Bayesian fusion of hyperspectral astronomical images

A. Jalobeanu¹, M. Petremand², C. Collet²

¹ CGE, University of Evora, Portugal
 ² LSIIT UMR CNRS 7005, University of Strasbourg, France

DAHLIA project (ANR-08-BLAN-0253)

MaxEnt 2010

・ロト ・御ト ・ヨト ・ヨト

-2

Introduction	
0000	

Forward Model & Band-Limiting 000000

Hyperspectral Fusion

Preliminary Results and Conclusion

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Outline

- Introduction
 - The MUSE instrument
 - Bayesian fusion: why and how?
- Porward Model & Band-Limiting
 - From scene to sensor (informal)
 - From scene to sensor (formal)
 - Image formation summarized
- 3 Hyperspectral Fusion
 - Bayesian inference
 - Energy minimization
 - Deconvolution
 - Summary
- Preliminary Results and Conclusion
 - Preliminary results
 - Conclusion

Introduction	
0000	

Forward Model & Band-Limiting 000000

Hyperspectral Fusion

Preliminary Results and Conclusion

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Outline

Introduction

- The MUSE instrument
- Bayesian fusion: why and how?
- Porward Model & Band-Limiting
 - From scene to sensor (informal)
 - From scene to sensor (formal)
 - Image formation summarized
- 3 Hyperspectral Fusion
 - Bayesian inference
 - Energy minimization
 - Deconvolution
 - Summary
- 4 Preliminary Results and Conclusion
 - Preliminary results
 - Conclusion

Forward Model & Band-Limiting 000000

Hyperspectral Fusion

Preliminary Results and Conclusion

MUSE: a new Integral Field Spectrograph (IFS)

Observing the universe

Instrument specifications

- Mainly dedicated to the observation of distant galaxies
- Wide-field IFS: high spectral and spatial resolutions ⇒ hyperspectral observations
- Spectral axis: 465 to 930nm, step 0.13nm \sim 4000 samples
- Spatial axes: $1'\times1'$ field of view \sim 300 \times 300 samples
- One observation: $300 \times 300 \times 4000$ pixels ~ 1.2 GB

Muse will be operational in 2012 on the VLT at Paranal, Chile

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Forward Model & Band-Limiting 000000

Inside MUSE Observation acquisition Hyperspectral Fusion

Preliminary Results and Conclusion

MUSE optics

A MUSE raw observation IS NOT a data cube $u = (x, y, \lambda)$ but a set of interlaced samples p = (s, t, k):

- $s \Rightarrow$ spatial dimension ($\sim 4000 \text{ p.}$)
- $t \Rightarrow$ spectral dimension ($\sim 4000 \text{ p.}$)
- $k \Rightarrow \mathsf{IFU} (24 \text{ CCD})$

Mapping & reconstruction

- Mapping between (s, t, k) and (x, y, λ) positions \Rightarrow pixtable
- Sensor space ⇒ Model space : reconstruction
- MUSE default reconstruction: DRS (Data Reduction Software)

Introduction ○○●○	Forward Model & Band-Limiting	Hyperspectral Fusion	Preliminary Results and Conclusion
Using MU	JSE		

Observing distant galaxies

- Study of such faint galaxies requires a long exposure time \sim 80 hours
- $\bullet\,$ Because of cosmic rays, an acquisition session cannot be longer than 1 hour! $\Rightarrow\,$ 80 observations of 1 hour each
- 80 observations = $80 \times 300 \times 300 \times 4000$ p. = 80×1.2 GB
- Quite complicated to handle and analyze... ⇒ Let's compute the average!

Simple average: a very bad idea!

Between each acquisition, observational parameters have changed :

- Atmospheric conditions: PSF and spatial shifts
- Geometric fluctuations: spatial and spectral shifts
- Noise, cosmic rays, bad pixels
- Exposure time, sky transparency
- Sampling grids

One needs an optimal fusion algorithm \Rightarrow Bayesian framework

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

ntroduction	Forward Model	&	Band-Limit
000	000000		

Hyperspectral Fusion

Preliminary Results and Conclusion

Specifications

Bayesian Fusion

Main features

● Data fusion: combine the raw observations by inverting a forward model ⇒ The knowledge of instrument design and parameters is crucial

- Bayesian framework \Rightarrow optimal data fusion
- Estimation of uncertainties on the fused image

Issues to deal with...

- Resampling for the reconstruction of the observations over a common grid
- Preserving astrometry and photometry
- Size of the data ($\sim 1.2 {\rm GB/obs.})$ \Rightarrow critical issue for Bayesian approach
- Set of related acquisition parameters: PSF, variances, shifts, calibration, sampling grids... (~ 5GB/obs.)
- Compromise between computing time and accuracy

Forward Model & Band-Limiting

Hyperspectral Fusion 000000

Preliminary Results and Conclusion

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Outline

- Introduction
 - The MUSE instrument
 - Bayesian fusion: why and how?
- Porward Model & Band-Limiting
 - From scene to sensor (informal)
 - From scene to sensor (formal)
 - Image formation summarized
- 3 Hyperspectral Fusion
 - Bayesian inference
 - Energy minimization
 - Deconvolution
 - Summary
- 4 Preliminary Results and Conclusion
 - Preliminary results
 - Conclusion

Forward Model & Band-Limiting

Hyperspectral Fusion 000000

Preliminary Results and Conclusion

Image formation From scene to sensor

The underlying "ground truth" T is disturbed

by :

Atmosphere

variable spatial convolution (blur operator)

Instrument & CCD sensor

- variable spatial convolution
- variable spectral convolution
- variable spectral and spatial shifts (due to IFU)
- spatial and spectral samplings
- acquisition noise
- missing data: dead pixels (known), cosmic rays (unknown locations)...

And..

- integration time, sensor offset, sensitivity... (compensated by the radiometric correction)
- spatial shifts of the telescope between acquisitions

Introduction	Forward Model & Band-Limiting
0000	00000

Hyperspectral Fusion

Preliminary Results and Conclusion

Image formation From ground truth to observation

From T to Y^i (after radiometric correction)

$$Y_p^i = (T \star h_{u_p^i}^i)(u_p^i) + B_p^i$$

- u_{ρ}^{i} : 3D spatial-spectral sampling grid defined by the sampling geometry (shift, orientation)
- $h_{u_p^i}^i$: 3D separable convolution kernel (*PSF* × *LSF*) depending on *i* and u_p^i
- $B_p^i \sim \mathcal{N}(0, \sigma_p^i)$ where σ_p^i is a signal-dependent standard deviation
- + cosmic rays (unknown locations) and bad pixels (known locations) \Rightarrow setting $\frac{1}{\sigma^i} = 0$

Assumption: Y^i are band-limited

- Assumption: Yⁱ are band-limited in space and wavelength and recovering the ground truth T (not band-limited) from a set of Yⁱ is therefore not possible!
- Our target: a band-limited version of $T \Rightarrow F = T \star \varphi$
- Spatial and spectral resolutions of F are finite and fixed by the 3D kernel $\varphi = \varphi_x \times \varphi_y \times \varphi_\lambda$
- φ corresponds to the PSF of an ideal instrument (better than MUSE) but how to choose φ ?

Introduction	Forward Model & Band-Limitin
0000	00000

Image formation

Choice of φ

Hyperspectral Fusion

Preliminary Results and Conclusion

$\varphi = B$ -Spline function because:

- Finite and small footprint ⇒ Fast implementation
- Nearly band-limiting functions meaning that F is a good approximation of a band-limited signal [Unser]
- Third degree (cubic) B-Splines φ : good compromise between accuracy and complexity

Application

- Band-limiting: $F = T \star \varphi$
- Interpolation theory :

$$F(z) \simeq \sum_{m} L_{m} \varphi(z-m), z \in \mathbb{R}^{3}, m \in \mathbb{Z}^{3}$$

- L is a discrete set of interpolation coefficients
- Our target ⇒ discrete version of F :

 $X_p = F(p) = (L \star \varphi)(p), p \in \mathbb{Z}^3$

Forward Model & Band-Limitin
000000

Hyperspectral Fusion 000000

Preliminary Results and Conclusion

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Image formation Application

Assumption: PSFs are bandlimited

In practice, PSFs are wider than the B-Spline

The PSF can be written as a discrete sum of kernels weighted by B-Spline coefficients

Then:

$$Y_{p}^{i} = (T \star h_{u_{p}^{i}}^{i})(u_{p}^{i}) + B_{p}^{i} = \sum_{m} L_{m} \alpha_{pm}^{i} + B_{p}^{i} \text{ where } \alpha_{p}^{i} = h_{u_{p}^{i}}^{i}(u_{p}^{i} - m)$$

• The set α_p^i encodes, for each p, PSF, geometry and sampling grids and acts like a blur kernel

• α_{p}^{i} is almost perfectly known from calibration

Linear forward problem: matrix notation

- $\mathbf{Y}^{i} = \boldsymbol{\alpha}^{i} \mathbf{L} + \mathbf{B}^{i}$ and $\mathbf{B}^{i} \sim \mathcal{N}(0, \mathbf{P}^{i-1})$ where \mathbf{P}^{i} is the inverse covariance matrix of \mathbf{Y}^{i}
- X = SL where S is the spline operator

Forward Model & Band-Limiting

Hyperspectral Fusion

Preliminary Results and Conclusion

Image formation Understanding rendering coefficients

α : Principle

 Each Yⁱ_p is a noisy combination of model space parameters αⁱL + Bⁱ

α : Computation

- For each p and depending on Θⁱ ⇒ a set of αⁱ for each Yⁱ
- Each parameter set Θⁱ is included in αⁱ: PSF, samplings, calibration...
- Theoretically ⇒ huge number of coefficients (for 1 MUSE observation: 750 PB)
- Thresholding (for 1 MUSE observation: still 1.2 TB)

Forward Model & Band-Limiting

Hyperspectral Fusion

Preliminary Results and Conclusion

Image formation Summary

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

Forward Model & Band-Limiting 000000

Hyperspectral Fusion

Preliminary Results and Conclusion

Outline

- Introduction
 - The MUSE instrument
 - Bayesian fusion: why and how?
- Porward Model & Band-Limiting
 - From scene to sensor (informal)
 - From scene to sensor (formal)
 - Image formation summarized
- 3 Hyperspectral Fusion
 - Bayesian inference
 - Energy minimization
 - Deconvolution
 - Summary
- Preliminary Results and Conclusion
 - Preliminary results
 - Conclusion

Introduction 0000	Forward Model & Band-Limiting	Hyperspectral Fusion	Preliminary Results and Conclusion
Fusion Bayesian inference			

Bayesian fusion \Leftrightarrow Maximize the *a posteriori* probability

$P(\mathbf{L}|{\mathbf{Y}^{i}}_{i},\omega) \propto \prod_{i} P(\mathbf{Y}^{i}|\mathbf{L}) \times P(\mathbf{L}|\omega)$

Bayesian inference

- $P(\mathbf{Y}^{i}|\mathbf{L}) \Rightarrow \text{Likelihood (data driven term)} \Rightarrow \mathbf{Y}^{i}|\mathbf{L} \sim \mathcal{N}(\boldsymbol{\alpha}^{i}\mathbf{L}, \mathbf{P}^{i-1})$
- P(L|ω) ⇒ Prior on X = SL. For now, we use a simple first-order Markov Random Field but one could use more realistic priors (sparse, astronomical objects)

Fusion: infer $\hat{\mathbf{L}}$ from the set { $\mathbf{Y}^{i}, \boldsymbol{\alpha}^{i}$ } then $\hat{\mathbf{X}} = \mathbf{SL}$

- Minimize the energy function $U(\mathbf{L}) = -\log\left(P(\mathbf{L}|\{\mathbf{Y}^i\}_i,\omega)\right)$
- Conjugate gradient algorithm (iterative minimization)

Introduction	
0000	

Forward Model & Band-Limiting 000000

Hyperspectral Fusion

Preliminary Results and Conclusion

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Fusion Deterministic, gradient-based energy minimization

$$\nabla_{\mathsf{L}} U(\mathsf{L}) = \underbrace{\left(\sum_{i} \alpha^{i^{T}} \mathsf{P}^{i} \alpha^{i}\right)}_{\textcircled{2}} \mathsf{L} - \underbrace{\sum_{i} \alpha^{i^{T}} \mathsf{P}^{i} \mathsf{Y}^{i}}_{\textcircled{1}} + 2\omega \mathsf{Q} \mathsf{L}$$

Dealing with large datasets

- Solving $\nabla_{\mathbf{L}} U(\mathbf{L}) = \mathbf{0} \Leftrightarrow$ Evaluation of sums \mathbb{D} and \mathbb{Q} for each iteration \Rightarrow time consuming!
- Implementation: pre-compute ① and re-compute ② to avoid storage issues

① Drizzling-like term

$$\mathbf{\Lambda}^{f} = \sum_{i} \boldsymbol{\alpha}^{i \, T} \mathbf{P}^{i} \mathbf{Y}^{i}$$

- Applying $\mathbf{P}^i \Rightarrow$ Inverse variance weighting
- Applying $\alpha^{iT} \Rightarrow$ Shift cancellation and re-blurring to form a geometrically consistent result

Introduction 0000	Forward Model & Band-Limiting	Hyperspectral Fusion	Preliminary Results and Conclusion
Fusion	nization		

$$\nabla_{\mathsf{L}} U(\mathsf{L}) = \underbrace{\left(\sum_{i} \alpha^{i^{T}} \mathsf{P}^{i} \alpha^{i}\right)}_{\textcircled{2}} \mathsf{L} - \underbrace{\sum_{i} \alpha^{i^{T}} \mathsf{P}^{i} \mathsf{Y}^{i}}_{\textcircled{1}} + 2\omega \mathsf{Q} \mathsf{L}$$

Dealing with large datasets

- Solving $\nabla_{\mathbf{L}} U(\mathbf{L}) = 0 \Leftrightarrow$ Evaluation of sums (1) and (2) for each iteration \Rightarrow time consuming!
- Implementation: pre-compute ① and re-compute ② to avoid storage issues

⁽²⁾ Data precision matrix $\mathbf{\Lambda}^{f}$

$$\boldsymbol{\alpha}^{f} = \sum_{i} \boldsymbol{\alpha}^{i \, T} \mathbf{P}^{i} \boldsymbol{\alpha}^{i}$$

• Computation of α^{f} is highly time consuming and mainly depends on the size of the PSF

• Size of α^{f} is higher than the size of each α^{i}

Forward Model & Band-Limiting 000000

Hyperspectral Fusion

Preliminary Results and Conclusion

Deconvolution Estimation of $\hat{\mathbf{X}}$ and uncertainties

Minimization of $U(\mathbf{L})$

Conjugate gradient

- Fixed \u03c6 (weight of the prior): estimation from complete data or ideal image. Automatic estimation may be highly time-consuming due to the size of the data (under investigation)
- After convergence, we get $\hat{X} = S\hat{L}$

Estimation of uncertainties on \hat{X} : precision matrix Σ_X

- Approximation: posterior distribution of X is a multivariate Gaussian: $X|{Y^i}_i, \omega \sim \mathcal{N}(\mu_X, \Sigma_X)$
- Inverse covariance matrix $\Sigma_{\mathbf{X}}^{-1} \Rightarrow$ Second derivatives of the log-pdf at the optimum $\Rightarrow \nabla_{\mathbf{X}}^2 U(\mathbf{X})$
- With L = S⁻¹X :

$$\boldsymbol{\Sigma}_{\boldsymbol{\mathsf{X}}}^{-1} = \boldsymbol{\mathsf{S}}^{-1}{}^{\mathcal{T}}\boldsymbol{\alpha}^{f}\boldsymbol{\mathsf{S}}^{-1} + 2\boldsymbol{\omega}\boldsymbol{\mathsf{S}}^{-1}{}^{\mathcal{T}}\boldsymbol{\mathsf{Q}}\boldsymbol{\mathsf{S}}^{-1}$$

▲ロト ▲母 ト ▲目 ト ▲目 ト → 目 → のへで

Introduction	
0000	

Forward Model & Band-Limiting 000000

Hyperspectral Fusion

Preliminary Results and Conclusion

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Uncertainties Use of uncertainties

More about Σ_{x}^{-1}

- Large sparse matrix: closely related to α^{f}
- Same storage as α^f: list of non-zero values
- The inverse covariance matrix is computed after the deconvolution
- Use of Σ_X^{-1} for further investigations: denoising, new fusion...

More about Σ_X

- Require the inversion of the large matrix Σ_{X}^{-1}
- Can be performed for the neighborhood of the desired pixel *i* using a conjugate gradient algorithm
- One can only focus on variances and nearest neighboor covariances
- Additional information can be found in [Jalobeanu, Gutierrez]

Introduction	Forward Model & Band-Limiting
0000	000000

Hyperspectral Fusion

Preliminary Results and Conclusion

Fusion pipeline Fusion diagram

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Introduction	
0000	

Forward Model & Band-Limiting 000000

Hyperspectral Fusion

Preliminary Results and Conclusion

Outline

- Introduction
 - The MUSE instrument
 - Bayesian fusion: why and how?
- Porward Model & Band-Limiting
 - From scene to sensor (informal)
 - From scene to sensor (formal)
 - Image formation summarized
- 3 Hyperspectral Fusion
 - Bayesian inference
 - Energy minimization
 - Deconvolution
 - Summary
- Preliminary Results and Conclusion
 - Preliminary results
 - Conclusion

Forward Model & Band-Limiting 000000

Hyperspectral Fusion

Preliminary Results and Conclusion

Preliminary results Results #1

Simulated data using simple astronomical objects

- For the moment, we do not have access to real data, but accurate simulations of the MUSE instrument will be available in a few weeks
- We have developed a little "toy model" allowing us to simulate raw astronomical observations with variable parameters (spatial and spectral shifts, variable PSF, noise, IFU number...) containing simple gaussian objects (stars and galaxies)

Dataset

- The ground truth T is composed of 4 objects : two stars (spatial dirac with a spectrum composed of a
 gaussian/dirac mixture) and two galaxies (gaussian spatial profile with a spectrum composed of a
 gaussian/dirac mixture)
- Four 32 × 32 × 32 observations with different PSF, variable spatial shifts, constant noise :

#	PSF_{λ_0}	PSF_{λ_n}	LSF_{λ_0}	LSF_{λ_n}	Spatial shifts (x, y)	SNR (Star, Galaxy, Total)
1	1.4	1.96	1.8	1.9	(0, 0)	(57, 38, 44)
2	1.6	2.24	1.4	1.46	(1.2, 1.4)	(56, 38, 43)
3	1.4	1.96	1.4	1.46	(0.4, 0.5)	(57, 38, 44)
4	1.7	2.38	1.7	1.8	(0.2, 0.3)	(55, 38, 43)

Introduction 0000	Forward Model & Band-Limiting	Hyperspectral Fusion	Preliminary Results and Conclusion
Results #1 Band 1	L		

æ

Introduction 0000	Forward Model & Band-Limiting	Hyperspectral Fusion	Preliminary Results and Conclusion
Results #1 Band 13	L		

æ æ

Introduction 0000	Forward Model & Band-Limiting	Hyperspectral Fusion	Preliminary Results and Conclusion
Results #1 Band 32	L		

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注: のへで

Introduction 0000	Forward Model & Band-Limiting	Hyperspectral Fusion	Preliminary Results and Conclusion
Results #	1 black · band 1 gray · band	13 light grav · han	d 32

◆□ → ◆□ → ◆三 → ◆□ → ◆□ →

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Introduction 0000	Forward Model & Band-Limiting	Hyperspectral Fusion	Preliminary Results and Conclusion
Results #3 Star spectra	1		

・ロト・(四ト・(日下・(日下・))

Introduction 0000	Forward Model & Band-Limiting	Hyperspectral Fusion	Preliminary Results and Conclusion
Results # Galaxy spectra	1		

◆□◆ ▲□◆ ▲目◆ ▲目◆ ▲□◆

Introduction 0000	Forward Model & Band-Limiting	Hyperspectral Fusion	P o
Results	±1		

Covariances : band 16

Preliminary Results and Conclusion

Forward Model & Band-Limiting 000000

Hyperspectral Fusion 000000

Preliminary Results and Conclusion

Results #1 Covariances : spectrum at (16, 16)

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Introduction	
0000	

Forward Model & Band-Limiting 000000

Hyperspectral Fusion 000000

Preliminary Results and Conclusion

Conclusion and perspectives

Conclusion

- Fusion and reconstruction of complex hyperspectral observations (with various PSF, shifts...) within a rigorous Bayesian framework
- Uncertainty computation using a deterministic approach
- Management of large datasets (raw data and parameters)
- Ability to deal with additional observations

Perspectives

- Implementation of a 2-step detection of cosmic rays
- "Play" with the simulations: add observations, spectral shifts, higher noise, larger blur size and check the robustness of the method
- Development of the pipeline for real observations (scaling)
- Visualization of the variances
- Improve the prior on X