to have a tight fit around the data [14].

p j|z j = r ∼ DMr (α1,r, . . . ,αMr,r) (7)

where DMr(·) denote the Mr-Dirichlet distribution whose distribution function is given

by f
(
p j|z j = r

)
=

Γ

(
∑

Mr j
k=1 αk

)
∏

Mr j
k=1 Γ(αk)

∏
Mr
k=1 pαk−1

jk . In the current implementation, all Mr values

are fixed to a constant value that is a set parameter.

Sample Proportion Values. The proportion vectors for each data point and each set
of endmembers is sampled in the proposed method using a Metropolis-Hastings step.
For implementation, a set of proportions is sampled for each data point for each set
of endmember distributions. This is done to be able to compute likelihood values using
appropriate proportion vectors for each set of endmembers. The Dirichlet prior shown in
Equation 7 is used as the proposal distribution. This results in the following acceptance
ratio used to accept or reject new proportion vector samples for each data point in each
partition.

a =
Π(pnew

j |X,E,z j = r)

f (pnew
j |z j = r)

f (pold
j |z j = r)

Π(pold
j |X,E,z j = r)

=
f
(

x j|E,pnew
j ,z j = r

)
f
(

x j|E,pold
j ,z j = r

) (8)

where
Π(p j|X,E,z j = r) ∝ f

(
x j|E,p j,z j = r

)
f (p j|z j = r). (9)



The final equality is found since the proposal distribution is also the prior on the
proportion vectors. In summary, the new proportion sample is found to be pnew

j =

pnew
j γ +pold

j (1− γ) where γ = I
(

u < min
{

f(x j|E,pnew
j ,r)

f(x j|E,pold
j ,r) ,1

})
.

Sample Endmember Distribution Values. A Metropolis-Hastings step is also used
to sample endmembers. The proposal distribution is a Gaussian mixture centered on the
previous endmember value.

g(enew
k,r |e

old
k,r ,r) = wnN(enew

k,r |e
old
k,r ,Cn)+wwN(enew

k,r |e
old
k,r ,Cw) (10)

where wn and wb are fixed parameters determining the relative frequency sampling from
a Gaussian with diagonal covariance whose diagonal covariances are either small or
large, respectively. In all experimental results shown here, wn is set to 0.6 and wb is set
to 0.4. Furthermore, Cn and Cw are fixed covariances used to generate the endmember
samples. In all experimental results shown here, both Cn and Cw are set to an isotropic
diagonal covariances.

The acceptance ratio will be a =
Π(enew

k,r |X,P,r)
g(enew

k,r )
g(eold

k,r )

Π(eold
k,r |X,P,r)

where Π(ek,r|X,P,r) ∝

f (X|E,P,r) f (ek,r|µr,r) f (µr|r) where f (ek,r|µr,r) is given in Equation 5 and f (µr|r)
is given in Equation 6.

Similarly, the endmember prior means, µr are sampled using a Metropolis-Hastings
set with a Gaussian mixture as the proposal distribution. In the current implementation,
the same Gaussian mixtures used to generate new endmember samples are used to
generate the µr sample where the mixture is centered on the previous µr value.

Sample Partition Labels. The labels, r, are distributed according to a Dirichlet
process. These labels determine the number of endmember distribution sets needed to
describe an input hyperspectral data set as well as the partitioning of the data point
into the various endmember distribution sets. For all existing partitions, the likelihood
is computed using the current E and P matrices. For new partitions, E∗ and P∗ matrices
are sampled K times using the same proposal distributions as above.

f (zi = z j j 6= i|z−i,xi) = C n−i, j
α+N−1 f (xi|pi,Er,z j = r) f (Er) f (pi|zi = r) (11)

f (zi 6= z j ∀ j 6= i|z−i,xi) = C
α

K
α+N−1 f (xi|p∗i ,E∗) f (E∗) f (p∗i ) (12)

where zi is the indicator variable for the current data point, xi, C is a normalization
constant, n−i, j is the number of data points excluding xi in partition z j, N is the total
number of data points, K is the number of new endmember distribution sets sampled,
and α is the innovation parameter for the Dirichlet process. This method of sampling
K new endmember distribution sets follows from the method described in [20]. The
number of new sets considered, K, is a parameter that is currently set in the algorithm.

Pseudo-code for Sampling PCE Method.
1: Initialize Partitions



2: for r← 1 to Rinitial partitions do
3: Initialize Er and Pr
4: end for
5: for k← 1 to number of total iterations do
6: Randomly reorder data points in X
7: for r← 1 to number of partitions do
8: for j← 1 to number of data points do
9: Sample proportions, p j, for x j using an M-H step for each set of endmembers

10: end for
11: Randomly reorder endmembers E in partition r
12: for k← 1 to number number of endmembers in partition r do
13: Sample ek,r in partition r using M-H step
14: end for
15: Sample µr for each endmember distribution set
16: end for
17: for k← 1 to K do
18: Sample new E∗ and P∗ matrices
19: end for
20: for j← 1 to number of data points do
21: Remove x j from its current partition
22: Compute DP partition probabilities for x j using Equations 11 and 12.
23: Sample a partition for x j based on the DP partition probabilities
24: if A new partition is sampled then
25: Add the new endmember distribution set to E and assign x j to this set
26: else
27: Update the label of x j to the sampled endmember distribution set
28: end if
29: end for
30: end for

RESULTS

The proposed algorithm was applied to the AVIRIS Indian Pines data set shown in
Figure 1. The results of the AVIRIS Indian Pines data set show that the proposed method
successfully partitions the hyperspectral data into several convex regions and determines
endmembers for each convex set. When compared to results using a single convex
region, as shown in Figure 2, it can be seen that the piece-wise convex representation
is capable of determining the interior endmembers in this data set, i.e. the non-convex
nature of this data is represented with multiple endmember distribution sets. The single
convex region results are found using the same proposed method restricted to one convex
region. The parameters for the AVIRIS Indian Pines data were set to (the covariances
list the constant diagonal element values) S = 0.001, Ce = 0.01, Cµ = 10, Cn = 0.01,
Cw = 0.5, wn = 0.6 (and, hence, ww = 1−wn = 0.4), and α = 10.

This data sets consists of 16 classes of data. Of these 16 classes, corn fields comprise
one of the largest components. The many corn fields have varying levels of residue from



FIGURE 2. A comparison of the results found using a single convex region (a) and multiple convex
regions (b) using the Sampling Piece-wise Convex Endmember detection results. The piece-wise convex
representaiton results is capable of describing the non-convex nature of the data set. In all of the plots, the
small points are the hyperspectral data points and the large points correspond to endmembers. In (b), the
colors of the endmembers and data points correspond to the associated partition, i.e. all endmembers of
the same color correspond to the same partition and all data points of the same color are assigned to the
same partition.

FIGURE 3. Scatterplots of corn class data points in the AVIRIS Indian Pines data set and the endmem-
bers found using the Sampling Piece-wise Convex Endmember detection results. The corn data points are
primarily associated with one set of endmembers (light blue) found using S-PCE. In contrast, the corn
points would be unmixing will nearly all of the 12 endmembers found when using one region, as shown
in Figure 2 (a).

previous crops. Figure 3 shows the scatterplots and the endmembers found for the corn-
notill and corn-min classes in the data. Corn-notill contains a large amount of previous
crop residue and corn-min contains a moderate amount of previous crop residue. As can
be seen, both classes are well represented with one of the convex regions found by S-
PCE. In contrast, a large number of the endmembers would contribue to unmixing the
corn class with the single convex region results.

CONCLUSIONS AND FUTURE WORK

The S-PCE algorithm presented here uses a Gibbs sampling approach to estimate sets
of endmember distributions, proportion values, and the number of endmember distribu-
tion sets needed to describe a non-convex hyperspectral image. Future work to further



develop this method will include extending the algorithm to estimating covariances pa-
rameters and the number of endmember distributions per set. Also, incorporating spatial
correlations is an area of future work [21].
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