
How-to: Bayes with Mathematica
Romke Bontekoe

Bontekoe Research, Amsterdam
romke@bontekoe.nl

Abstract. Mathematica is unique in its integrated symbolic and numerical solving capacities.
Prof. Phil Gregory states "..., the time required to develop and test programs with Mathematica
is approximately 20 times shorter than the time required to write and debug the same program in
Fortran or C, ...". However, Mathematica has a steep learning curve. In this paper the Mathematica
code for Bayesian linear regression and model selection is provided as a take-off for novice users.

Keywords: Bayesian linear regression, Bayesian model selection, Mathematica
PACS: 02.50.Tt

LINEAR REGRESSION

In this paper the basics of Bayesian linear regression are exposed side-by-side with
the corresponding Mathematica1 code. Mathematica is organised in Notebooks. The
corresponding Notebook can be obtained by sending an email to the author.

The regression example is taken from Bishop [1]. The N = 10 data points are taken
from a Sine curve with added Gaussian noise (σnoise = 0.3). The aim is to construct a
function by linear regression, which approximates the t = Sin(x) function in Figure 1 as
good as we can; the t stands for target value.

The actual data consist of two parts, a vector of measurement, or target, values
ttt = (t1, ..., tn)

T and a vector of the corresponding sampling positions xxx = (x1, ...xn)
T .

FIGURE 1.

1 Mathematica is a trademark of Wolfram Research Inc.

The standard deviation of the noise is expressed by the inverse variance β = σ
−2
noise, or

the precision of the data.
Non-linear basis functions give flexibility in linear regression problems. There are

many possible choices, e.g. polynomials, Gaussian kernel functions, sigmoids, wavelets,
etc. The basis functions need not to be a set of orthogonal functions. Writing a vector
of M basis functions φφφ(x) = (1,φ1(x), ...,φM−1(x))T and corresponding weights www =
(w0, ...wM−1)

T , the regression model can be written as a dot-product

y(xxx,www) = ∑
M−1
j=0 w jφ j(x) = wwwTφφφ(xxx). (1)

The target function y(xxx,www) can be non-linear in xxx but is linear in www. Since the measure-
ment positions xxx are fixed also the basis functions φφφ(xxx) are fixed. The optimization is
over the linear variables www, hence linear regression.

For polynomial basis functions φφφ(x) =
(
1,x,x2, ...,xM−1)T the model becomes

y(xn,www) = w0 +w1xn +w2x2
n + ...+wM−1xM−1

n = ∑
M−1
j=0 w jx

j
n, (2)

where xn denotes the sample position of the n-th datum. Note that www-vectors of length
M correspond to polynomials of degree m = M−1. The Mathematica code for the basis
function is

basisPhiPoly[m_Integer, x_] := Table[xˆ i, {i,0,m}]

which defines a function basisPhiPoly[.] depending on an integer variable m and an
unspecified x, which can be numeric or symbolic. The {i,0,m} is the table iterator. It is
customary that user defined functions begin with a lower case letter; all Mathematica
library functions begin with an upper case letter.

The basis function is called inside the model function

yModelPoly[w_List] := Function[Evaluate[w . basisPhiPoly[Length[w]-1, #]]]]

where the length of the input vector of weights w defines the degree of the polynomial.
The variable x is represented by the operator #. The result is the dot-product of the two
vectors.

The entire problem can be formulated by the N×M design matrix ΦΦΦ, composed of
N the row-vectors of basis functions φφφ (xn) = (1,φ1 (xn) , ...,φM−1 (xn))

designPhiPoly[m_Integer, xData_List] := basisPhiPoly[m,#] & /@ xData

where the xData_List is the list of xxx = (x1, ...xn)
T . The Map (/@) operator applies the

basisPhiPoly[.] function to the list xData and yields a vector for each data point xn. The #
and & pair are part of the Mathematica function syntax.

These three Mathematica functions form the building blocks for the regression prob-
lem.

MAXIMUM LIKELIHOOD SOLUTION

The likelihood function gives a numerical measure on how good (or how bad) a model
y(xxx,www) fits the data. For independent Gaussian noise, the likelihood function is the
product of N Gaussians

p(ttt|xxx,www,β) = ∏
N
n=1 N

(
tn|y(xn,www) ,β−1) . (3)

The full expression for the log-likelihood is

ln p(ttt|xxx,www,β) =−β

2 ∑
N
n=1 (y(xn,www)− tn)2 + N

2 lnβ − N
2 ln(2π), (4)

from which immediately the sum of squares is recognised. And indeed, in the maximum
(log-)likelihood solution the weights vector www is identical to the least squares solution.

The maximum is found by differentiating the log-likelihood with respect to www. For
Gaussian noise, this can is done analytically. This yields the Maximum Likelihood
solution wwwML

wwwML =
(
ΦΦΦTΦΦΦ

)−1
ΦΦΦTttt, (5)

where the ΦΦΦ is the design matrix.

wMLpoly[m_Integer, tData_List, xData_List] := Block[{ designMatrix, wML },
designMatrix = designPhiPoly[m, xData];
wML = Inverse[Transpose[designMatrix] . designMatrix] . Transpose[designMatrix] .

tData
]

The Block[.] isolates the internal variables {designMatrix, wML} of this function from
the rest of the Mathematica code. Note the three vector-matrix Dot[.] products. Mathe-
matica does not distinguish between vector-matrix-tensor multiplication as long as the
dimensions are compatible.

The maximum likelihood solution model function yML(xxx,wwwML) is obtained by substi-
tuting the wwwML in the regression model

yModelPoly[wMLpoly[m, tData, xData]] [x]

The value of the log-likelihood solution is readily available in Mathematica. The
residuals, i.e. the differences between the target model y(xxx,wwwML) and the target values ttt
are obtained by

misfit = yModelPoly[wMLpoly[m, tData, xData]][#] & xData - tData.

First the wwwML coefficients are computed (wMLpoly[.]). Next the function yModelPoly[.]
is defined and Map[.]-ped onto the list of sampling points (xData), yielding the model
values y(xn,wwwML) at the sampling positions. Finally the difference between the model
values y(xn,wwwML) and the target values tn is taken. The result is stored in the variable
misfit and is a list of N numbers.

For Gaussian noise with standard deviation σnoise the log-likelihood is now

LogLikelihood[NormalDistribution[0.0, dataStDev], misfit].

FIGURE 2.

Figure 2 shows the maximum likelihood solution for polynomials with m = 5 and
m = 9. For the polynomial of degree m = 9, we have an excellent fit through the training
points, but a very poor fit elsewhere, especially for x values near the ends.

The maximum likelihood solution weights www for all polynomial degrees are shown in
Table 1. Note the large and nearly cancelling coefficients for degree m= 9. Also note that
log-likelihood values (bottom row of Table 1) steadily increase with with polynomial
degree. The value of the log-likelihood gives no indication when overfitting is lurking.
The risk of overfitting is always present when using the maximum likelihood method.

Nearly singular matrices occur in Equation (5) for polynomial degrees m = 8 and
m = 9 for Bishop’s data. These are signalled by Mathematica and a warning is issued in
these cases.

BAYESIAN PARAMETER ESTIMATION

To simplify the treatment, we consider a zero-mean, isotropic Gaussian prior probability
distribution for www, with a single precision parameter α = σ

−2
prior

p(www|α) = N
(
www|000,α−1III

)
, (6)

with III the identity covariance matrix. Now a single value α controls the width of the
prior distribution for all dimensions of www.

TABLE 1. Values of maximum likelihood solution weights www as a function
of the polynomial degree. The bottom line lists the log-likelihood values.

m0 m1 m2 m3 m4 m5 m6 m7 m8 m9

w0 0.19 0.82 0.91 0.31 0.32 0.34 0.35 0.35 0.35 0.35
w1 −1.27 −1.90 7.99 7.67 6.08 2.62 7.40 −19.43 232.46
w2 0.64 −25.43 −23.83 −10.55 32.10 −46.78 494.28 −5323.95
w3 17.37 14.82 −22.74 −206.27 261.45 −3819.51 48587.36
w4 1.28 44.33 399.00 −923.52 14471.69 −231728.38
w5 −17.22 −332.71 1595.91 −30455.45 640283.91
w6 105.16 −1294.45 36098.80 −1062194.59
w7 399.89 −22493.94 1042780.94
w8 5723.46 −557883.74
w9 125245.90

Log[LH] −18.11 −9.02 −8.84 0.91 0.91 0.95 1.02 1.06 1.28 2.85

With a Gaussian likelihood function and a Gaussian prior, the posterior distribution
for www from Bayes’ theorem is the (normalised) product of two Gaussian distributions.
The full solution is

p(www|ttt,xxx,α,β) = p(ttt|www,xxx,β)∗p(www|α)
p(ttt|xxx,β)

= N (www |mmmN ,SSSN)
(7)

with
mmmN = βSSSNΦΦΦTttt,
SSS−1

N = αIII +βΦΦΦTΦΦΦ.
(8)

First SSSN must be solved for:

covarPoly[dataStDev_, m_Integer, priorStDev_, xData_List] :=
Block[{ covar, designMatrix, hyperα, hyperβ },
hyperα = 1/priorStDev2;
hyperβ = 1/dataStDev2;
designMatrix = designPhiPoly[m, xData];
covar = hyperα*IdentityMatrix[m+1] + hyperβ *Transpose[designMatrix].designMatrix;
covar = Inverse[covar];
covar = 0.5*(Transpose[covar] + covar)]

As before, the Block[.] defines some local variables. The covariance matrix covar is
computed in three lines. First, the RHS of Equation (8) is computed. Next this matrix
is inverted by Inverse[.]. However, this covar matrix is not always symmetric due to nu-
merical rounding errors. Since strict symmetry is required by the MultinormalDistribution[.]
function, the covariance matrix is forced to be symmetric in the third line.

Next we can solve for mmmN :

meanPoly[dataStDev_, m_Integer, priorStDev_, tData_List, xData_List] :=
Block[{covar, designMatrix, hyperβ , mean },
hyperβ = 1/dataStDev2;
covar = covarPoly[dataStDev, m, priorStDev, xData];
designMatrix = designPhiPoly[m, xData];
mean = hyperβ * covar . Transpose[designMatrix] . tData]

Note the two matrix-vector dot products in the last line.
The maximum of the posterior probability distribution, wwwMAP, is equal to the mean (or

mode) mmmN for a multinormal distribution. This is the best point estimate we can make.
The uncertainty in the values of wwwMAP are the variances on the diagonal of the covariance
matrix SSSN .

The wwwMAP solution and the corresponding target function y(xxx,wwwMAP) for the linear
regression problem is obtained by:

wMAP = meanPoly[dataStDev, m, priorStDev, tData, xData];
yModelPoly[wMAP][x];

Figure 3 shows the MAP solutions for two polynomials with m = 5 and m = 9.
σprior = 20 is chosen for the prior width, which covers a range of reasonable values
for www. This demonstrates that the wild overfitting can be controlled by a suitable prior.

However, the choice of the best degree m for the polynomial is still unsettled.

FIGURE 3.

BAYESIAN MODEL SELECTION

Suppose we didn’t know that Bishop’s regression data were drawn from a Sine function,
but we were told that they came from one of the 10 polynomials. But we weren’t told
from which one. Bayesian model selection allows us to find the polynomial with the
largest probability.

Denoting the ten polynomials by their degree (M0,M1, ...,M9) we need to find the
polynomial degree m for which p(Mm|ttt,xxx) is the largest.
Applying Bayes’ theorem for manipulation of probabilities

p(Mm|ttt,xxx) = p(Mm|xxx)∗ p(ttt|xxx,Mm)
/

p(ttt|xxx). (9)

The p(ttt|xxx) is a normalization factor, independent on the model Mm and can be ignored
in finding the maximum. The prior probability for each of the ten models ought to be
independent of xxx, hence p(Mm|xxx) = p(Mm). In absence of any other knowledge we
assign the uniform prior over the models p(Mm) = 1/10, and thus can be ignored as
well. The hyperparameters α and β are suppressed for readability.

However, the only way to connect the data with the model is through the weight vector
www of regression coefficients corresponding to the model Mm

p(Mm|ttt,xxx) ∝ p(ttt|xxx,Mm)
=

∫
p(www,ttt|xxx,Mm)dwww

=
∫

p(ttt|www,xxx,Mm)∗ p(www|xxx,Mm) dwww
=

∫
likelihood∗prior dwww.

(10)

A few observations can be made. The p(ttt|xxx,Mm) already appeared before as the
evidence p(ttt|xxx,β) in Equation (7). Earlier, the model dependence was concealed in the
length of the vectors ttt and xxx. Also the p(ttt|www,xxx,Mm) is the same likelihood function as
before. The p(www |Mm) is the prior probability distribution over the weights for a given
model Mm.

But most importantly, the model evidence in Equation (10) requires an (m + 1)
dimensional integration over dwww. For every degree in the polynomial model Mm an
Ockham factor ∆wposterior

∆wprior
< 1 appears, and the model evidence as a function of m becomes

FIGURE 4.

p(ttt|xxx,Mm) = p(ttt |wwwML ,xxx,Mm)∗
(

∆wposterior
∆wprior

)
m+1. (11)

The value of the likelihood increases with m due to the increasingly better fit with a
higher polynomial degree (see Table 1). But the increase tapers off for say m≥ 5. On the
other hand, the product of Ockham factors is a fast decreasing function with m. There is
a trade-off in their product and the model evidence p(ttt|xxx,Mm) attains a maximum for a
certain m. This model has the highest probability.

Taking again a conjugate prior for p(www|α,Mm), i.e. a Gaussian distribution with zero
mean mmm0 = 000 and isotropic covariance matrix SSS0 = α−1III, then the model evidence can
be integrated analytically over www. The logarithm of the model evidence is

ln p(ttt|xxx,Mm) = m+1
2 lnα + N

2 lnβ −E (mmmN)− 1
2 ln |AAA|− N

2 ln(2π), (12)

with the error term E (mmmN)=
β

2 ‖ttt−ΦΦΦmmmN‖2+ α

2 mmmN .mmmN . The mean is at mmmN = βAAA−1ΦΦΦTttt,
and AAA = αIII +βΦΦΦTΦΦΦ is the Hessian matrix. Note the model complexity penalty factor
(m+1)/2lnα in the log-model evidence in Equation (12).

logEvidencePoly[dataStDev_, m_Integer, priorStDev_, tData_List, xData_List] :=
Block[{error, hessianA, hyperα, hyperβ , logEvidence, mean, misfit, nData, yModel},
hyperα = 1/priorStDev2;
hyperβ = 1/dataStDev2;
nData = Length[xData];
hessianA = hyperα*IdentityMatrix[m+1] +
hyperβ * Transpose[designPhiPoly[m,xData]] . designPhiPoly[m,xData] ;
mean = hyperβ *Inverse[hessianA] . Transpose[designPhiPoly[m,xData]] . tData;
yModel = designPhiPoly[m,xData] . mean;
misfit = yModel-tData;
error = 0.5*hyperβ *misfit.misfit + 0.5*hyperα*mean.mean;
logEvidence = 0.5*(m+1)*Log[hyperα] + 0.5*nData*Log[hyperβ] - error - 0.5*Log[

Det[hessianA]] - 0.5*nData*Log[2*Pi]
]

Again assuming a value σprior = 20, we find that a third degree polynomial has the
maximum evidence (Figure 4).

EPILOG

The aim of this paper is to demonstrate that coding in Mathematica requires relatively
few lines. The code presented deals only with Gaussian models, which lie at the heart of
almost all first attempts to solve problems in data analysis.

On the other hand, learning Mathematica is a considerable investment in time. Gre-
gory [3] states that after this investment is made the development of writing software is
sped op by an order of magnitude, mostly due to shortened test and debug cycles. His
book is accompanied by a comprehensive Mathematica notebook.

Blower [2] has written two volumes on Bayesian information processing from a
combinatorial point of view. In Volume 2 he points out some conceptual errors in the
famous book by Jaynes [4]. Blower also provides some Mathematica code in his text.

Recently, the book by Von der Linden, Dose, and Von Toussaint [6] has appeared.
It combines a thorough treatment of Bayesian probability theory with real applications
from physics. The chapters on numerical techniques, as MCMC and Nested Sampling,
are especially worth studying.

The list of references would not be complete without the mention of the book by Sivia
and Skilling [5] which provides a concise and clear introduction into the subject.

The author’s favourite book remains the excellent book by Bishop [1].
On a more personal note, the author of this paper regrets that he did not start using

Mathematica earlier in his career. Anyone interested can obtain a Mathematica notebook
with the code in this paper, including the plotting code, by sending an email to the author.

REFERENCES

1. Cristopher M. Bishop, Pattern Recognition and Machine Learning, Springer, New York, 2006.
2. David J. Blower, Information Processing, 2 Volumes, CreateSpace Independent Publ., USA, 2013.
3. Phil Gregory, Bayesian Logical Data Analysis for the Physical Sciences, CUP, Cambridge, 2005.
4. Edwin T. Jaynes, Probability Theory, the Logic of Science., Cambridge UP, Cambridge, 2003.
5. D. S. Sivia with J. Skilling, Data Analysis, a Bayesian Tutorial, Oxford UP, Oxford, 2006.
6. W. Von der Linden, V. Dose, U. Von Toussaint, Bayesian Probability Theory., CUP, Cambridge, 2014.

