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Abstract. In the past few years, a research effort has been in progress at University of Maryland to develop a 

Bayesian framework based on Physics of Failure (PoF) for risk assessment and fleet management of aging 

airframes. Despite significant achievements in modelling of crack growth behavior using fracture mechanics, 

it is still of great interest to find practical techniques for monitoring the crack growth instances using non-

destructive inspection and to integrate such inspection results with the fracture mechanics models to improve 

the predictions. The ultimate goal of this effort is to develop an integrated probabilistic framework for 

utilizing all of the available information to come up with enhanced (less uncertain) predictions for structural 

health of the aircraft in future missions. Such information includes material level fatigue models and test 

data, health monitoring measurements and inspection field data. In this paper, a case study of using Bayesian 

fusion technique for integrating information from multiple sources in a structural health management 

problem is presented.  

Keywords: Prognostics and Health Management (PHM), Bayesian Knowledge Fusion, Crack Growth 

Modeling, Non-destructive Inspection (NDI). 

 

INTRODUCTION 

Decision making about the remaining useful life of aging airframes is very complicated and 

should be based upon all information available. Aerospace structures have been traditionally 

inspected using on-ground nondestructive techniques such as Eddy current and visual inspection. 

New developments in recent years are heading towards continuous on-line monitoring and 

damage detection in the structure (Boller, 2001; Fang and Berkovits, 1993). These new 

technologies, along with high fidelity crack growth simulation models, can be used to provide 

better estimates of the crack size distribution at given hotspots. Such estimations always suffer 

from both reducible and non-reducible uncertainties. Such uncertainties play an important role in 

the risk and reliability calculations and should be characterized properly using probability and 

statistical techniques. 

The authors have previously proposed a probabilistic model (Wang et al., 2009) to assess the 

reliability of aging airframes by predicting the probability that a fatigue-induced crack will reach 

an unacceptable length after specified future flight hours. They have also shown in a different 

paper (Wang et al., 2008) that predictions based on empirical models alone are not sufficient to 

assure the safety of a mission. The next step towards enhancing the quality of risk predictions is 

to use non-destructive inspection (NDI) to monitor the crack growth in the structure and to use 

this additional information to supplement the uncertain model predictions. (Rabiei et al., 2010) 



have proposed an approach for estimating the crack size using real-time acoustic emission (AE) 

monitoring. Having multiple independent predictions for the crack size poses a new challenge in 

fleet management: how could this information get reduced to a unified risk measure that can be 

used for fleet management purposes? 

 

Figure 1 Crack size prediction based on Simulation and AE NDI results 

Figure 1 shows the crack size estimation based on simulation as well as AE NDI monitoring 

in a laboratory experiment. It is clear from the figure that the AE technique is predicting a higher 

crack growth rate which results in different crack size distribution predictions based on the two 

techniques. A formal approach for combining these predictions is necessary before this 

information can be used for fleet management purposes. 

 To address this issue, we propose a Bayesian framework for combining crack growth 

information obtained from independent sources. This problem could be tackled in two different 

ways: One way is to obtain independent crack size estimates from each of the sources and then 

try to combine them at any given time. This approach may provide a better instantaneous crack 

size estimate but does not result in any model improvement. The other approach is to develop a 

model based on the crack size estimates from the simulation and then update the model 

parameters whenever new evidence from the NDI measurements becomes available. This 

approach results in an updated model which can be reused for improved crack size predictions in 

future applications. 

In the remainder of this paper, we first describe the necessity of knowledge fusion in PHM 

applications and then describe the specific problem of fatigue crack growth prediction in aging 

airframes. Next we describe the structure of the developed statistical model and then present the 

Bayesian fusion formulation. 

 

BAYESIAN KNOWLEGE FUSION  

The information necessary for developing a structural health diagnostic and prognostic model 

is obtained from various sources. One can think of this as having a number of ‘experts’ that each 

provides relevant information about the problem at hand. 



In this section, Bayesian fusion technique is presented as a flexible formal framework that can 

be used to update model parameters in presence of additional information. In this approach the 

information provided by ‘experts’ will be used to update the a priori knowledge about the 

quantity of interest. The process of combining information can become challenging specially 

when dealing with diverse ‘types’ of information from different experts or when the experts are 

not equally credible.  

The additional information could be provided from various sources and could be of different 

formats. For example in structural health monitoring and prognostics problems, the important 

quantity of interest is the instantaneous size of fatigue crack at a given hotspot. Crack size 

information may be provided from the following sources: 

1. Probabilistic crack growth model (Format: PDF of crack size) 

2. In-situ (on-board) NDI findings (Format: uncertain crack size estimate that can be 

represented probabilistically)  

3. On-ground NDI inspections (Format: individual crack observations with quantifiable 

uncertainty) 

For fleet management purposes, it is absolutely critical to be able to formally combine these 

independent sources of information to achieve more accurate and less uncertain predictions about 

the structural health of the system. 

The outcome of the fusion process is a model with updated parameters that can be reused for 

predictions under similar circumstances.  In fact, one of the important advantages of Bayesian 

approach is the sequential updating property (Eq. (1)) which allows us to constantly update the 

model parameters with additional information as it becomes available. 
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where λ is the vector of model parameters and Ei’s are the evidence available at the i
th

 updating 

stage.  

 

Problem Definition 

Let us assume that at any given time, two independent crack size estimations are available at a 

given hot spot. The first estimate is obtained from a fracture mechanics-based crack growth 

simulation (Anderson, 1994) while the second one is an estimate obtained from a non-destructive 

inspection technique such as AE monitoring (Mix, 2005). 

Both methods suffer from various sources of uncertainty; therefore, we use probability density 

functions to represent their crack size estimates. 

Our goal is to build a statistical model for crack size as a function of time based on the 

available crack size estimates. In reality, the crack growth simulation results are more readily 

available; so the model parameters are first estimated from this source of information and then, 

as the crack size estimates from on-board inspection becomes available, the model parameters 

will be updated to reflect the new observations. 

Let DSM and DAE denote the simulation and AE data, respectively. DSM is a set of random 

samples of the crack size (denoted by Y) obtained via crack growth simulation at various time 

instances xj’s: 

{ }xsijjSM NjNiyxD ,,1,,,1|),( LL ===  (2) 



where Ns is the number of samples of Y and Nx is the number of time instances. 

DAE is a set of uncertain observations of crack size, obtained from AE measurements, that are 

represented by random variables E
(k)

’s at various time instances xk’s: 
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where Ne is the total number of observations and � is a known vector of parameters for the 

probability distribution function �������
����. 

  

Statistical Model Development 

Hierarchical models (also called multilevel models) are used whenever information is 

available on several different levels in a problem. The hierarchy of these models can better 

reflect the complexity of a given problem than a simple model with a non-hierarchical cloud of 

parameters. In this approach, to capture the complicated structure of data and information, the 

prior is structured using a series of conditional distributions called hierarchical stages of the 

prior distribution (Gelman et al., 2003). 

Given evidence E and parameters λ, a simple Bayesian model consists of a priori probability 

p(λ) and the likelihood p(Ε|λ) that are used to compute a posterior probability p(λ|Ε)∝ p(Ε|λ) 
p(λ).  

A Bayesian hierarchical model is defined when the prior distribution on λ itself depends on 

other parameters φ that are not present in the definition of likelihood. Therefore, the prior p(λ) 
must be replaced by a prior p(λ|φ), and a prior p(φ|ψ) with parameters ψ on the newly introduced 

parameters φ is required. This will result in the posterior probability below: 
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The latter simplification holds because the likelihood does not usually directly depend on 

φ ,ψ; the effect of φ ,ψ on the likelihood is only through λ. This process may be repeated for 

more hierarchical stages but in this case, ψ is considered to be a vector of constant parameters. 

The prior distribution in this model formulation is characterized by a two-level hierarchy: 

p(λ|φ) is the first level, and p(φ|ψ) is the second level. Prior distributions of the higher levels are 

called hyperpriors and the corresponding parameters are known as hyperparameters. In Eq. (4), 

p(φ|ψ) is the hyperprior and ψ are the hyperparameters of the prior parameters φ. 

 

Figure 2 Graphical representation of a two-stage Bayesian hierarchical model. Square nodes refer to constant 

parameters; oval nodes refer to stochastic components of the model. 

A useful tool for representing hierarchical Bayesian models is the Directed Acyclic Graph 

(DAG) (Figure 2). In this diagram, each prior is represented as a separate node pointing to the 
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nodes that depend on it. Oval nodes represent stochastic components of the model, whereas 

square nodes refer to constant parameters (Ntzoufras, I., 2009). 

The first level in the hierarchy is defined by the likelihood relationship. The definition of the 

likelihood in our model is presented in Eq. (5) where Y is assumed to have a Lognormal 

distribution defined as follows: 

( )
)log(
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21 θθµ

τµ

+= X

Y
 (5) 

where Y is the inverse of the crack size and X is the number of elapsed fatigue cycles 

corresponding to Y. We assume in this model that the median of Y is a linear function of X. 

Figure 3 shows the hierarchy of the nodes in the model. We already discussed the first level of 

the hierarchy which is the likelihood relationship. The next level in the hierarchy is the prior of 

the model parameters: λ = (θ1 ,θ2  ,τ). The prior should reflect the correlation between 

parameters. θ1 and θ2 are the slope and intercept of a line and are expected to be correlated with 

each other but they are both uncorrelated with τ. The precision parameterτ follows a Gamma 

distribution with shape parameter α and inverse scale parameter β.  

( )βατ ,Gamma~
 

(6) 

Gamma distribution is a popular choice for modeling precision of Normal distributions; it 

represents positive random variables and for large shape parameters, it resembles the bell shape 

of a Normal distribution. 

Correlated random variables θ1 and θ2 form the random vector θ. A multivariate Normal 

distribution is used to represent θ as follows: 

( )θθ ,ΣΜNormal~θ
 (7) 

where Mθ  is the vector of the means and 	
 is the precision matrix of the multivariate Normal 

distribution.  

 

Figure 3 Hierarchy and dependence of the nodes in the fusion model 

Most Bayesian models in engineering applications would stop at this level in the hierarchy 

and constant values are assigned to the parameters that define the prior distributions. But in this 

fusion problem, we need an extra level in the hierarchy that will allow us to better represent the 

available information. 
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The next level in the hierarchy is defining the hyperprior. To do that we choose a multivariate 

Normal distribution to define a prior for Mθ and use the Wishart distribution to define a prior for 

the precision matrix 	
 . 
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where ��
 
is the vector of the means and 	�
 

is the precision matrix of the multivariate Normal 

distribution of Mθ.  

The Wishart distribution has two parameters: � which is the scale matrix and � which is the 

parameter indicating the degrees of freedom.  

The Wishart distribution is a multivariate generalization of the Gamma distribution (Gelman 

et al., 2003). It can be used to describe positive-definite random matrices (matrix-valued random 

variables). The Wishart is widely used as the prior distribution for the covariance (or precision) 

matrix in multivariate Normal modeling. The integral of the Wishart distribution is finite only if 

� is greater than or equal to the rank of the random matrix. A non-informative prior can be 

obtained as � takes smaller values. In a bivariate Normal distribution the rank of covariance 

matrix is 2, therefore � � 2 should hold. Values of � closer to 2 result in a more diffused (non-

informative) prior distribution. 

The parameters at different levels of the model can be summarized as follows: 

λ = {θ, τ} (First level prior) 

φ = { Μθ, Σθ } (Second level prior) 

Ψ = {MΜθ, ΣΜθ, Ω, η, α, β} (Vector of hyperparameters) 

So far the structure of the Bayesian hierarchical model is described. The next step is to use the 

available data to infer the model parameters.  

 

 

Bayesian Inference formulation 

In the previous section we introduced the data as well as our modeling approach. In this 

section we describe the application of Bayesian inference technique to calculate the model 

parameters given the available data. More specifically, the objective is to infer λ and φ given the 

data DSM and DAE, i.e. compute ���, �|��� , ����. DSM which is the simulation data is easier to 

obtain and hence is used first to infer the model parameters. Later as the AE NDI system 

monitors the crack and provides crack size estimations, the model parameters will be updated to 

reflect the additional information. The challenge with the AE data is that it is not in a traditional 

crack observations format; instead, the AE system provides ‘uncertain’ estimates of crack size 

that are represented by random variables ����. The other factor that complicates the calculations 

is the fact that the AE crack evidence at various time steps are correlated. Here we assume that 

E
(k)

 is conditionally independent of E
(k-2)

 ,…, E
(1)

 , i.e.:  
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This is a reasonable assumption because E
(k)

’s form a Markov chain in which the evidence at 

each stage is only dependent on the evidence at previous stage. 
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The correlation between AE data at subsequent time instances is captured in the conditional PDF 

terms that appear in the above equations. Now using the Bayes’ rule, 
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The latter simplification is based on the independence of DSM and DAE and conditional 

independence of E
(k)

’s given the model parameters, i.e. 
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Based on the fact that the hierarchical model is parameterized so that φ does not appear in the 

likelihood functions and by using the rules of conditional probability one can write: 
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At this level, each of the likelihood terms, p( .| λ), can be easily calculated as follows, 
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The integrals in Eq. (10) should be solved numerically but this could become computationally 

tedious especially for large datasets. The other option is to use WinBUGS software package 

(Cowles, 2004) for MCMC simulation to find the posterior distribution of parameters but this is 

also complicated due to the correlation between the AE data. Efforts are still under way to find a 

computationally efficient approach to solve this problem. 

 

CONCLUSION 

A case study of using Bayesian fusion technique for integrating information from multiple 

sources in a structural health management problem was presented in this paper. Specifically, the 

goal was to develop a statistical model for crack size as a function of elapsed fatigue cycles using 

data from two independent sources of information, i.e. fracture mechanics simulation and AE 



NDI monitoring. The simulation data was first used to find the model parameters and then, as 

crack size estimates from AE became available, the model parameters were updated in light of 

the new evidence. The mathematical formulation of the problem as well as the setup of the 

Bayesian inference solution was given. The presented approach addresses the uncertainty in the 

evidence and takes into account the correlation between AE observations. The resulting 

equations should be solved numerically. Efforts are under way to use MCMC simulation 

technique to provide an efficient computational solution to this problem. 
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