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Shannon entropy rate of a stochastic process

e The entropy up to time n of a random sequence
X = (X,)nen with denumerable state space E is

_. Z pn@?) 1ngn<i7f>a

where p,(¢]) = P|( X1, ..., X,) = (41, . . ., 1y)] is the like-
lihood of the sequence.
e The entropy rate of X is defined by

11, in€ER
when this quantity is finite.
e Asymptotic Equirepartition Property :

1
——logp,(X7) — H(X), n — 4oo,
n

weak if the convergence is in probability,
strong if it holds almost surely:.



Generalized entropy functionals

The (h, ¢)-entropy of any measure v on E' is defined by
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if Y .cp@(v(i)) is finite, and as +oo either.

The functions o : R — R and ¢ : [0,1] — R, are
twice continuously differentiable functions, with either ¢
concave and A increasing or ¢ convex and h decreasing.

Some (h, ¢)-entropies :

h(y) o(x) (h, ®) — entropies

Yy —zlogx Shannon (1948)

(1—s)"tlogy x? Renyi (1961)

t(t — )] 'logy o/t Varma (1966)

Y (1 — 27571z — 2%) | Havrda and Charvat (1967)

(t—1)"1y' = 1) g/t Arimoto (1971)

(r — 1) yr=D/=0 1] |2 Sharma and Mittal 1 (1975)

(r — 1) exp(r — 1)y — 1] | —zlogx Sharma and Mittal 2 (1975)
—z%logx Taneja (1975)
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Sharma and Taneja (1975)
Tsallis (1988)

e The (h, ¢)-entropy rate of a random sequence
X = (X, )nen with state space E C N is defined by

1
—Shy).o(x) (pn) — Hpy(X), n — +oo.

where p,(if) = P(Xo = o, ...
distribution of (Xj, ..

9 n—l)-

;Xn—l = in_1> 1s the




Quasi-power property The process X satisfies the
quasi-power property with parameters |0, A, ¢, p| if:
1. sup pp(iy) — 0 when n — oo.
igeEntl

2. doy €] — 00, 1], such that Vs > 0y and Vn € N, the
series

Mnl8) = e palif)

is convergent and satisfies
An(s) =c(s) - A(s)" + Ry(s),
with |[R,(s)| = O (p(s)"A(s)"), where: ¢ and A\ are

strictly positive analytic functions for s > oy; A is strictly
decreasing with A\(1) = ¢(1) = 1, R, is also analytic,
p(s) < 1.

Remarks:

The quasi-power property says that A,(s) behaves like
the n-th power of some analytic function.

[n dynamical systems theory, A, (s) is called the Dirich-
let series of fundamental measures of depth n + 1.



Classical entropy rates of a random sequence

satisfying the quasi-power property.

Entropy Parameters Entropy rate
Shannon —XN(1)
Rényi s=1 —XN(1)
s#1 1islog)\(s)
Varma, r=t —#/\/(1)
r#t t(tl— )logx\(r/t)
Havrda-Charvat s>1 0
_1 ,
s = Tog 2 (1)
s <1 +00
Arimoto t>1 +00
t=1 —XN(1)
t<1 0
Sharma-Mittal 1 r<l1 +00
r>1 0
s=r=1 —N(1)
r=1+#s 1_$log)\(s)
Sharma-Mittal 2 (1 —s) Hexp(—(s — 1)N(1)) — 1]
Taneja r<1 +00
r=1 —XN(1)
r>1 0
Sharma-Taneja | r<lors <1 +00
r>1ands>1 0
r=1and s> 1 0
r=1and s=1 —N(1)
r>1lands=1 0
Tsallis r<l1 +00
r=1 —N(1)
r>1 0




For an i.1.d. sequence with common distribution v
Since py(ig, @1, - - -, 0n) = V(2g)V(11) . . . v(4y), the Dirich-
let series A,,(s) can simply be written

Ap(s) = [Z y(z’)S] .

i€l
Hence, X satisfies the quasi-power property for s > 0
with functions A, ¢ and p defined by

As) =Y v(i)’, c(s)=1 and p(s)=0.
icE
For a finite chain
Ap(s) =1 P! v, where Py = (p(i,7)%)i jer, with v
the initial distribution of the chain, and vy = (v(i)%);cp.
The following relation defines the functions A, ¢ and p
of the quasi-power property:

P!'-v=As)" <v,rg > 1, + R"(s) - v,
where A(s) is the unique dominant eigenvalue of P, with

maximum modulus, with associated left and right eigen-
vectors I and ry.



For a denumerable chain

Theorem Ciuperca, Girardin, Lhote (2010)

Let X = (X,,) be an ergodic Markov chain with tran-
sition matrix P and initial distribution v. Suppose that:

A, sup P(i,j) <1
(i,7)€ B2
B. dog < 1 such that Vs > oy,

sup P(i,j)° < 400 and v(i)® < 400,
w2 20

C. Ve > 0 and Vs > 0y, 3A C E with |A| < 400 such
that

Then X satisfies the quasi-power property.

Proof of the theorem

Lemma If Assumptions A, B, C hold true,

then P, : (¢4 || . ||l1) — (€4,]] . |]1) is a compact oper-
ator, Vs > oy,

where £ = {u = (up)ies : [ully = Yo huil < o0}



We deduce from the lemma that the spectrum of P
is a sequence that converges to zero. Hence, P, has a
finite number of eigenvalues with maximum modulus and
there exists a spectral gap separating these dominant
eigenvalues from the remainder of the spectrum.

Further, since X is ergodic, P has a unique dominant
eigenvalue \(s) which, moreover, is positive. Hence,

Pl'u = \(s)"Qsu+ Ru, u €l

where (), is the projector over the dominant eigenspace
and R, is the projector over the remainder of the spec-
trum. The spectral radius of Rs can be written p(s)-A(s)
with p(s) < 1.

Finally,

An(s) = Als)"[[Qsvs|[1(1 + O(p(s)"Als)")),

which means that X satisfies the quasi-power property.

The analyticity of the involved functions is due jointly
to the analyticity of s — P, and to perturbation argu-
ments. ]



Theorem Let X be a random sequence satifying the
quasi-power property with parameters o9, A, ¢, p|. Sup-
pose that

o) i (og )’ P
with s > 09, ¢; € R} and k& € N*. Then the entropy
rate Hlj, »(X) is given by the following table.

Value of s | Condition on h | Entropy rate
hz) ~ cy-atF ey ci/k - N (1)

r—-+00

s=1 h(x) = o(z'/*) 0
zl/E = o(h(z)) +00
h(x) e logz | co-log A(s)
s> 1 h(z) =, o(log x) 0
log = =, o(h(x)) +00
h(x) o logz| co-logA(s)
op < s <1| h(x) e o(log x) 0
log = = o(h(z)) +00




Proof supnc g1 v(i5) — 0 and (P) together induce
that Ve > 0, Ing € N/ n > ng and il € B,

(1= e)ervn(i)* log" v (i) < d(valig))
< (1 + €)1y (i) log" v, (i),
from which it follows that
(1—e)erAP(s) < Z (i) < (1 + €)etAlF)(s).
Z ne pn+tl
Due to the analyticity of all involved functions,
AW (s) = ¢(s) - N(s)F - n¥ - X(s)" - [1+O(1/n)].
which yields
> bvalif)) ~er-cls) - N(s)F-nh - )",
S

Since ¢ is nonnegative, this sum converges polynomi-
ally to infinity. This leads to the next equivalences:

hE,) ~ e le|ME - IN )] -n if h(z)~c -2
h(%,) ~ o(n) if h(z)=o(z'"),
h(Z,) ~ s, -n with s, — oo if z'/*=o(h(z)).

Since by definition, the (h, ¢)-entropy rate is the limit
of h(¥,)/n when n tends to infinity, the results follow
immediately for s = 1.

The other cases can be studied similarly. ]



Entropy Parameters Entropy rate
Shannon —XN(1)
Rényi s=1 —XN(1)
s#1 ! p log A(s)
Varma, r=t —#/\/(1)
r#t t(tl—r) log A(1/t)
Havrda-Charvat s>1 0
_1 ,
s = @)\ (1)
s <1 +00
Arimoto t>1 +00
t= —N(1)
t<1 0
Sharma-Mittal 1 r<l1 +00
r>1 0
s=r=1 —N(1)
r=1#s 1i810gx\(s)
Sharma-Mittal 2 (1 —s) Hexp(—(s — 1)N(1)) — 1]
Taneja r<1 +00
r=1 —XN(1)
r>1 0
Sharma-Taneja | r<lors <1 +00
r>1ands>1 0
r=1and s > 1 0
r=1and s=1 —N(1)
r>1lands=1 0
Tsallis r<l1 +00
r=1 —N(1)
r>1 0

Values of classical entropy rates of a random sequence satisfying the quasi-

power property with parameters [, ¢, p, og].




Estimation of Shannon entropy rate for a finite Markov chain

For an ergodic Markov chain X = (X,),ey with
state space E with s states, transition matrix P = (P(¢,j)),
where P(i,5) = P(X,41 = 7/X, = i), and stationary
distribution 7 such that 7P = 7, and entropy

H(X) = — Y w(i) 3 Pli.j)log Pli, ) = h(P)

i€E jEE

(= -X(1)).

Proposition Anderson and Goodman (1957)
The empirical estimators

2 et W= X}
2 jen 2om—1 WX =i X}
are strongly convergent and asymptotically normal:
Vi (Puli, ) = Pli,5)) =5 N (0,19
where ng = 0|01 P(1,7) — P(i,7)P(2,1)]/m(q).

Pu(i,j) =

e We define the plug-in estimator

AN AN

H,, = h(P,)
of the entropy rate.



Theorem Ciuperca and Girardin (2007)

[f the transition probabilities are not unitorm, the plug-
in estimator Hl,, = h(P,) of H(X) is strongly conver-
gent and asymptotically normal.

Precisely,

Vb, — H(X)] = N(0, (8/h) T(@7R)"),

where O!'h is the differential with order v with respect
to variable u of h.

Proof
Continuous mapping theorem and delta method

[]



For a two-state chain
The transition matrix of the chain is

P:(l_p P )
g l1—g¢q

The stationary distribution satisfies 7P = 7, so
7(0) = 9 and (1) = P
p+q pP+q

The entropy rate is
H(X) = h(p,q) = m(0)S, + m(1)5,

— }%q[_p logp — (1 — p)log(1 — p)]

+]%q[—qlogq — (I —q)log(1 —q)].

Entropy of a 2—state Markov chain




Theorem Girardin and Sesboue (2009)

hiy = PP, Gn) — H(X).

If the chain is not uniform,

P

Vb, — H(X)] - N(0,0?)

where 0% = T'(0, 0)2[511]1(_]9, q)]” +I'(1, 1)_2[62%(]9» q))°
S48,

= pa(l = p) | 7" — log 15
S :
+pa(l —q) | 5" — log 15|

For illustration, we have simulated a chain for p = 0.2
and ¢ = 0.3, for which H(X) = 0, 559.

The first figure shows the punctual convergence of /f;n
to H(X) for n = 10 to 5000 by steps of 10.

(computation of ﬁn for 10 < n < 5000 after simulation
of one trajectory with length 5000)
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This figure compares the empirical distribution func-
tion of v/n[h, —H(X)] /7, to that of the standard normal

distribution for different values of 10 < n < 1000.
(for T" = 500 trajectories simulated for each n)



Theorem Girardin and Sesboue (2009)

For a uniform chain, p = ¢ = 1/2, /f;n is strongly con-
vergent and 2n|H(X) — /f;n] £, X2 (2).
Proof. h, — H(X) =

[31 (P, q)][P(0, 1

)
+510%h(p. QI[P(0. 1) — b + 5[08h(p. )] P(1,0) — g
+o([P(0,1) = pI*) + o([P(1,0) —
= sl PO, ) =8P+ tplP(1,0) = o
+o([P(0,1) = pI*) + o([P(1,0) - g]?)
and the result follows, since VPO ] o g VAPLO)—g

T70,0) (LI
are asymptotically standard normal. ]

The last figure compares the distribution function of
2n[h,, — H(X)] to that of the x*(2)-distribution for n =
1000. (T" = 1000 simulated trajectories for n)

Fe)(X)




Estimation of generalized entropy rates
All the entropy rates are finite and non-zero only at
a threshold where they are equal to the Rényi entropy
rate up to a multiplicative factor. Therefore, we only
estimate Shannon and Rényi entropy rates, that is

h(6) = —X(1;6),
and hy(0) = (1 —s) 'log A(s; 6p).

The transition probabilities of the ergodic chain X
with denumerable state space are supposed to depend
on € ", with true value 6.

Proposition Billingsley (1962) Suppose that:

A.Vz, {y: P(x,y;0) > 0} does not depend on 6.

B. V(z,y), Puz,y;0), Pu(z,y;0) and P,,(x,y;0)
are in C1(0).

C. V0 € ©, 3N, neighborhood such that Vu, v, P,(x,y; 0)
and P,,(z,y;0) are uniformly bounded in L(u(dy)) on
N and

Eq[sup | Pu(x,y;0') [*] < oo,
0'e N

D. 35 > 0 such that Ey[| P,(z,y;0) |*™] is finite
Yu=1,...,r

E. The Fisher information matrix

o(0) = (Eg|Pu(x,y;0)P,(x,y;0)]) is non singular.

Then a strongly consistent maximum likelihood esti-
mator 6, of 6 exists. Moreover, \/n ( u) is asymp-
totically normal, with covariance matrix o~1(6").



It is natural to consider the plug-in estimators:
h(én> - _X(l; 971)
and hs(gn) = (1 —s) 'log As; é\n)

of Shannon entropy rate and of Rényi entropy rate.

Theorem If Billingsley’s assumptions are satisfied and

if X satisfies the quasi-power property, then h(6,) and
hs(0,) are strongly consistent and asymptotically nor-

mal: /n[h(6,) — h(0)] — N(0,%), where

1= { Gl N W] o)X 0)

AN

and /nlhy(0,) — Hy(0")] — N(0, %), where

1 3, Y0
Yig = TE {89)\(8; 9)} o (9)@)\(8, (0).

Proof Due to operators properties, the eigenvalue A(s)
and its derivative X'(1) are continuous with respect to the
perturbated operator Ps. For a parametric chain depend-
ing on #, Assumption B induces that P; is a continuously
differentiable function of 6. Therefore both A(s;#) and
N(s; 0) are continuous with respect to 6. The results fol-

low from the continuous mapping theorem and the delta
method. ]
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