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MUSE: a new Integral Field Spectrograph (IFS)
Observing the universe

Instrument specifications

Mainly dedicated to the observation of distant galaxies

Wide-field IFS: high spectral and spatial resolutions ⇒ hyperspectral
observations

Spectral axis: 465 to 930nm, step 0.13nm ∼ 4000 samples

Spatial axes: 1′ × 1′ field of view ∼ 300× 300 samples

One observation: 300× 300× 4000 pixels ∼ 1.2GB

Muse will be operational in 2012 on

the VLT at Paranal, Chile
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Inside MUSE
Observation acquisition

MUSE optics

A MUSE raw observation IS NOT a data
cube u = (x , y , λ) but a set of interlaced
samples p = (s, t, k):

s ⇒ spatial dimension (∼ 4000 p.)

t ⇒ spectral dimension (∼ 4000 p.)

k ⇒ IFU (24 CCD)

Mapping & reconstruction

Mapping between (s, t, k) and
(x , y , λ) positions ⇒ pixtable

Sensor space ⇒ Model space :
reconstruction

MUSE default reconstruction: DRS
(Data Reduction Software)
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Using MUSE
Galaxy observation

Observing distant galaxies

Study of such faint galaxies requires a long exposure time ∼ 80 hours

Because of cosmic rays, an acquisition session cannot be longer than 1 hour! ⇒
80 observations of 1 hour each

80 observations = 80× 300× 300× 4000 p. = 80× 1.2GB

Quite complicated to handle and analyze... ⇒ Let’s compute the average!

Simple average: a very bad idea!

Between each acquisition, observational parameters have changed :

Atmospheric conditions: PSF and spatial shifts

Geometric fluctuations: spatial and spectral shifts

Noise, cosmic rays, bad pixels

Exposure time, sky transparency

Sampling grids

One needs an optimal fusion algorithm ⇒ Bayesian framework
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Bayesian Fusion
Main features

Specifications

Data fusion: combine the raw observations by inverting a forward model ⇒ The
knowledge of instrument design and parameters is crucial

Bayesian framework ⇒ optimal data fusion

Estimation of uncertainties on the fused image

Issues to deal with...
Resampling for the reconstruction of the observations over a common grid

Preserving astrometry and photometry

Size of the data (∼ 1.2GB/obs.) ⇒ critical issue for Bayesian approach

Set of related acquisition parameters: PSF, variances, shifts, calibration,
sampling grids... (∼ 5GB/obs.)

Compromise between computing time and accuracy



Introduction Forward Model & Band-Limiting Hyperspectral Fusion Preliminary Results and Conclusion

Outline

1 Introduction
The MUSE instrument
Bayesian fusion: why and how?

2 Forward Model & Band-Limiting
From scene to sensor (informal)
From scene to sensor (formal)
Image formation summarized

3 Hyperspectral Fusion
Bayesian inference
Energy minimization
Deconvolution
Summary

4 Preliminary Results and Conclusion
Preliminary results
Conclusion



Introduction Forward Model & Band-Limiting Hyperspectral Fusion Preliminary Results and Conclusion

Image formation
From scene to sensor

The underlying ”ground truth” T is disturbed

by :

Atmosphere

variable spatial convolution (blur operator)

Instrument & CCD sensor
variable spatial convolution

variable spectral convolution

variable spectral and spatial shifts (due to IFU)

spatial and spectral samplings

acquisition noise

missing data: dead pixels (known), cosmic rays
(unknown locations)...

And...
integration time, sensor offset, sensitivity...
(compensated by the radiometric correction)

spatial shifts of the telescope between acquisitions
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Image formation
From ground truth to observation

From T to Y i (after radiometric correction)

Y i
p = (T ? hi

ui
p
)(ui

p) + B i
p

ui
p : 3D spatial-spectral sampling grid defined by the sampling geometry (shift, orientation)

hi
ui
p
: 3D separable convolution kernel (PSF × LSF ) depending on i and ui

p

B i
p ∼ N (0, σi

p) where σi
p is a signal-dependent standard deviation

+ cosmic rays (unknown locations) and bad pixels (known locations) ⇒ setting 1
σi

p
= 0

Assumption: Y i are band-limited

Assumption: Y i are band-limited in space and wavelength and recovering the ground truth T (not

band-limited) from a set of Y i is therefore not possible!

Our target: a band-limited version of T ⇒ F = T ? ϕ

Spatial and spectral resolutions of F are finite and fixed by the 3D kernel ϕ = ϕx × ϕy × ϕλ

ϕ corresponds to the PSF of an ideal instrument (better than MUSE) but how to choose ϕ?
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Image formation
Choice of ϕ

ϕ = B-Spline function because:

Finite and small footprint ⇒ Fast implementation

Nearly band-limiting functions meaning that F is a good approximation of a band-limited signal [Unser]

Third degree (cubic) B-Splines ϕ : good compromise between accuracy and complexity

Application

Band-limiting: F = T ? ϕ

Interpolation theory :

F (z) '
X
m

Lmϕ(z − m), z ∈ R3
, m ∈ Z3

L is a discrete set of interpolation coefficients

Our target ⇒ discrete version of F :

Xp = F (p) = (L ? ϕ)(p), p ∈ Z3
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Image formation
Application

Assumption: PSFs are bandlimited

In practice, PSFs are wider than the B-Spline

The PSF can be written as a discrete sum of kernels weighted by B-Spline coefficients

Then:

Y i
p = (T ? hi

ui
p
)(ui

p) + B i
p =

X
m

Lmα
i
pm + B i

p where α
i
p = hi

ui
p
(ui

p − m)

The set αi
p encodes, for each p, PSF, geometry and sampling grids and acts like a blur kernel

αi
p is almost perfectly known from calibration

Linear forward problem: matrix notation

Yi = αi L + Bi and Bi ∼ N (0, Pi−1
) where Pi is the inverse covariance matrix of Yi

X = SL where S is the spline operator
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Image formation
Understanding rendering coefficients

α : Principle

Each Y i
p is a noisy combination of model

space parameters αi L + Bi

α : Computation

For each p and depending on Θi ⇒ a set of

αi for each Y i

Each parameter set Θi is included in αi :
PSF, samplings, calibration...

Theoretically ⇒ huge number of coefficients
(for 1 MUSE observation: 750 PB)

Thresholding (for 1 MUSE observation: still
1.2 TB)
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Image formation
Summary
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Fusion
Bayesian inference

Bayesian fusion ⇔ Maximize the a posteriori probability

P(L|{Yi}i , ω) ∝
∏

i P(Yi |L)× P(L|ω)

Bayesian inference

P(Yi |L) ⇒ Likelihood (data driven term) ⇒ Yi |L ∼ N (αi L, Pi−1
)

P(L|ω) ⇒ Prior on X = SL. For now, we use a simple first-order Markov Random Field but one could use
more realistic priors (sparse, astronomical objects)

Fusion: infer L̂ from the set {Yi ,αi} then X̂ = SL

Minimize the energy function U(L) = −log
“
P(L|{Yi}i , ω)

”
Conjugate gradient algorithm (iterative minimization)
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Fusion
Deterministic, gradient-based energy minimization

∇LU(L) =

 X
i

αi TPiαi

!
| {z }



L−
X

i

αi TPiYi

| {z }
¬

+2ωQL

Dealing with large datasets

Solving ∇LU(L) = 0 ⇔ Evaluation of sums ¬ and  for each iteration ⇒ time consuming!

Implementation: pre-compute ¬ and re-compute  to avoid storage issues

¬ Drizzling-like term

Λf =
X

i

α
i T Pi Yi

Applying Pi ⇒ Inverse variance weighting

Applying αi T ⇒ Shift cancellation and re-blurring to form a geometrically consistent result
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Fusion
Energy minimization

∇LU(L) =

 X
i

αi TPiαi

!
| {z }



L−
X

i

αi TPiYi

| {z }
¬

+2ωQL

Dealing with large datasets

Solving ∇LU(L) = 0 ⇔ Evaluation of sums ¬ and  for each iteration ⇒ time consuming!

Implementation: pre-compute ¬ and re-compute  to avoid storage issues

 Data precision matrix Λf

α
f =

X
i

α
i T Pi

α
i

Computation of αf is highly time consuming and mainly depends on the size of the PSF

Size of αf is higher than the size of each αi
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Deconvolution
Estimation of X̂ and uncertainties

Minimization of U(L)

Conjugate gradient

Fixed ω (weight of the prior): estimation from complete data or ideal image. Automatic estimation may be
highly time-consuming due to the size of the data (under investigation)

After convergence, we get X̂ = SL̂

Estimation of uncertainties on X̂: precision matrix ΣX

Approximation: posterior distribution of X is a multivariate Gaussian: X|{Yi}i , ω ∼ N (µX, ΣX)

Inverse covariance matrix Σ−1
X ⇒ Second derivatives of the log-pdf at the optimum ⇒ ∇2

XU(X)

With L = S−1X :

Σ−1
X = S−1T

α
f S−1 + 2ωS−1T

QS−1
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Uncertainties
Use of uncertainties

More about Σ−1
X

Large sparse matrix: closely related to αf

Same storage as αf : list of non-zero values

The inverse covariance matrix is computed after the deconvolution

Use of Σ−1
X for further investigations: denoising, new fusion...

More about ΣX

Require the inversion of the large matrix Σ−1
X

Can be performed for the neighborhood of the desired pixel i using a conjugate gradient algorithm

One can only focus on variances and nearest neighboor covariances

Additional information can be found in [Jalobeanu, Gutierrez]
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Fusion pipeline
Fusion diagram
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Preliminary results
Results ]1

Simulated data using simple astronomical objects

For the moment, we do not have access to real data, but accurate simulations of the MUSE instrument will
be available in a few weeks

We have developed a little ”toy model” allowing us to simulate raw astronomical observations with variable
parameters (spatial and spectral shifts, variable PSF, noise, IFU number...) containing simple gaussian
objects (stars and galaxies)

Dataset
The ground truth T is composed of 4 objects : two stars (spatial dirac with a spectrum composed of a
gaussian/dirac mixture) and two galaxies (gaussian spatial profile with a spectrum composed of a
gaussian/dirac mixture)

Four 32× 32× 32 observations with different PSF, variable spatial shifts, constant noise :
] PSFλ0

PSFλn LSFλ0
LSFλn Spatial shifts (x, y) SNR (Star, Galaxy, Total)

1 1.4 1.96 1.8 1.9 (0, 0) (57, 38, 44)
2 1.6 2.24 1.4 1.46 (1.2, 1.4) (56, 38, 43)
3 1.4 1.96 1.4 1.46 (0.4, 0.5) (57, 38, 44)
4 1.7 2.38 1.7 1.8 (0.2, 0.3) (55, 38, 43)
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Results ]1
Band 1

Introduction Forward Model Hyperspectral Fusion Preliminary Results and Conclusion

Results !1
Band 1

(a) X (b) Y 1 (c) Y 2

(d) Bayesian fusion (e) Linear interp. (f) B-Spline interp.
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Results ]1
Band 13
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Results !1
Band 13

(a) X (b) Y 1 (c) Y 2

(d) Bayesian fusion (e) Linear interp. (f) B-Spline interp.
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Results ]1
Band 32
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Results !1
Band 32

(a) X (b) Y 1 (c) Y 2

(d) Bayesian fusion (e) Linear interp. (f) B-Spline interp.
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Results ]1
Star profiles. black : band 1. gray : band 13. light gray : band 32Introduction Forward Model Hyperspectral Fusion Preliminary Results and Conclusion

Results !1
Star profiles. black : band 1. gray : band 13. light gray : band 32

(a) X (b) Y 1 (c) Y 2

(d) Bayesian fusion (e) Linear interp. (f) B-Spline interp.
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Results ]1
Galaxy profiles. black : band 1. gray : band 13. light gray : band 32
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Results !1
Galaxy profiles. black : band 1. gray : band 13. light gray : band 32

(a) X (b) Y 1 (c) Y 2

(d) Bayesian fusion (e) Linear interp. (f) B-Spline interp.
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Results ]1
Star spectraIntroduction Forward Model Hyperspectral Fusion Preliminary Results and Conclusion

Results !1
Star spectra

(a) X (b) Y 1 (c) Y 2

(d) Bayesian fusion (e) Linear interp. (f) B-Spline interp.
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Results ]1
Galaxy spectraIntroduction Forward Model Hyperspectral Fusion Preliminary Results and Conclusion

Results !1
Galaxy spectra

(a) X (b) Y 1 (c) Y 2

(d) Bayesian fusion (e) Linear interp. (f) B-Spline interp.
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Results ]1
Covariances : band 16

Introduction Forward Model Hyperspectral Fusion Preliminary Results and Conclusion

Results !1
Covariances : band 16

(a) Var. (b) Covar. : right neighbors

(d) Covar. : bottom neighbors (e) Covar. : front neighbors
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Results ]1
Covariances : spectrum at (16, 16)Introduction Forward Model Hyperspectral Fusion Preliminary Results and Conclusion

Results !1
Covariances : spectrum at (16, 16)

(a) Var. (b) Covar. : right neighbors
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Conclusion and perspectives

Conclusion

Fusion and reconstruction of complex hyperspectral observations (with various
PSF, shifts...) within a rigorous Bayesian framework

Uncertainty computation using a deterministic approach

Management of large datasets (raw data and parameters)

Ability to deal with additional observations

Perspectives

Implementation of a 2-step detection of cosmic rays

”Play” with the simulations: add observations, spectral shifts, higher noise,
larger blur size and check the robustness of the method

Development of the pipeline for real observations (scaling)

Visualization of the variances

Improve the prior on X
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