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Motivation (I) Common sense

If a procedure states one-to-one correspondence be-

tween the observed value of a random variable and the

confidence interval of any level of significance then

we can reconstruct a unique confidence density of the

parameter and, correspondingly, a unique confidence

distribution.

The confidence distribution is interpreted here in

the same way as confidence interval. From the du-

ality between testing and confidence interval estima-

tion, the cumulative confidence distribution function

for parameter µ evaluated at µ0, F (µ0), is the p−value

of testing H0 : µ ≥ µ0 against its one-side alternative.

It is thus a compact format of representing the infor-

mation regarding µ contained in the data and given

the model. Before the data have been observed, the

confidence distribution is a stochastic element with

quantile intervals (F−1(α1), F
−1(1−α2)) which covers the

unknown parameter with probability 1−α1−α2. After

having observed the data, the realized confidence dis-

tribution is not a distribution of probabilities in the

frequentist sense, but of confidence attached to inter-

val statements concerning µ.



Motivation (II) Construction by R.A. Fisher

A following example shows the construction by R.A. Fisher

(B. Efron (1978))

A random variable x with parameter µ

x ∼ N (µ, 1). (1)

Probability density function (pdf) here is

ϕ(x|µ) =
1√
2π

e−
(x−µ)2

2 . (2)

We can write

x = µ + ǫ, (3)

where ǫ ∼ N (0, 1) and µ is a constant.

Let x̂ be a single realization of x. For normal dis-

tribution it is an unbias estimator of parameter µ, i.e.

µ̂ = x̂, therefore

µ|x̂ = x̂− ǫ. (4)

As is known (−ǫ) ∼ N (0, 1) due to symmetry of the

bell-shaped curve about its central point, i.e.

µ|x̂ ∼ N (x̂, 1). (5)



Motivation (II)

Thus we construct the confidence density of the pa-

rameter

ϕ̃(µ|x̂) =
1√
2π

e−
(x̂−µ)2

2 (6)

uniquely for each value of x̂.

As pointed in paper (Hampel 2006) “Fisher (Fisher

1930; 1933) gave correct interpretation of this “tempt-

ing” result. But starting in 1935 (Fisher 1935), he

really believed he had changed the status of µ from

that of a fixed unknown constant to that of a random

variable on the parameter space with known distri-

bution”. The history and generalization of the last

approach can be found in paper (Hannig 2006).

The fiducial argument is very attractive notion and

sometimes it reopen (see, as an example, (Hassairi

2005) and corresponding critique (Mukhopadhyay 2006)).

In principle, the parameter µ can be a random vari-

able in the case of the random origin of parameter.

We will not discuss here this possibility.



Motivation (III) The presence of invariant

The construction above is a direct consequence of

the following identity

∫ x̂−α1

−∞ ϕ(x|x̂)dx +
∫ x̂+α2

x̂−α1
ϕ̃(µ|x̂)dµ +

∫ ∞
x̂+α2

ϕ(x|x̂)dx = 1, (7)

where x̂ is the observed value of random variable x,

and x̂ − α1 and x̂ + α2 are confidence interval bounds

for location parameter µ.

The presence of the identities of such type (Eq.7) is

a property of statistically self-dual distributions (Bityukov

2004; 2005):

normal and normal

ϕ(x|µ, σ) = ϕ̃(µ|x, σ) =
1√
2πσ

e
−(x−µ)2

2σ2 , σ = const

Cauchy and Cauchy

ϕ(x|µ, b) = ϕ̃(µ|x, b) =
b

π(b2 + (x− µ)2)
, b = const

Laplace and Laplace

ϕ(x|µ, b) = ϕ̃(µ|x, b) =
1

2b
e−

|x−µ|
b , b = const

and so on.



Motivation (IV) The invariant in the case of
asymmetric distributions

In the case of Poisson and Gamma-distributions we

can also exchange the random variable and the param-

eter, preserving the same formula for the probability

distribution:

f(i|µ) = f̃(µ|i) =
µie−µ

i!

In this case we can use another identity to relate

the pdf of random variable and confidence density of

the parameter for the unique reconstruction of con-

fidence density (Bityukov 2000; 2002) (any another

reconstruction is inconsistent with the identity and,

correspondingly, breaks the probability conservation):

∞
∑

i=x̂+1

µi1e
−µ1

i!
+

∫ µ2

µ1

µx̂e−µ

x̂!
dµ +

x̂
∑

i=0

µi2e
−µ2

i!
= 1 (8)

for any real µ1 ≥ 0 and µ2 ≥ 0 and non-negative integer

x̂, i.e.

∞
∑

i=x̂+1

f(i|µ1) +
∫ µ2

µ1
f̃ (µ|x̂)dµ +

x̂
∑

i=0

f(i|µ2) = 1, (9)

where f(i|µ) = f̃ (µ|i) =
µie−µ

i!
. Confidence density

f̃ (µ|i) is the pdf of Gamma-distribution Γ1,i+1 and x̂ is

the number of observed events.



A bit of history

The basic notion of CDs traces back to the fidu-

cial distribution of Fisher (1930); however, it can be

viewed as a pure frequentist concept. Indeed, as pointed

out in Schweder (2002) the CD concept is ”Neyman-

nian interpretation of Fisher’s fiducial distribution”

[Neyman (1941)]. Its development has proceeded from

Fisher (1930) through various contributions, just to

name a few, of Kolmogorov (1941), Pitman (1957),

Efron (1993; 1998), Fraser (1991; 1996), Lehmann

(1993), Singh (2001; 2007), Schweder (2002; 2003A)

and others. Bityukov (2002; 2005) developed the ap-

proach for reconstruction of the confidence distribu-

tion densities by using the corresponding identities.

Another useful application of CD is for meta-analysis.

Meta-analysis is the modern term for combining re-

sults from different experiments or trials (see, for ex-

ample, (Hedges 1985)). The consecutive theory of

combining information from independent sources through

CD is proposed in paper (Singh 2005). Recently (Bickel

2006), the method for incorporating expert knowledge

into frequentist approach by combining generalized

confidence distributions is proposed.



Confidence distributions

Suppose X1, X2, . . . , Xn are n independent random

draws from a population F and χ is the sample space

corresponding to the data set Xn = (X1, X2, . . . , Xn)
T .

Let θ be a parameter of interest associated with F (F
may contain other nuisance parameters), and let Θ be

the parameter space.

Definition 1 (Singh 2005): A functionHn(·) = Hn(Xn, (·))
on χ×Θ → [0, 1] is called a confidence distribution (CD)

for a parameter θ if

(i) for each given Xn ∈ χ, Hn(·) is a continuous cumu-

lative distribution function;

(ii) at the true parameter value θ = θ0, Hn(θ0) =

Hn(Xn, θ0), as a function of the sample X n, has the uni-

form distribution U(0, 1).

The function Hn(·) is called an asymptotic confi-

dence distribution (aCD) if requirement (ii) above is

replaced by (ii)‘: at θ = θ0, Hn(Xn, θ0)
W→ U(0, 1) as n →

+∞, and the continuity requirment onHn(·) is dropped.

Item (i) basically requires the function Hn(·) to be a

distribution function for each given sample.

Item (ii) basically states that the function Hn(·) con-

tains the right amount of information about the true

θ0.



Confidence distributions

We call, when it exists, hn(θ) = H
′
n(θ) a confidence

density or CD density.

It follows from the definition of CD that if θ <

θ0, Hn(θ)
sto≤ 1 − Hn(θ), and if θ > θ0, 1 − Hn(θ)

sto≤ Hn(θ).

Here
sto≤ is a stochastic comparison between two ran-

dom variables; i.e. for two random variable Y1 and

Y2, Y1

sto≤ Y2, if P (Y1 ≤ t) ≥ P (Y2 ≤ t) for all t. Thus a

CD works, in a sense, like a compass needle. It points

towards θ0, when placed at θ 6= θ0, by assigning more

mass stochastically to that side (left or right) of θ that

contains θ0. When placed at θ0 itself, Hn(θ) = Hn(θ0) has

the uniform U [0, 1] distribution and thus it is noninfor-

mative in direction.

Definition 1 is very convenient for the purpose of ver-

ifying if a particular function is a CD or an aCD.



Examples and inferential information
contained in a CD

Example 1 Normal mean and variance (Singh 2005):

Suppose X1, X2, . . . , Xn is a sample from N (µ, σ2), with

both µ and σ2 unknown. A CD for µ is

Hn(y) = Ftn−1(
y − X̄

sn/
√
n

), where X̄ and s2 are, respectively,

the sample mean and variance, and Ftn−1(·) is a cumula-

tive distribution function of the Student tn−1-distribution.

A CD for σ2 is Hn(y) = 1 − Fχ2
n−1

(
(n− 1)s2

n

y
) for y ≥ 0,

where Fχ2
n−1

(·) is the cumulative function of the χ2
n−1-

distribution.

Example 2 p-value function (Singh 2005): For any

given θ̃, let pn(θ̃) = pn(Xn, θ̃) be a p-value for a one-

sided test K0 : θ ≤ θ̃ versus K0 : θ > θ̃. Assume that

the p-value is available for all θ̃. The function pn(·)
is called a p-value function. Typically, at the true

value θ = θ0, pn(θ0) as a function of Xn is exactly (or

asymptotically) U(0, 1)-distributed. Also, Hn(·) = pn(·)
for every fixed sample is almost always a cumulative

distribution function. Thus, usually pn(·) satisfies the

requirements for a CD.



Inference: a brief summary (Singh 2005)

• Confidence interval. From the definition, it is evi-

dent that the intervals (−∞, H−1
n (1−α)], [H−1

n (α),+∞)

and (H−1
n (α/2), H−1

n (1−α/2)) provide 100(1−α)%-level

confidence intervals of different kinds for θ, for any

α ∈ (0, 1).

• Point estimation. Natural choices of point estima-

tors of the parameter θ, given Hn(θ), include the

median Mn = H−1
n (1/2), the mean θ̄ =

∫ ∞
−∞ tdHn(t)

and the maximum point of the CD density

θ̂ = arg maxθhn(θ), hn(θ) = H
′
n(θ).

• Hypothesis testing. From a CD, one can obtain p-

values for various hypothesis testing problems. The

work (Fraser 1991) developed some results on such

a topic through p-value functions. The natural line

of thinking is to measure the support that Hn(·)
lends to a null hypothesis K0 : θ ∈ C. There are

possible two types of support:

1. Strong-support ps(C) =
∫

C
dHn(θ).

2. Weak-support pw(C) = supθ∈C2min(Hn(θ), 1−Hn(θ)).

If K0 is of the type (−∞, θ0] or [θ0,+∞) or a union

of finitely many intervals, the strong-support ps(C)

leads to the classical p-values.

If K0 is a singleton, that is, K0 is θ = θ0, then the

weak-support pw(C) leads to the classical p-values.



Remarks

Confidence distributions can be viewed as “distribu-

tion estimators” and are convenient for constructing

point estimators, confidence intervals, p−values and

more.

Confidence distributions can be interpreted as ob-

jective Bayesian posteriors (Bayesian posteriors based

on objective priors) that have the desirable properties

of good coverage and invariance to transformations.

In this case, the distribution for frequentist (confi-

dence distribution) and Bayesian (posterior distribu-

tion) are the same, the uncertainty intervals: con-

fidence interval and credible interval, are the same,

and the uncertainty intervals are usually interpreted

in the same way: 95% probability that true value is

in the interval. Other methods, such as profile likeli-

hood, are not dependent on priors, but may be more

difficult to interpret.

In the one parameter model, in paper (Schweder

2002) is defined the confidence distribution notion that

summarizes a family of confidence intervals.



CDs and pivots (Schweder 2003B)

Consider the statistical model for the data X. The

model consists of a family of probability distributions

for X, indexed by the vector parameter (ψ, χ), where

ψ is a scalar parameter of primary interest, and χ is a

nuisance parameter (vector).

Definition 2 : A univariate data-dependent distribution

for ψ, with cumulative distribution function C(ψ;X) and with

quantile function C−1(α;X) is an exact confidence distribu-

tion if Pψχ(ψ ≤ C−1(α;X)) = Pψχ(C(ψ;X) ≤ α) = α for all

α ∈ (0, 1) and for all probability distributions in the statistical

model.

By definition, the stochastic interval (∞, C−1(α;X))

covers ψ with probability α, and is a one-sided con-

fidence interval method with coverage probability α.

The interval (C−1(α;X), C−1(β;X)) will for the same rea-

son cover ψ with probability β−α, and is a confidence

interval method with this coverage probability. When

data have been observed as X = x, the realized nu-

merical interval (C−1(α; x), C−1(β; x)) will either cover

or not cover the unknown true value of ψ. The degree

of confidence β − α that is attached to the realized

interval is inherited from the coverage probability of

the stochastic interval.



CDs and pivots

The confidence distribution has the same dual prop-

erty. Ex ante data, the confidence distribution is a

stochastic entity with probabilistic properties. Ex post

data, however, the confidence distribution is a distri-

bution of confidence that can be attached to interval

statement.

The realized confidence (degree of confidence) C(ψ; x)

is a p−value of the one-sided hypothesis H0 : ψ ≤ ψ0

versus ψ > ψ0 when data have been observed to be

x. The ex ante confidence, C(ψ;X) is by definition uni-

formly distributed. The p−value is just a transforma-

tion of the test statistic to the common scale of the

uniform distributions (ex ante). The realized p−value

when testing the two-sided hypothesis H0 : ψ = ψ0 ver-

sus ψ 6= ψ0 is 2 min{C(ψ0), 1 − C(ψ0)}.



CDs and pivots

Confidence distributions are easily found when piv-

ots (Barndorff 1994) can be identified.

A function of the data and the interest parameter, p(X,ψ),

is a pivot if the probability distribution of p(X,ψ) is the same

for all (ψ, χ), and the function p(X,ψ) is increasing in ψ for

almost all x.

If based on a pivot with cumulative distribution

function F , the cumulative confidence distribution is

C(X,ψ) = F (p(X,ψ)).

From the definition, a confidence distribution is ex-

act if and only if C(X,ψ) ∼ U is a uniformly distributed

pivot.

The self-duality in Eq. 7 is equivalent to the exis-

tence of a linear and symmetrically distributed pivot.



Applications: signal and expected
background (Bityukov 2000; 2007)

The confidence density is more informative notion

than the confidence interval. For example, the Gamma-

distribution Γ1,n̂+1 is the confidence density of the pa-

rameter of Poisson distribution in the case of the n̂ ob-

served events from the Poisson flow of events (Bityukov

2000; 2007). It means that we can reconstruct any

confidence intervals (shortest, central, . . . ) by the di-

rect calculation of the pdf of a Gamma-distribution.

The following example illustrates the advantages of

the confidence density construction.

Let us consider the Poisson distribution with two

components: the signal component with a parameter

µs and background component with a parameter µb,

where µb is known. To construct confidence intervals

for the parameter µs in the case of observed value n̂,

we must find the distribution f̃(µs|n̂).

First let us consider the simplest case n̂ = ŝ + b̂ = 1.

Here ŝ is the number of signal events and b̂ is the num-

ber of background events among the observed number

n̂ of events.

b̂ can be equal to 0 and 1.



Applications: signal and expected
background

We know that the b̂ is equal to 0 with probability

p0 = P (b̂ = 0) =
µ0
b

0!
e−µb = e−µb (10)

and the b̂ is equal to 1 with probability

p1 = P (b̂ = 1) =
µ1
b

1!
e−µb = µbe

−µb. (11)

Correspondingly,

P (b̂ = 0|n̂ = 1) = P (ŝ = 1|n̂ = 1) =
p0

p0 + p1

and

P (b̂ = 1|n̂ = 1) = P (ŝ = 0|n̂ = 1) =
p1

p0 + p1

.

It means that the distribution of the confidence den-

sity f̃ (µs|n̂ = 1) is equal to the weighted sum of distri-

butions

P (ŝ = 1|n̂ = 1)f̃(µs|ŝ = 1) + P (ŝ = 0|n̂ = 1)f̃(µs|ŝ = 0), (12)

where the confidence density f̃(µs|n̂ = 0) is the Gamma

distribution Γ1,1 with the pdf f̃ (µs|ŝ = 0) = e−µs

and the confidence density f̃ (µs|n̂ = 1) is the Gamma

distribution Γ1,2 with the pdf f̃ (µs|ŝ = 1) = µse
−µs.



Applications: signal and expected
background

As a result, we have the confidence density of the

parameter µs

f̃(µs|n̂ = 1) =
µs + µb
1 + µb

e−µs. (13)

Using this formula for f̃(µs|n̂ = 1), we can construct

the shortest confidence interval of any confidence level

trivially.

In this manner we can construct the confidence den-

sity f̃ (µs|n̂) for any values of n̂ and µb. From Eq. 9 we

use the confidence densities f̃ (µs|ŝ = i), i = 0, n̂. Mixing

together the confidence densities with corresponding

conditional probability weights (in analogy with Eq.

12) yields the confidence density

f̃ (µs|n̂) =
(µs + µb)

n̂

n̂!
n̂

∑

i=0

µib
i!

e−µs. (14)

We have obtained the known formula (Helene 1988;

Zech 1989; D’Agostini 2003). The numerical results of

the calculations of shortest confidence intervals by the

using of this confidence density coincide with Bayesian

confidence intervals constructed by the using the uni-

form prior.



Aplications: quality of planned experiment
(Bityukov 2003)

Let us consider the estimation of quality of planned

experiments as another example of the use of confi-

dence density. The approach is based on the analysis

of uncertainty, which will take place under the future

hypotheses testing about the existence of a new phe-

nomenon in Nature.

We consider the Poisson distribution with param-

eter µ and we preserve the notation pf the previous

application. We test a simple statistical hypothesis

H0: new physics is present in Nature (i.e. µ = µs + µb )

against a simple alternative hypothesis

H1: new physics is absent (µ = µb).

The value of uncertainty is determined by the val-

ues of the probability to reject the hypothesis H0 when

it is true (Type I error α) and the probability to ac-

cept the hypothesis H0 when the hypothesis H1 is true

(Type II error β). This uncertainty characterizes the

distinguishability of the hypotheses under the given

choice of critical area.



Aplications: quality of planned experiment

Let both values µs and µb, which are defined in the

previous application, be exactly known. In this sim-

plest case the errors of Type I and II, which will take

place in testing of hypothesis H0 versus hypothesis H1,

can be written as follows:































α =
nc
∑

i=0

f(i|µs + µb),

β = 1 −
nc
∑

i=0

f(i|µb)
, (15)

where f is a Poisson probability function and nc is a

critical value.

Let the values µ̂s = ŝ and µ̂b = b̂ be known, for ex-

ample, from Monte Carlo experiment with integrated

luminosity which is exactly the same as the data lumi-

nosity later in the planned experiment. It means that

we must include the uncertainties in values µs and µb
to the system of the equations above.



Aplications: quality of planned experiment

As is shown in ref. (Bityukov 2002) (see, also, the

generalized case in the same reference and in my poster

here) we have the system







































α =
∫ ∞
0
f̃(µ|ŝ+ b̂)

nc
∑

i=0

f(i|µ)dµ =
nc
∑

i=0

C i
ŝ+b̂+i

2ŝ+b̂+i+1
,

β = 1 −
∫ ∞
0
f̃(µ|b̂)

nc
∑

i=0

f(i|µ)dµ = 1 −
nc
∑

i=0

C i
b̂+i

2b̂+i+1

, (16)

where nc is a critical value of the hypotheses testing

about the observability of signal and C i
N is

N !

i!(N − i)!
.

Note, here the Poisson distribution is a prior dis-

tribution of the expected probabilities and the nega-

tive binomial (Pascal) distribution is a posterior dis-

tribution of the expected probabilities of the random

variable. This is transformation of the estimated con-

fidence densities f̃(µ|ŝ + b̂) and f̃ (µ|b̂) (pdfs of the cor-

responding Γ−distributions) to the space of the ex-

pected values of the random variable.



Conclusion

The notion of confidence distribution, an enterely

frequentist concept, is in essence a Neymanian inter-

pretation of Fisher’s fiducial distribution. It contains

information related to every kind of frequentist in-

ference. The confidence distribution is a direct gen-

eralization of the confidence interval, and is a useful

format of presenting statistical inference.

The follow quotation from Efron(1998) on Fisher’s

contribution of the fiducial distribution seems quite

relevant in the context of CDs:

“. . . but here is a safe prediction for the 21st century:

statisticians will be asked to solve bigger and more

complicated problems. I believe there is a good chance

that objective Bayes methods will be developed for

such problem, and that something like fiducial infer-

ence will play an important role in this development.

Maybe Fisher’s biggest blunder will become a big hit

in the 21st centure!”
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