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MUSE: a new Integral Field Spectrograph (IFS)

Observing the universe

Instrument specifications

@ Mainly dedicated to the observation of distant galaxies

@ Wide-field IFS: high spectral and spatial resolutions = hyperspectral
observations

@ Spectral axis: 465 to 930nm, step 0.13nm ~ 4000 samples

Spatial axes: 1’ x 1’ field of view ~ 300 x 300 samples
@ One observation: 300 x 300 x 4000 pixels ~ 1.2GB

Muse will be operational in 2012 on

the VLT at Paranal, Chile
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Inside MUSE

Observation acquisition

MUSE optics

A MUSE raw observation IS NOT a data
cube u = (x, y,A) but a set of interlaced
samples p = (s, t, k):

ex

@ s = spatial dimension (~ 4000 p.)
@ t = spectral dimension (~ 4000 p.)
@ k= IFU (24 CCD)

Mapping & reconstruction

@ Mapping between (s, t, k) and
(x,y,\) positions = pixtable

rex

@ Sensor space = Model space :
reconstruction

@ MUSE default reconstruction: DRS
(Data Reduction Software)
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Using MUSE

Galaxy observation

Observing distant galaxies

@ Study of such faint galaxies requires a long exposure time ~ 80 hours

@ Because of cosmic rays, an acquisition session cannot be longer than 1 hour! =
80 observations of 1 hour each

@ 380 observations = 80 x 300 x 300 x 4000 p. = 80 x 1.2GB

@ Quite complicated to handle and analyze... = Let's compute the average!

Simple average: a very bad ideal

Between each acquisition, observational parameters have changed :
@ Atmospheric conditions: PSF and spatial shifts

Geometric fluctuations: spatial and spectral shifts

Noise, cosmic rays, bad pixels

Exposure time, sky transparency

Sampling grids

One needs an optimal fusion algorithm = Bayesian framework
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Bayesian Fusion

Main features

Specifications

Data fusion: combine the raw observations by inverting a forward model = The
knowledge of instrument design and parameters is crucial

Bayesian framework =- optimal data fusion

Estimation of uncertainties on the fused image

Issues to deal with...

Resampling for the reconstruction of the observations over a common grid
Preserving astrometry and photometry
Size of the data (~ 1.2GB/obs.) => critical issue for Bayesian approach

Set of related acquisition parameters: PSF, variances, shifts, calibration,
sampling grids... (~ 5GB/obs.)

Compromise between computing time and accuracy
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Image formation

From scene to sensor

The underlying "ground truth” T is disturbed

by :
Atmosphere
@ variable spatial convolution (blur operator)
v
Instrument & CCD sensor
@ variable spatial convolution
@ variable spectral convolution
@ variable spectral and spatial shifts (due to IFU)
@ spatial and spectral samplings
@ acquisition noise
@ missing data: dead pixels (known), cosmic rays
(unknown locations)...
o

And...

(] integration time, sensor offset, sensitivity...
(compensated by the radiometric correction)

@ spatial shifts of the telescope between acquisitions

Preliminary Results and Conclusion
00000000000
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Image formation

From ground truth to observation

From T to Y' (after radiometric correction)
i i il i
Y, = (T x hu;’)(up) + B,
u;,: 3D spatial-spectral sampling grid defined by the sampling geometry (shift, orientation)
hil» : 3D separable convolution kernel (PSF X LSF) depending on i and u,iJ
u
P

Bll; ~ N(0, o;,) where o-l'; is a signal-dependent standard deviation

+ cosmic rays (unknown locations) and bad pixels (known locations) = setting % =40
s
P

Assumption: Y' are band-limited

@ Assumption: Y’ are band-limited in space and wavelength and recovering the ground truth T (not
band-limited) from a set of Y' is therefore not possible!

@ Our target: a band-limited version of T = F = T % ¢
@ Spatial and spectral resolutions of F are finite and fixed by the 3D kernel ¢ = @y X Py X P

@ ¢ corresponds to the PSF of an ideal instrument (better than MUSE) but how to choose (?
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Image formation
Choice of ¢

¢ = B-Spline function because:

@ Finite and small footprint = Fast implementation
@ Nearly band-limiting functions meaning that F is a good approximation of a band-limited signal [Unser]

@ Third degree (cubic) B-Splines ¢ : good compromise between accuracy and complexity

Application

@ Band-limiting: F =T x ¢
@ Interpolation theory :

F(z) ~ Z Lmp(z —m),z € R3, me 1z’
m

L is a discrete set of interpolation coefficients

Our target = discrete version of F :

Target PSF (B-Spline 3)

Xp = F(p) = (L* ¢)(p), p € Z*
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Image formation
Application

Assumption: PSFs are bandlimited

@ In practice, PSFs are wider than the B-Spline
@ The PSF can be written as a discrete sum of kernels weighted by B-Spline coefficients
@ Then:

Y/; = (T x h:,;»])(u;,) + B;J = Z Lma;m + B;7 where a,'J = h;z)(u;J —m)
m

@ The set a; encodes, for each p, PSF, geometry and sampling grids and acts like a blur kernel

(*] a; is almost perfectly known from calibration

Linear forward problem: matrix notation

@ Y —a'L+B and B ~ N(0, P"il) where P’ is the inverse covariance matrix of Y/

@ X = SL where S is the spline operator
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Image formation

Understanding rendering coefficients

s, « : Principle

@ Each Y,i is a noisy combination of model

space parameters oL + B’

<
{
1 .
y1 « : Computation
% /A\k % H % o For each p and depending on ©' = a set of
:H::Il P 9 o3 a' for each Y'
Ljpes 98! @ Each parameter set ©' is included in o'
90 9 99! PSF, samplings, calibration...
5 008! A @ Theoretically = huge number of coefficients
Y — = " (for 1 MUSE observation: 750 PB)
@ Thresholding (for 1 MUSE observation: still
1.2 TB)

y3
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Image formation
Summary

observations|

Yi
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Fusion

Bayesian inference

Bayesian fusion < Maximize the a posteriori probability

P(LI{Y}i w) oc [T; P(Y'|L) x P(L|w)

Bayesian inference

@ P(Y'|L) = Likelihood (data driven term) = Y'|L ~ N(a'L, pi_l)
@ P(L|w) = Prior on X = SL. For now, we use a simple first-order Markov Random Field but one could use

more realistic priors (sparse, astronomical objects)
o

Fusion: infer L from the set {Y’, &/} then X = SL

@ Minimize the energy function U(L) = —log (P(L\ {Y'};, w))

@ Conjugate gradient algorithm (iterative minimization)
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Fusion

Deterministic, gradient-based energy minimization

V) = (Y o P LY o PY r2uqL

® )

Dealing with large datasets

@ Solving V| U(L) = 0 < Evaluation of sums @ and @ for each iteration = time consuming!

@ Implementation: pre-compute @ and re-compute @ to avoid storage issues

@ Drizzling-like term

Af = > o Tpiyi
i

@ Applying P/ = Inverse variance weighting

@ Applying &' * = Shift cancellation and re-blurring to form a geometrically consistent result
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Fusion

Energy minimization

VL) = (Yo Pla | L-Y o' PY r2uqL

@ @

Dealing with large datasets

@ Solving V| U(L) = 0 < Evaluation of sums @ and @ for each iteration = time consuming!

@ Implementation: pre-compute @ and re-compute @ to avoid storage issues

® Data precision matrix Af

ST A F
af:Zal Pl
i

@ Computation of afis highly time consuming and mainly depends on the size of the PSF

@ Sizeofa' is higher than the size of each o
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Deconvolution

Estimation of X and uncertainties

Minimization of U(L)

@ Conjugate gradient

@ Fixed w (weight of the prior): estimation from complete data or ideal image. Automatic estimation may be
highly time-consuming due to the size of the data (under investigation)

@ After convergence, we get X =Si

Estimation of uncertainties on X: precision matrix Xx
@ Approximation: posterior distribution of X is a multivariate Gaussian: X|{Yi};, w ~ N(px, Zx)
@ Inverse covariance matrix 2;1 = Second derivatives of the log-pdf at the optimum =- Vi U(X)

@ WithL=5"1x: , .
5l=safs7 yowsT as !
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Uncertainties

Use of uncertainties

More about Z;(l

@ Large sparse matrix: closely related to of

@ Same storage as o list of non-zero values
@ The inverse covariance matrix is computed after the deconvolution
o

Use of Z;l for further investigations: denoising, new fusion...

More about Xx

@ Require the inversion of the large matrix Z;l

Can be performed for the neighborhood of the desired pixel / using a conjugate gradient algorithm

One can only focus on variances and nearest neighboor covariances

Additional information can be found in [Jalobeanu, Gutierrez]
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Fusion pipeline

Fusion diagram

{vi e,
Computation of {a'}; Normalized {A'} First cosmic ray
render coefficients Drizzling detection
x'i’rq t’lf
Deconv@—w
L

+ Comvolution Je—{a'};
{I'}:

Second cosmic ray i
detection {Y }‘

{Pl}i

o),

Drizzling + sum
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Preliminary results
Results #1

Simulated data using simple astronomical objects

@ For the moment, we do not have access to real data, but accurate simulations of the MUSE instrument will
be available in a few weeks

@ We have developed a little "toy model” allowing us to simulate raw astronomical observations with variable
parameters (spatial and spectral shifts, variable PSF, noise, IFU number...) containing simple gaussian
objects (stars and galaxies)

Dataset

@ The ground truth T is composed of 4 objects : two stars (spatial dirac with a spectrum composed of a
gaussian/dirac mixture) and two galaxies (gaussian spatial profile with a spectrum composed of a
gaussian/dirac mixture)

@ Four 32 x 32 x 32 observations with different PSF, variable spatial shifts, constant noise :

# PSFx, PSFy, LSFy, LSFx, Spatial shifts (x, y) SNR (Star, Galaxy, Total)
1 1.4 1.96 1.8 1.9 (0,0) (57,38, 44)
2 16 2.04 14 1.46 (1.2,1.4) (56, 38, 43)
3 14 1.96 14 1.46 (0.4,0.5) (57,38, 44)
7 17 2.38 17 138 (0.2,0.3) (55, 38, 43)
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Covariances : band 16

(d) Covar. : bottom neighbors
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Conclusion and perspectives

Conclusion

@ Fusion and reconstruction of complex hyperspectral observations (with various
PSF, shifts...) within a rigorous Bayesian framework

@ Uncertainty computation using a deterministic approach

@ Management of large datasets (raw data and parameters)

@ Ability to deal with additional observations

Perspectives

@ Implementation of a 2-step detection of cosmic rays

@ "Play” with the simulations: add observations, spectral shifts, higher noise,
larger blur size and check the robustness of the method

@ Development of the pipeline for real observations (scaling)

Visualization of the variances

@ Improve the prior on X
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