MODEL SELECTION FOR MR STUDIES OF STROKE

John Lee¹, Larry Bretthorst¹, Colin Derdeyn^{1,2,3}, Andria Ford², Jin-Moo Lee², Joshua Shimony¹

Washington University in St. Louis · School of Medicine

Mallinckrodt Institute of Radiology¹, Departments of Neurology² & Neurological Surgery³ Washington University School of Medicine, St. Louis, MO, USA

ACKNOWLEDGEMENTS

Acute Stroke Chronic Stroke MR, PET & Analysis

Acute Stroke	Chronic Stroke	MR, PEI & Andiysis		
Hongyu An	Colin Derdeyn	Hongyu An	Lennis Lich	Washir
Andria Ford	Nancy Hantler	Jeffrey Baumstark	Mark Nolte	lgton
Jin-Moo Lee	John Lee	Larry Bretthorst	Joshua Shimony	Jniver
John Lee	William Powers	Timothy Carroll	Avraham Snyder	sity in
Weili Lin	Lina Shinawi	Glen Foster	Nick Szoko	St.Lot
Rosanna Ponisio	AmberTyler	John Lee	Tom Videen	iis•Sc
				hoolo
				fMed
				icine

FUNDING & OTHER SUPPORT

Specialized Programs of Translational Research in Acute Stroke, Washington University in St. Louis, NIH Award P50 NS055977-02

Role of Cerebral Hemodynamics in Moyamoya Disease, NIH Award RO1 NS051631-04

Bayer Healthcare-Mallinckrodt Institute of Radiology Clinical Research Fellowship (J.L.)

NIH Career Development Award KL2 RR024994 (A.F.)

ASNR Neuroradiology Education & Research Foundation, Boston Scientific Target Fellowship in Cerebrovascular Disease Research (J.S.)

Carotid Occlusion Study, NIH Award RO1 28497

Center for Clinical Imaging Research, Institute of Clinical & Translational Sciences, NIH Clinical & Translational Sciences Award ULI RR024992

Center for High Performance Computing, Electronic Radiology Laboratory, National Center for Research Resources, NIH Award _____

Washington University in St. Louis • School of Medicine

53 YO male arrives in ER at 17:50 by ambulance with L-sided flaccid paralysis, slurred speech, deviation of eyes to right, perseveration. Wife found him lying on floor at 17:30. Patient spoke normally with son at 17:00.

Washington University in St. Louis • School of Medicine

DISCHARGE SUMMARY

Discharged to rehab. 28 days after admission.

Hospital course:

massive stroke + edema. Received tPA. Admitted to NNICU. Intubated. Craniectomy x2. Coma. DNR/DNI per family. Gradually improved & extubated. Pneumonia. Remaining dense hemiplegia, hemi-sensory loss, L homonymous hemianopsia.

Washington University in St. Louis • School of Medicine

CLINICALTRIALS

MR perfusion & penumbra estimates have no predictive value for clinical outcomes

PERFUSION PERVOXEL

Observed tracer concentration C comprises:

PERFUSION PERVOXEL

Other common perfusion metrics:

Cerebral blood volume (fraction):

$$V_{\vec{r}} = \int^{\infty} dt' C_{\vec{r}}(t') \left/ \int^{\infty} dt' C_{\vec{r},a}(t') \right.$$

Mean transit time: $T_{ec{r}}\equiv V_{ec{r}}\,/F_{ec{r}}$, viz.

MR

- **Physically:** Bloch equations with fluid dynamics terms (*Torrey, Phys. Rev.* 104:563-565 (1956))
- Impractical for non-Newtonian, pulsatile flow of blood through "disordered" arterial, capillary & venous networks
- **N.B.:** upon oxygen-extraction in capillary beds, hemoglobin becomes paramagnetic
- **Traditionally:** assume intrinsic T_1, T_2 dynamics may be factored, leaving stationary relaxivity near the bolus passage of Gd:

$$\frac{\|M_{\vec{r}}(t)\|}{\int^{t_{\vec{r},0}} dt' M_{\vec{r}}(t')} \approx \exp\left[-\int^t dt' \mathscr{R}_{\vec{r}}(t')\right] = \exp\left[-\widetilde{\mathscr{R}}_{\vec{r}} \int^t dt' C_{\vec{r}}(t')\right]$$

QUESTIONABLE ASSUMPTIONS

- Arterial supply estimated from average of major arterial branches: $C_{\vec{r},a}(t) \Longrightarrow \overline{C_a(t)}$
- $F_{\vec{r}}, R_{\vec{r}}(t), V_{\vec{r}}$ estimated from SVD of convolution with averaged arterial supply $\overline{C_a(t)}$ using singular value thresholds ~20%

• Tracer conc. estimated from: $\log \|M_{\vec{r}}(t)\|$ Problems

• Not needed by Bayesian inference...

$$\begin{aligned} \text{BAYESIAN ANALYSIS} \\ \text{Gamma-variate: } \mathscr{G}_{\vec{r}}(\alpha,\beta,t_0,t) &= \left[\frac{1}{\beta^{\alpha+1}\Gamma(\alpha+1)}(t-t_0)^{\alpha}e^{-\beta(t-t_0)}\right]_{\vec{r}} \\ \text{Residue func:: } R_{\vec{r}}(t) \approx e^{-t/T_{\vec{r}}} \left[\sum_{m=0} c_{\vec{r},m} \left(\frac{t}{T_{\vec{r}}}\right)^m\right] \xrightarrow{\text{model sel.}} e^{-t/T_{\vec{r}}} \\ \text{Forward Problem: } \frac{\|M_{\vec{r}}(t)\|}{\int^{t_{\vec{r},0}} dt' M_{\vec{r}}(t')} \approx \exp\left[-\overline{\kappa} \widetilde{\mathscr{R}}_{\vec{r}} \int_{t_{\vec{r},0}}^t dt' \int_{t_{\vec{r},0}}^{t'} dt'' \dots \\ \dots \sum_{\substack{n=0\\\text{model sel.}}} F_{\vec{r},n} \mathscr{G}_{\vec{r}}(\alpha,\beta,t_{0,n},t'') R_{\vec{r}}(t'-t'',T_{\vec{r}})\right] \end{aligned}$$

BAYESIAN ANALYSIS

- Priors for parameters factored into independent, physiologically consistent Gaussians
- Marginalized likelihoods from Jeffreys' priors
- Joint posterior probabilities estimated with simulated annealing, Markovchain Monte Carlo, Metropolis-Hastings sampling

Lee, et al. Magn. Res. Med. 63:1305–1314 (2010) Shimony, et al. Bayesian Inf. & Max. Ent. Methods in Sci. & Eng. 55:805-815 (2006)

CASE 7377

Chronic moyamoya disease in a 45 YO male with minimal symptoms.

Enrolled in RO1 NS051631-04.

The Washington University in St. Louis • School of Medicine

COMPUTATION

IBM e I 350 Cluster: 7x x3950 M2 SMP nodes, I 6 quad core 2.4 GHz Xeon E7440 ea., **448 cores, < 17 Tflops** total

Qlogic 9240, DDR 288-port **Infiniband Switch**; 8000F GigE leaf & 8000R GigE aggregation switches

Management, Login, Gateway, General Parallel Filesystem: 9x x3650 M2 nodes, dual quad core Xeon L5520, Mellanox ConnectX 2-port, 4x DDR HCA, 4 Gb HBA ea.

DS4700 **storage controller**: 3x DS4000 EXP810 expansions

Pending: IBM iDataPlex Cluster: 168x dx360 M2 nodes, dual quad core 2.66 GHz Xeon X5550 (Nehalem-EP) ea., **1344 cores, < 57 Tflops** total

Single-model analysis, single perfusion-weighted EPI study:

~10¹⁷ flop, ~30 min

Washington University in St.Louis • School of Medicine

NEXT STEPS?

- Evidence (marginal likelihood, marginal density of data, prior predictive, viz., $Z = \int L(\theta)\pi(\theta)d\theta$)
- More informative priors: clinical information?
- Oxygen metabolism

SUMMARY

MR evaluations of stroke have been <u>unable</u> to predict clinical outcomes.

Bayesian inference provides new models & metrics that may improve evaluation of stroke patients

Clinical trials are underway

ACKNOWLEDGEMENTS

Acute Stroke Chronic Stroke MR, PET & Analysis

Acute Stroke	Chronic Stroke	MR, PEI & Andiysis		
Hongyu An	Colin Derdeyn	Hongyu An	Lennis Lich	Washir
Andria Ford	Nancy Hantler	Jeffrey Baumstark	Mark Nolte	lgton
Jin-Moo Lee	John Lee	Larry Bretthorst	Joshua Shimony	Jniver
John Lee	William Powers	Timothy Carroll	Avraham Snyder	sity in
Weili Lin	Lina Shinawi	Glen Foster	Nick Szoko	St.Lot
Rosanna Ponisio	AmberTyler	John Lee	Tom Videen	iis•Sc
				hoolo
				fMed
				icine