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Abstract. In this paper, we present a novel derivation of special relativity and the information
physics of events. We postulate that events are fundamental, and that some events have the potential
to be influenced by other events. However, this potential is not reciprocal, nor are all pairs of events
related in such a way. This leads to the concept of a partially-ordered set of events, which is often
called a causal set. Quantification proceeds by distinguishing two chains of coordinated events, each
of which represents an observer, and assigning a numerical valuation to each chain. By projecting
events onto each chain, each event can be quantified by a pair of numbers, referred to as a pair. We
show that each pair can be decomposed into a sum of symmetric and antisymmetric pairs, which
correspond to time-like and space-like coordinates. We show that one can map a pair to a scalar
and that this gives rise to the Minkowski metric. The result is an observer-based theory of special
relativity that quantifies events with pairs of numbers. Events are fundamental and space-time is an
artificial construct designed to make events look simple.
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INTRODUCTION

Information Physics views the laws of physics as originating from the laws that govern
the ways in which we process information about the world around us. Such an approach
inherently depends both on the description chosen to represent reality and the method
used to add a layer of quantification to the chosen description. This paper introduces
a novel derivation of the Minkowski metric of special relativity as a quantification of a
partially ordered set of events. This derivation does not rely on any notion of space, time,
motion, light, or even relativity. Instead, it arises naturally from a simple quantification
scheme applied to a partially ordered set of events.

THE EVENT POSTULATE

We assert a single postulate, which embodies a simple description of physical reality:

Event Postulate: Events are fundamental. Some events have the potential to
be influenced by, or informed about, other events. However, this potential is
not reciprocal. That is, if an event A has the potential to be influenced by event
B, then event B does not have the potential to be influenced by event A.



This potential to be influenced can be viewed as a binary ordering relation relating
pairs of events. This results in a partial order where if event A has the potential to be
influenced by event B, we say that A includes B and write A≥B. This notion of inclusion
is transitive, so that if A ≥ B and B ≥C, then it is also true that A ≥C. It is possible that
there exist events that cannot possibly influence one another. In this case, we say that
the events are incomparable and write A||C. The relationships A ≥ B and B ≥ A can
only hold simultaneously if A = B. Together, a set of events and the described ordering
relation results in a partially-ordered set, or poset, of events. Such a poset of events
is called a causal set [1]. Causal sets have been employed in approaches to quantum
gravity, although they are typically endowed with Lorentzian (Minkowski) geometry
[2].

Our aim is to derive the relevant physical laws by introducing a layer of quantification
to the poset. Though the chosen quantification scheme may be arbitrary, its implemen-
tation is subject to a set of constraints imposed by the ordering relation via the poset.
These constraints give rise to the physical laws.

QUANTIFICATION

In this section we describe the quantification scheme. We assume that the poset of events
is sufficiently dense that we can always find an event that meets our specifications.
This is our only additional assumption and from it we recover special relativity rather
than general relativity. This implies that interactions between masses serves to place
constraints on the possible set of events.

We begin by identifying a distinguished set of events called a chain. A chain consists
of a set of events that are totally ordered so that for a chain P consisting of N events each
labeled by some index i, we have that p1 ≤ p2 ≤ . . . ≤ pi ≤ . . . pN . Here we consider
finite chains and show that they are sufficient to recover special relativity. Countably
infinite chains and uncountably infinite chains can be handled similarly.

An event x can be projected onto a chain P if there exists an event p ∈ P such that
x ≤ p. Since any event p+ ≥ p on the chain also includes x by transitivity, and the chain
is finite, there must exist a least event px ∈ P such that px ≥ x. The projection of x onto
the chain P is given by the least event px on the chain P such that x ≤ px. If one considers
the sub-poset consisting only of the element x and the elements comprising the chain P,
then in this sub-poset px covers x, px ≻ x (Fig. 1A). In the event that the projection exists,
the element x can then be “quantified” by assigning to the element x the numeric label
assigned to the element px ∈ P.

We represent an observer as a chain of events and label particular events in the chain
for the purpose of quantification. We can imagine that such quantifying events are the
result of an event generator, or a clock. Note, however, that all observers are chains, but
not all chains are observers. We introduce two observers and require that quantifying
events in each observer chain are selected so that successive quantifying events in one
chain project to successive quantifying events in the other chain (Fig. 1B). This method
of distinguishing quantifying events is equivalent to synchronizing clocks.

This quantification scheme distinguishes two observers, represents them as chains,
and quantifies them in such a way to make observers look simple.
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FIGURE 1. A) The projection of an event x onto a chain is the least event on the chain that can be
informed about x. (B) Chains can be synchronized by identifying events on the chains such that successive
events on one chain project to successive events on the other.

Interval Pair (Pair)

We can quantify an event x by the pair of numbers (px,qx) obtained by projecting it
onto the two observer chains P and Q. Similarly, we can consider the interval between
two events by considering the difference in the way that the two events project onto the
observer chains. For events labeled 0 and 1, we can quantify the interval by computing
the difference.

(∆p,∆q) = (p1,q1)− (p0,q0) = (p1 − p0,q1 −q0). (1)

Since we will be focusing on intervals, we will suppress the deltas in the notation, and
refer to such a pair of differences as a pair.

Note that some pairs of events project so that both chains agree as to the order in
which they are observed (Figure 2A); whereas other pairs of events project so that the
order in which they are observed by one chain is reverse that of the other chain (Figure
2B). This suggests that is may be convenient to decompose a pair (p,q) it into the sum
of a symmetric pair and an antisymmetric pair
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We call this the symmetric/antisymmetric decomposition (Figure 2C).

Scalar Measures

Here we aim to identify a scalar measure that is a non-trivial function of the pair. We
define the function f as an unknown map from a pair to a real scalar, and insist that the
scalar obeys the symmetric/antisymmetric decomposition (2)
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FIGURE 2. (A) Some pairs of events project so that both chains agree as to the order in which they are
observed. This is the symmetric, or chain-like, configuration, which corresponds to a time-like separation.
(B) Other pairs of events project so that the order in which they are observed by one chain is reverse that
of the other chain. This is the anti-symmetric, or antichain-like, configuration, which corresponds to a
space-like separation. (C) Any interval can be decomposed into the sum of a symmetric interval and an
antisymmetric interval.

This functional equation has several potential solutions:

F1. f (a,b) = a (4)
F2. f (a,b) = b (5)
F3. f (a,b) = ab (6)
F4. f (a,b) = (a+b)n n ∈ odd (7)
F5. f (a,b) = a2 +b2 (8)

Instead of mapping the pair to a scalar, we could also take the lattice product of the
two chains and identify a scalar valuation on the product lattice from the valuations
assigned to each chain. Consistency requires that these two approaches should agree
with one another. Since the lattice product is associative, the scalar measure also must
obey the associativity equation [3, 4]

g( f (a,b)) = g(a)+g(b), (9)

where g is an arbitrary function.
This results in two solutions. The first solution, f (a,b) = a+ b, is given by F4 with

n = 1 and g(·) equal to the identity. Since this scalar is proportional to the symmetric
component of the decomposition, we referred to it as the symmetric scalar. The symmet-
ric scalar trivially satisfies additivity under the symmetric/antisymmetric decomposition.
Note that, while the antisymmetric component does satisfy additivity, it does not satisfy
associativity and therefore it is not a consistent measure for the interval. The second so-
lution is given by F3, where we have f (a,b) = ab with g(·) = log(·), so that the scalar
associated with the pair (a,b) is the product of its components ab. We refer to this as the
interval scalar and denote it with the symbol ∆s2

∆s2 = (pb − pa)(qb −qa).



Note that nothing is really being squared—it is simply the product of two numbers. The
interval scalar obeys additivity under this decomposition, since
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which can be rewritten as
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Coordinates

We now introduce a change of variables to emphasize the symmetric and antisymmet-
ric nature of the pair. Given events a and b, we have the interval pair given by

(∆p,∆q) = (pa − pb,qa −qb). (12)

We define coordinates

∆t =
∆p+∆q

2

∆x =
∆p−∆q

2

which results in

(∆p,∆q) = (∆t +∆x,∆t −∆x) = (∆t,∆t)+(∆x,−∆x). (13)

The interval scalar is then simply

∆s2 = ∆p∆q = ∆t2 −∆x2, (14)

which we recognize immediately as the Minkowski metric.

SPECIAL RELATIVITY

The pair of synchronized chains selected for quantification is arbitrary. Instead of choos-
ing synchronized chains P and Q, we could have chosen two other synchronized chains
P′ and Q′, (Figure 3) such that they are coordinated with P and Q so that successive
events in P′ and Q′ project to intervals where ∆p = m and ∆q = n. We say that chains P
and P′ are coordinated, and refer to each pair of chains as an inertial frame of reference,
or a frame for short.

It is the ratio of intervals that is relevant when comparing frames, so we define
ρ21 = m/n, which describes Frame 2 with respect to Frame 1. One can show that the
pair (p1,q1) transforms as

(p2,q2) = (p1ρ21
−1,q1ρ21), (15)
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FIGURE 3. On the left we illustrate another possible relationship among chains. The new chain is
coordinated to the original pair such that successive events result in projections ∆p = m and ∆q = n. This
new chain can be used to construct a second pair of observers and thus define another frame of reference.

and that the scalar interval remains invariant. Rewriting the pair in terms of coordinates,
we have

(∆t2 +∆x2,∆t2 −∆x2) = ((∆t1 +∆x1)ρ21
−1,(∆t1 −∆x1)ρ21). (16)

Solving for ∆t2 and ∆x2, we find that the space and time components mix
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By defining
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we find the Lorentz transformation in coordinate form

∆t2 =
1√

1−β21
2

∆t1 +
−β21√
1−β21

2
∆x1 (20)

∆x2 =
−β21√
1−β21

2
∆t1 +

1√
1−β21

2
∆x1. (21)

The result is that we have derived that the speed β is the relevant quantity relating inertial
frames. Invariance of the speed β =±1 follows immediately.



CONCLUSION

The theory of special relativity is derived as a quantification of a partially ordered set
of events. This is performed without assuming anything about space, time, motion, light
or the principle of relativity. Instead we assume that events are fundamental, and that
some events have the potential to be influenced by other events, and that this potential
is not reciprocal. We also assume that the poset of events is dense such that we can
identify events to meet our specifications. This leads to special relativity, and suggests
that general relativity arises when there are specific constraints on the events themselves.

It is important to keep in mind that this method of quantification is not unique, and
that other methods are possible. Furthermore, the distinction between chain-like and
antichain-like intervals leads to the distinction between time-like and space-like relation-
ships with time being inherently one-dimensional and space being multi-dimensional
through further decomposition of the spatial pair [5]. While convenient, the proposed
symmetric/antisymmetric decomposition is arbitrary, and this suggests that the concepts
of space and time, while convenient, are not fundamental. This is further supported by
the fact that space and time coordinates are not preserved by Lorentz transformations.
What is fundamental is the concept that events can be ordered.

Ordered of events was found to be both necessary and sufficient in our recent deriva-
tion of Feynman’s rules for quantum mechanics [6, 7]. Furthermore, in that derivation,
we assumed that pairs of numbers are required to quantify a quantum state, and here
we show that pairs are fundamental as well. This not only suggests a deeper connec-
tion between the two theories, but also that pairs play a fundamental role in quantifying
partially ordered sets and that the resulting constraints give rise to physical laws.
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