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Motivation (I) Common sense

If a procedure states one-to-one correspondence be-
tween the observed value of a random variable and the
confidence interval of any level of significance then
we can reconstruct a unique confidence density of the
parameter and, correspondingly, a unique confidence
distribution.

The confidence distribution is interpreted here in
the same way as confidence interval. From the du-
ality between testing and confidence interval estima-
tion, the cumulative confidence distribution function
for parameter p evaluated at pg, (1), is the p—value
of testing H, : 1 > uo against its one-side alternative.
It is thus a compact format of representing the infor-
mation regarding ;1 contained in the data and given
the model. Before the data have been observed, the
confidence distribution is a stochastic element with
quantile intervals (F (o), F~!(1—a3)) which covers the
unknown parameter with probability 1 —a; —ay. After
having observed the data, the realized confidence dis-
tribution is not a distribution of probabilities in the
frequentist sense, but of confidence attached to inter-
val statements concerning /.



Motivation (II) Construction by R.A. Fisher

A following example shows the construction by R.A. Fisher
(B. Efron (1978))

A random variable x with parameter 1
v~ N, 1) 1)
Probability density function (pdf) here is

1 (z—p)?

p(z|p) = NG e . (2)

We can write

T = [+, (3>

where ¢ ~ N(0,1) and p is a constant.
Let  be a single realization of x. For normal dis-
tribution it is an unbias estimator of parameter p, i.e.

A

it =z, therefore

plr =1z —e. (4)

As is known (—¢) ~ N(0,1) due to symmetry of the
bell-shaped curve about its central point, i.e.

i~ N (2, 1), (5)



Motivation (II)

Thus we construct the confidence density of the pa-
rameter
1 (-

== (6)

uniquely for each value of .

P(p

As pointed in paper (Hampel 2006) “Fisher (Fisher
1930; 1933) gave correct interpretation of this “tempt-
ing” result. But starting in 1935 (Fisher 1935), he
really believed he had changed the status of i from
that of a fixed unknown constant to that of a random
variable on the parameter space with known distri-
bution”. The history and generalization of the last
approach can be found in paper (Hannig 2006).

The fiducial argument is very attractive notion and
sometimes it reopen (see, as an example, (Hassairi
2005) and corresponding critique (Mukhopadhyay 2006)).

In principle, the parameter i, can be a random vari-
able in the case of the random origin of parameter.
We will not discuss here this possibility.



Motivation (IIT) The presence of invariant

The construction above is a direct consequence of
the following identity

T—a N T+ag . A
/_OO Yo(x|2)dr + /x P o(p|T)dp + /x+a2 z|z)de =1, (7)

where = is the observed value of random variable =z,
and r — o1 and = + oy are confidence interval bounds
for location parameter .

The presence of the identities of such type (Eq.7) is
a property of statistically self-dual distributions (Bityukov
2004; 2005):

normal and normal

N 1 (LU*%)Q
w(fﬂ\uav)zw(u\x,a):mae %7, 0= const

Cauchy and Cauchy

b) = ¢ b) = b = const
plelp, b) = @l b) = —om——r— 5 cons

Laplace and Laplace

o], b) = G(ulz,b) = —e 7, b= const

and so on.



Motivation (IV) The invariant in the case of
asymmetric distributions

In the case of Poisson and Gamma-distributions we
can also exchange the random variable and the param-
eter, preserving the same formula for the probability
distribution:

pe

flil) = fluli) ==

In this case we can use another identity to relate

the pdf of random variable and confidence density of
the parameter for the unique reconstruction of con-
fidence density (Bityukov 2000; 2002) (any another
reconstruction is inconsistent with the identity and,
correspondingly, breaks the probability conservation):

poe
q

v
OO 16 —H 142 ,u

i:x+

+ 3 =1 (8)
i=0

for any real ;11 > 0 and ©o > 0 and non-negative integer
x, 1.e.

5 Flilp) + [ F (u\x)du+2f( j2) = (9)

- —H
where f(i|u) = f(p|i) = 'ui : Confidence density
i!

f(u|i) is the pdf of Gamma-distribution ['1;+1 and 7 is
the number of observed events.




A bit of history

The basic notion of CDs traces back to the fidu-
cial distribution of Fisher (1930); however, it can be
viewed as a pure frequentist concept. Indeed, as pointed
out in Schweder (2002) the CD concept is ”Neyman-
nian interpretation of Fisher’s fiducial distribution”
[Neyman (1941)]. Its development has proceeded from
Fisher (1930) through various contributions, just to
name a few, of Kolmogorov (1941), Pitman (1957),
Efron (1993; 1998), Fraser (1991; 1996), Lehmann
(1993), Singh (2001; 2007), Schweder (2002; 2003A)
and others. Bityukov (2002; 2005) developed the ap-
proach for reconstruction of the confidence distribu-
tion densities by using the corresponding identities.

Another useful application of CD is for meta-analysis.
Meta-analysis is the modern term for combining re-
sults from different experiments or trials (see, for ex-
ample, (Hedges 1985)). The consecutive theory of
combining information from independent sources through
CD is proposed in paper (Singh 2005). Recently (Bickel
2006), the method for incorporating expert knowledge
into frequentist approach by combining generalized
confidence distributions is proposed.



Confidence distributions

Suppose X;, Xo,..., X, are n independent random
draws from a population F and y is the sample space
corresponding to the data set X, = (X, X, ..., X,)..
Let 6 be a parameter of interest associated with F (F
may contain other nuisance parameters), and let © be
the parameter space.

Definition 1 (Singh 2005): A function H,(-) = H,(X,, (+))
on y xO — [0, 1] is called a confidence distribution (CD)
for a parameter 0 if
(1) for each given X, € y, H,(-) is a continuous cumu-
lative distribution function;

(ii) at the true parameter value 0 = 0,, H,(0)) =

H,(X,,0,), as a function of the sample X, has the uni-
form distribution U(0, 1).

The function H,(-) is called an asymptotic confi-
dence distribution (aCD) if requirement (ii) above is
replaced by (ii)% at 0 = 0y, H,(X,,0,) % U(0,1) as n —
+00, and the continuity requirment on H,(-) is dropped.

Item (i) basically requires the function H,(-) to be a
distribution function for each given sample.

Item (7i) basically states that the function H,(-) con-
tains the right amount of information about the true
Bo-



Confidence distributions

/

We call, when it exists, h,(/) = H,(#) a confidence
density or CD density.

It follosg\gs from the definition of CD thagtoif 0 <
0y, H,(0) < 1— H,(0), and if 0 > 6y, 1 — H,(0) < H,(0).

sto
Here < is a stochastic comparison between two ran-

dom variables; i.e. for two random variable Y; and
Yo, i < Ya, if P(Y; < 1) > P(Yy < t) for all t. Thus a
CD works, in a sense, like a compass needle. It points
towards 6y, when placed at 0 # 6,, by assigning more
mass stochastically to that side (left or right) of ¢ that
contains ;. When placed at ¢, itself, H,(0) = H,(0) has
the uniform U0, 1] distribution and thus it is noninfor-
mative in direction.

Definition 1 is very convenient for the purpose of ver-
ifying if a particular function is a CD or an aCD.



Examples and inferential information
contained in a CD

Example 1 Normal mean and variance (Singh 2005):
Suppose X, Xs,...,X, is a sample from N(u,c?), with
both 1 and ¢? unknown. A CD for p is

y— X
H,(y)=F_ _ (——
(y) tn_l(Sn/\/ﬁ

the sample mean and variance, and F; _ (-) is a cumula-

), where X and s? are, respectively,

tive distribution function of the Student ¢,_;-distribution.

—1)g2
A CD for 0% is H,(y) = 1 — F» 1(u) for y > 0,
n— y
where Fx2_1(') is the cumulative function of the Y’ ;-

distribution.

Example 2 p-value function (Singh 2005): For any
given 0, let p,(0) = p,(X,,0) be a p-value for a one-
sided test K : 0 < 0 versus Ky:0 > d. Assume that
the p-value is available for all §. The function p,(-)
is called a p-value function. Typically, at the true
value 0 = 0y, p,(0y) as a function of X, is exactly (or
asymptotically) U(0, 1)-distributed. Also, H,(-) = p,(+)
for every fixed sample is almost always a cumulative
distribution function. Thus, usually p,(-) satisfies the
requirements for a CD.



Inference: a brief summary (Singh 2005)

e Confidence interval. From the definition, it is evi-
dent that the intervals (—oo, H, '(1—a)], [H, !(a), +00)
and (H, '(a/2), H '(1—a/2)) provide 100(1—a)%-level
confidence intervals of different kinds for 6, for any

a e (0,1).

e Point estimation. Natural choices of point estima-
tors of the parameter 6, given H,(f), include the
median M, = H. !'(1/2), the mean 0 = /_OZO tdH,(t)
and the maximum point of the CD density

/

0 = arg mazgh,(0), h,(0) = H. (6).

n

e Hypothesis testing. From a CD, one can obtain p-
values for various hypothesis testing problems. The
work (Fraser 1991) developed some results on such
a topic through p-value functions. The natural line
of thinking is to measure the support that H,(-)
lends to a null hypothesis K, : § € (. There are
possible two types of support:

1. Strong-support p,(C) = /O dH,(0).
2. Weak-support p,(C') = suppec2min(H,(0), 1—H,(0)).
If K, is of the type (—o0, 6| or [0, +00) or a union

of finitely many intervals, the strong-support p,(C)
leads to the classical p-values.

If K, is a singleton, that is, K is 6 = 0,, then the
weak-support p,(C) leads to the classical p-values.



Remarks

Confidence distributions can be viewed as “distribu-
tion estimators” and are convenient for constructing
point estimators, confidence intervals, p—values and
more.

Confidence distributions can be interpreted as ob-
jective Bayesian posteriors (Bayesian posteriors based
on objective priors) that have the desirable properties
of good coverage and invariance to transformations.
In this case, the distribution for frequentist (confi-
dence distribution) and Bayesian (posterior distribu-
tion) are the same, the uncertainty intervals: con-
fidence interval and credible interval, are the same,
and the uncertainty intervals are usually interpreted
in the same way: 95% probability that true value is
in the interval. Other methods, such as profile likeli-
hood, are not dependent on priors, but may be more
difficult to interpret.

In the one parameter model, in paper (Schweder
2002) is defined the confidence distribution notion that
summarizes a family of confidence intervals.



CDs and pivots (Schweder 2003B)

Consider the statistical model for the data X. The
model consists of a family of probability distributions
for X, indexed by the vector parameter (v, x), where
1 is a scalar parameter of primary interest, and y is a
nuisance parameter (vector).

Definition 2 : A wuniwariate data-dependent distribution
for ), with cumulative distribution function C(1; X') and with
quantile function C~'(a; X) is an exact confidence distribu-
tion if Py (v < C Y a; X)) = Py (C(4; X) < a) = a for all
a € (0,1) and for all probability distributions in the statistical

model.

By definition, the stochastic interval (oo, C~!(a; X))
covers ) with probability «, and is a one-sided con-
fidence interval method with coverage probability a.
The interval (C~'(a; X), C~1(3; X)) will for the same rea-
son cover ) with probability / — «, and is a confidence
interval method with this coverage probability. When
data have been observed as X = x, the realized nu-
merical interval (C~!'(a;xz),C(3;z)) will either cover
or not cover the unknown true value of ¢). The degree
of confidence 3 — « that is attached to the realized
interval is inherited from the coverage probability of
the stochastic interval.



CDs and pivots

The confidence distribution has the same dual prop-
erty. FEx ante data, the confidence distribution is a
stochastic entity with probabilistic properties. Ex post
data, however, the confidence distribution is a distri-
bution of confidence that can be attached to interval
statement.

The realized confidence (degree of confidence) C(1; x)
is a p—value of the one-sided hypothesis H; : v < 1
versus ¢ > 1)y when data have been observed to be
x. The ez ante confidence, C'(¢); X) is by definition uni-
formly distributed. The p—value is just a transforma-
tion of the test statistic to the common scale of the
uniform distributions (ex ante). The realized p—value
when testing the two-sided hypothesis H : {) = v, ver-

sus ¢ # Yo is 2 min{C(¢y), 1 — C(¢o)}.



CDs and pivots

Confidence distributions are easily found when piv-
ots (Barndorff 1994) can be identified.

A function of the data and the interest parameter, p(X, 1)),
is a pivot if the probability distribution of p(X, 1) is the same
for all (¢, x), and the function p(X, ) is increasing in 1 for
almost all x.

If based on a pivot with cumulative distribution
function F', the cumulative confidence distribution is
C(X,¢) = F(p(X,1)).

From the definition, a confidence distribution is ex-
act if and only if C'(X, ) ~ U is a uniformly distributed
pivot.

The self-duality in Eq. 7 is equivalent to the exis-
tence of a linear and symmetrically distributed pivot.



Applications: signal and expected
background (Bityukov 2000; 2007)

The confidence density is more informative notion
than the confidence interval. For example, the Gamma-
distribution I'; ;;; is the confidence density of the pa-
rameter of Poisson distribution in the case of the n ob-
served events from the Poisson flow of events (Bityukov
2000; 2007). It means that we can reconstruct any
confidence intervals (shortest, central, ...) by the di-
rect calculation of the pdf of a Gamma-distribution.
The following example illustrates the advantages of
the confidence density construction.

Let us consider the Poisson distribution with two
components: the signal component with a parameter
iy and background component with a parameter p,
where 1, is known. To construct confidence intervals
for the parameter i, in the case of observed value n,
we must find the distribution f(s|n).

First let us consider the simplest case n = s + b=1.
Here s is the number of signal events and b is the num-
ber of background events among the observed number
n of events.

b can be equal to 0 and 1.



Applications: signal and expected

background
We know that the b is equal to 0 with probability
A MO
po=Pb=0)= e =et (10)
and the b is equal to 1 with probability
A Ml
pr="Pb=1) =" = e, (11)
Correspondingly,
Ph=0h=1)=PlE=1a=1)= 2" and
A Po +p1
Plh=1n=1)=PlE=0a=1)=
Pot 1

It means that the distribution of the confidence den-
sity f(us/n = 1) is equal to the weighted sum of distri-
butions

P(5 = 1|0 = 1)f(psls = 1)+ P(3 = 0l = 1) f (15

5=0),(12)

where the confidence density f(;,|7 = 0) is the Gamma
distribution I'; | with the pdf f(u.]s=0) =e "

and the confidence density f(u,|n = 1) is the Gamma
distribution I';, with the pdf f(iu.]s =1) = e ",



Applications: signal and expected
background

As a result, we have the confidence density of the
parameter [

¢ A Ms + Uy
Jn=1)= e s, 13
fps ) T (13)

Using this formula for f(u,|7 = 1), we can construct
the shortest confidence interval of any confidence level
trivially.

In this manner we can construct the confidence den-
sity f(us|n) for any values of 7 and ;. From Eq. 9 we
use the confidence densities f(,us|§ =1), i = 0,n. Mixing
together the confidence densities with corresponding
conditional probability weights (in analogy with Eq.
12) yields the confidence density

Fusly = Wt ) (14

N 1

We have obtained the known formula (Helene 1988;
Zech 1989; D’Agostini 2003). The numerical results of
the calculations of shortest confidence intervals by the
using of this confidence density coincide with Bayesian
confidence intervals constructed by the using the uni-
form prior.



Aplications: quality of planned experiment
(Bityukov 2003)

Let us consider the estimation of quality of planned
experiments as another example of the use of confi-
dence density. The approach is based on the analysis
of uncertainty, which will take place under the future
hypotheses testing about the existence of a new phe-
nomenon in Nature.

We consider the Poisson distribution with param-
eter 1 and we preserve the notation pf the previous
application. We test a simple statistical hypothesis
Hy: new physics is present in Nature (i.e. (= s+ ity )
against a simple alternative hypothesis
Hy: new physics is absent (= jup)-

The value of uncertainty is determined by the val-
ues of the probability to reject the hypothesis H, when
it is true (Type I error o) and the probability to ac-
cept the hypothesis H;, when the hypothesis H; is true
(Type II error (3). This uncertainty characterizes the
distinguishability of the hypotheses under the given
choice of critical area.



Aplications: quality of planned experiment

Let both values i, and 3, which are defined in the
previous application, be exactly known. In this sim-
plest case the errors of Type I and 1I, which will take
place in testing of hypothesis H, versus hypothesis H;,
can be written as follows:

az%j@%+m%
ﬁ:l—ﬁij>

where f is a Poisson probability function and n,. is a

(15)

critical value.

Let the values [, = 5 and [, = b be known, for ex-
ample, from Monte Carlo experiment with integrated
luminosity which is exactly the same as the data lumi-
nosity later in the planned experiment. It means that
we must include the uncertainties in values u; and
to the system of the equations above.



Aplications: quality of planned experiment

As is shown in ref. (Bityukov 2002) (see, also, the
generalized case in the same reference and in my poster
here) we have the system

Cz’
a=[" ub+b§2ﬂﬂmmt Z—4ﬂﬂ—

25‘+b+z+1 ’

(16)

Z )

Ne C
B=1— [ Flulb) Zf (ilp)dp =1 — 3 =t

where n. is a critical value of the hypotheses testing
N

il(N — i)l

Note, here the Poisson distribution is a p(rior (%is—
tribution of the expected probabilities and the nega-
tive binomial (Pascal) distribution is a posterior dis-
tribution of the expected probabilities of the random
variable. This is transformation of the estimated con-
fidence densities f(u|s+b) and f(u|b) (pdfs of the cor-
responding ['—distributions) to the space of the ex-
pected values of the random variable.

about the observability of signal and CY is



Conclusion

The notion of confidence distribution, an enterely
frequentist concept, is in essence a Neymanian inter-
pretation of Fisher’s fiducial distribution. It contains
information related to every kind of frequentist in-
ference. The confidence distribution is a direct gen-
eralization of the confidence interval, and is a useful
format of presenting statistical inference.

The follow quotation from Efron(1998) on Fisher’s

contribution of the fiducial distribution seems quite
relevant in the context of CDs:
“... but here is a safe prediction for the 21st century:
statisticians will be asked to solve bigger and more
complicated problems. I believe there is a good chance
that objective Bayes methods will be developed for
such problem, and that something like fiducial infer-
ence will play an important role in this development.
Maybe Fisher’s biggest blunder will become a big hit
in the 21st centure!”
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