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Abstract. We consider a family of probability distributions called F-exponential family which has
got a dually flat structure obtained by the conformal flattening of the (F, G)-geometry. Geometry of
F-likelihood estimator is discussed and the F-version of the maximum entropy theorem is proved.
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INTRODUCTION

The notion of exponential family is generalized by deforming the exponential function
appearing in it which led to the g-exponential family of probability distributions having
their entropic base in Tsalli’s entropy [1], [2]. Naudts [3], [4], [5] studied them exten-
sively and generalized to a large class of families of probability distributions. An infor-
mation geometric foundation for the deformed exponential family was given by Amari
et al. [6]. Also in [2], Amari and Ohara discussed the geometry of g-exponential family
and the g-version of the Max-Ent theorem.

We also consider the generalized family of probability distributions based on the
idea of (F,G)-geometry, called the F-exponential family. The F-exponential family has
got a dually flat structure which is obtained by the conformal flattening of the (F,G)-
geometry. Using a generalized notion of independence called the F-independence, we
define F-likelihood function and the F-likelihood estimator. Further the geometry of F-
likelihood estimator is discussed. Finally we give an analytic proof of the F-version of
the maximum entropy theorem.

F—EXPONENTIAL FAMILY

In [6] Amari et al. considered a y-family of probability distributions and studied the
dually flat structure of it. Here from the context of (F, G)-geometry [7], we consider a
generalized notion of exponential family called the F'-exponential family and its dually
flat structure is discussed. Moreover it is shown that the dually flat structure is obtained
by the conformal flattening of the (F, G)-geometry.



The geometry of F-exponential family

Definition 0.1 Let F : (0,00) — R be any smooth increasing concave function. Let Z
be the inverse function of F. Then we define the standard form of an n-dimensional
F —exponential family of distributions as

p(x:6) =z<i 0~ yr(0) or F(p(x:0))= ée"xl- y(0)

where x = (x1,...,X,) is a set of random variables, ® = (0',..,0") are the canonical
parameters and Y (0) is determined from the normalization condition.

Let ¥ = {p(x;0) / 6 € E C R"} be a F—exponential family. Now we analyze the
geometric properties of . in detail.

Define a functional hp(6) as hp(0) = fm

Theorem 0.2 F —potential function Wg(0) is a convex function of 6 and

dx.
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Definition 0.3 Let us define a Riemannian metric called F —metric g¥ by
g1;(0) = 9,0, vk (). (1)

Note that (gf;) is positive definite since Y is a convex function of 0.

Definition 0.4 Define a divergence of Bregman-type using Yr(0), called the
F —divergence, as follows

Dr[p(x;01) : p(x;62)] = Wr(62) — Wr(01) — Vyr(6:).(6, — 61). (2)

The two distributions p and r which are parametrized by 6; and 6, respectively. Then
we can rewrite the F'—divergence as

1
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Definition 0.5 For a distribution function p parametrized by 0, define a probability
distribution called the F —escort probability distribution related to p as

dx. 3)

ﬁp(x)zm if hF(G)z/%dx exist. (4)

Definition 0.6 Using pr, define the F—expectation of a random variable as

Ep(f(0) = ey ) mipy S ().



Then F—divergence can be written as Dg[p : r] = E3(F(p) — F(r)).
The geometric structures induced by the F'—divergence Dr can be obtained as

Lemma 0.7 The metric giDjF and the affine connection VPF induced by the
F —divergence Df are given by

g7 (0) =gl(0) = 0,0;yr(0); Tik = id;0kyr(6).
The dual DY of D induces an affine connection VDF with components FZZ =0.

Note 0.8 The Legendre transformation of the convex function Wr(0) is given by 1n; =
0iYr(0). Since there is a one to one correspondence between N and 0, we can take 1
as another co-ordinate system for .. The dual potential function is given by

¢r(n) = max{6.n — yr(6)}.
We have ' = d'¢r(n); ' = 8%, so that M and 0 are in dual correspondence.

M= 0yr(0) = Es(xi); 0m; = id;yr(6) =gi;(6).

Now with respect to the dual co-ordinate system (1);) of (6"), the metric and the dual
connections are given by

grm)=o'dep(n); TPE(m)=0: Tir(n)=0'd/d or(n). 5)

Lemma 0.9 The dual potential function ¢r(n) is given by

00 () = Ex(F(p) = 1 [ i

Remark 0.10 On the F-exponential family ., the F-divergence Dr induces a dually
flat structure (gPr ,VPr, VDI*”). In this dually flat space, using the canonical divergence,
we can have the Pythagorean theorem and the projection theorem [12]. The potential
function W of the canonical parameter (8') can be called as the F —free energy. Since
F —potential function ¢r(n) is the Legendre dual of the F —free energy Wr(0), we can
call it as negative F —entropy.

Conformal flattening of (F, G)-geometry

In [7], we introduced (F,G)—geometry with metric gG and dual connections V€,
VH.G Now we show that the geometry induced by the F-divergence D is obtained by
the conformal flattening( [8], [9] ) of (F, G)-geometry.

Lemma 0.11 The metric ggF induced by the F-divergence Dr is the conformal flatten-

ing of the G-metric giGj by a gauge function K(0) = #(@’ with G(p) = %;()p).



Proof
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where K(0) = Thﬂ and gU Joipdip =, G gy is the G—metric with G(p) = %’1’7()1;).
Thus the new metric is obtained as a conformal transformation of the G—metric by a
gauge function K(0). |

Theorem 0.12 The affine connection VPF induced by the F—divergence Dr is the
(—1)-conformal transformation of the (H,G)-connection V'O by the gauge function

K(6) #(9), where G(p) = I;/F( () P) and H is the G-dual embedding of F.

Proof The G—dual embedding H of F is defined by H'(P) = Glp)

pF'(p)’
When G(p) = = (<)> H"(p) _ y _ 20F"(p) | pF"(p)

( ) F'(p) F'(p)
Then we can rewrite the components of the connection V(H.G) a5

ri9e) = / {a,-a,-z Ol +(1+p5/2<’;))a£a eake} G(p) p dx )
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Now when K (8) = ;-5 and G(p) = ~Z\2, we have
K ()554(6) = hp_(;))z ( / 552;5;9))2 Y. dx) plf,’;g;) dlalpdx  (10)

The components of the connection VPF are given by

—pF"(p) P*F"(p) , 20°(F"(P))*\ ., - ;
o] (P ) oA

_pF//(p)
-+ hF 9) /( F/(p) )8,-8j€8k£pdx
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= K(O)T150 +0,K(8)8%(6) + %K (6)g5(6) (12)
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using (9) and (10) with G(p) = %;()p) and K(0) = #@)' Hence the connection

induced by the divergence function Dy is the (—1)-conformal transformation of (H,G)-



connection V-0 by a gauge function K(8) . |
Similarly one can prove that

Theorem 0.13 The affine connection VPr induced by Dy, is the 1-conformal trans-

formation of the (F,G)-connection VF G by a gauge function K (6) = #(Uﬁ’ where

—pF"
G(p) = “pr.
Thus the dually flat structure on F-exponential family is the conformal flattening of
the (F,G)—geometry. For F(p) = In,(p) and G(p) = constant, (F,G)—geometry is the
Amari’s o.-geometry (upto a constant factor). Then the F'—exponential family reduces to
g-exponential family and the g-geometry is the conformal flattening of the a-geometry
[2], [10].

F—LIKELIHOOD ESTIMATOR

Fujimoto and Murata [11] introduced a generalized notion of independence called U-
independence. Here the generalized independence is defined using a smooth increasing
function F' and its inverse as in [1]. Using this, generalized likelihood function and
likelihood estimators are defined. Further the geometry of the likelihood estimators is
discussed.

F —independence

Let F' be an increasing concave function and Z be its inverse function. Define the
F-product of two numbers x,y as

x@py=Z[F(x)+F(y)]
The F —product satisfies the following properties
Z(x)®FZ(y) =Z(x+y); F(x®py)=F(x)+F(y)

Definition 0.14 Two random variables X and Y are said to be F—independent with
normalization if the joint probability density function pr(x,y) is given by the F —product
of the marginal probability density functions py(x) and p;(y),

- P1(x) ®F p2(y)

(13)
Zp1.p

Pr(x,y

where Zy, ,, is the normalization defined by Zp, », = [ [q,q, P1(x) ®F p2(y)dxdy

The geometry of F—likelihood estimators

Let . = {p(x;0) / 6 € E C R"} be an n—dimensional statistical manifold defined
on a sample space Q C R. Let {x',.....,x"} be N independent observations from a pdf



p(x;0) € .. Let us define a F —likelihood function Lr(6) as

Lr(0) = p(x1;0)®F ....0F p(x";0) (14)

When F(p) = log, p, then Lr(0) reduces to g—likelihood function L,(0) defined by
Matsuzoe and Ohara [1].
Since F is an increasing function, it is equivalent to consider F(Lr(6)) as well.

F(Lr(0)) =F(p(x';0))®F ....0r F(p(x";0)) = Y F(p(x';6)) (15)

=

Juy

Definition 0.15 A maximum F—likelihood estimator 0 is defined as

G—arg%lagLF(G) :argreneaécF(Lp(G)) (16)

Now let us look at the geometry of F —likelihood estimators for the F-exponential fam-
ily. Let ¥ = {p(x;0) / 6 € E C R"} be a F—exponential family and let M be a curved
F-exponential family in .. Consider {x',.....,x} be N independent observations from
a probability density function p(x;u) = p(x 9( ) €M.

Theorem 0.16 The F —likelihood estimator for M is the orthogonal projection of that
of .7 to the submanifold M with respect to the connection VPr .

Proof The F —likelihood function is given by

N n .
F(Lp(u) =Y F(p(/iu)) = Y |} 6'(u)x! — yr(6(u)) (17

j=1 j=1 [i=1

n N
= YO -Nyr0w) ()

OF (Lr(u)) = Y x/ — Noyr(6(u)) (19)

Thus the maximum F —likelihood estimator for .# is given by 1); = 1%,27:1 xl]
The canonical divergence Dy for .%’ can be calculated as

Dy[p(0(u)); p(R)] = Dr[p(R); p(6(u))] (20)
= yr(0(u)+¢r(f Z (21)
= 9r () — L F(Lr() @2)

Hence the F—likelihood is maximum if the canonical divergence (or the dual of the
F-divergence) is minimum. Equivalently, by the projection theorem, we can say that
F —likelihood estimator for M is the orthogonal projection of f] to the submanifold M
with respect to the connection V2r . |



F-MAX-ENT THEOREM

In [6], Amari et al. gave a geometric proof of the )- version of the Max-ent theorem.
Here we define the F-entropy and give an analytic proof of the F'-version of the Max-ent
theorem.

Definition 0.17 For any probability density functlon p(x), the F —entropy is defined as

He(p) = ~ElF(p) = 5 [ o (23)

if [ = Fp dxanth( )= fﬁdxexist.

When F ( ) = Iny p, the g—logarithm, then Hr(p) reduces to the g—entropy H,(p) =

ﬁ 1— m) and when F (p) = In p, Hr(p) reduces to the Shannon entropy H(p) =
q

— J/ p(x)Inp(x) dx.
Theorem 0.18 (F-Max-ent theorem)
Probability distributions maximizing the F-entropy Hr under the F-linear constraints

Ejplee(0)] = as k=1,..,m (24)

for m random variables ci(x) and various values of ay € R form an m-dimensional F -
exponential family
m
=Y 6'ci(x) -
i=1

Proof Here, we use the method of Lagrange multipliers and the calculus of variation
principle.

To maximize Hr(p) = f 1 )dx subject to the m constraints
1 cx(x)
Es. lcr(x)] = dx=ay; k=1,....m 25
Consider, _Z(p,Ao,A1,.., An) = ! ) _F(p)dx—i-)»o/oopdx
he(p) Jo F'(p)
Iy |3 KD e gy Z/l (26)
j — a;
i=1 th(P) 0 F/( ) l
So at maximum F'- entropy distribution we have ‘i;f 0.
Using this we get g = F(p) and
- L [~ FE@p)
F(p) = Ai(ci(x) —a;i) + / dx 27
(p) IZT (ci(x) —ai) ) Jo F(p)
m
= Y Ailci(x) —ai) — Hr (p) (28)
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where G(ll',ai) = Z;n:l liai + Hp (p)
Now using the m constraints we can solve for A; to get A; = —% and A;’s are the
canonical co-ordinates for the F-exponential family. Hence a;’s are the dual co-ordinate

of the canonical co-ordinate A;. Using the dual co-ordinates A;,a; and their potential
functions, F(p) takes the form of a F-exponential family.
Thus F(p(x:8)) = 7", %ci(x) — () n

CONCLUSION

Dually flat structure of the F-exponential family is obtained by the conformal flattening
of the (F,G)-geometry. The geometry of the F-likelihood estimators and the F-version
of the max-ent theorem are discussed. Further one can explore the asymptotic behavior
of the mle of the F-escort probability density function and its various applications.
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