
Geometry of F-likelihood Estimators and
F-Max-Ent Theorem

K. V. Harsha and K. S. Subrahamanian Moosath

Department of Mathematics, Indian Institute of Space Science and Technology, Valiamala. P. O,
Thiruvananthapuram-695547, Kerala, India

Abstract. We consider a family of probability distributions called F-exponential family which has
got a dually flat structure obtained by the conformal flattening of the (F,G)-geometry. Geometry of
F-likelihood estimator is discussed and the F-version of the maximum entropy theorem is proved.
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INTRODUCTION

The notion of exponential family is generalized by deforming the exponential function
appearing in it which led to the q-exponential family of probability distributions having
their entropic base in Tsalli’s entropy [1], [2]. Naudts [3], [4], [5] studied them exten-
sively and generalized to a large class of families of probability distributions. An infor-
mation geometric foundation for the deformed exponential family was given by Amari
et al. [6]. Also in [2], Amari and Ohara discussed the geometry of q-exponential family
and the q-version of the Max-Ent theorem.

We also consider the generalized family of probability distributions based on the
idea of (F,G)-geometry, called the F-exponential family. The F-exponential family has
got a dually flat structure which is obtained by the conformal flattening of the (F,G)-
geometry. Using a generalized notion of independence called the F-independence, we
define F-likelihood function and the F-likelihood estimator. Further the geometry of F-
likelihood estimator is discussed. Finally we give an analytic proof of the F-version of
the maximum entropy theorem.

F−EXPONENTIAL FAMILY

In [6] Amari et al. considered a χ-family of probability distributions and studied the
dually flat structure of it. Here from the context of (F,G)-geometry [7], we consider a
generalized notion of exponential family called the F-exponential family and its dually
flat structure is discussed. Moreover it is shown that the dually flat structure is obtained
by the conformal flattening of the (F,G)-geometry.



The geometry of F-exponential family

Definition 0.1 Let F : (0,∞) −→ R be any smooth increasing concave function. Let Z
be the inverse function of F. Then we define the standard form of an n-dimensional
F−exponential family of distributions as

p(x;θ) = Z(
n

∑
i=1

θ
ixi−ψF(θ)) or F(p(x;θ)) =

n

∑
i=1

θ
ixi−ψF(θ)

where x = (x1, ...,xn) is a set of random variables, θ = (θ 1, ..,θ n) are the canonical
parameters and ψF(θ) is determined from the normalization condition.

Let S = {p(x;θ) / θ ∈ E ⊆ Rn} be a F−exponential family. Now we analyze the
geometric properties of S in detail.
Define a functional hF(θ) as hF(θ) =

∫ 1
F ′(p(x;θ))dx.

Theorem 0.2 F−potential function ψF(θ) is a convex function of θ and

∂i∂ jψF(θ) =
1

hF(θ)

∫ −F ′′(p)
(F ′(p))3 ∂iF ∂ jFdx =

1
hF(θ)

∫ −pF ′′(p)
F ′(p)

∂i p ∂ j p
1
p

dx

Definition 0.3 Let us define a Riemannian metric called F−metric gF by

gF
i j(θ) = ∂i∂ jψF(θ). (1)

Note that (gF
i j) is positive definite since ψF is a convex function of θ .

Definition 0.4 Define a divergence of Bregman-type using ψF(θ), called the
F−divergence, as follows

DF [p(x;θ1) : p(x;θ2)] = ψF(θ2)−ψF(θ1)−∇ψF(θ1).(θ2−θ1). (2)

The two distributions p and r which are parametrized by θ1 and θ2 respectively. Then
we can rewrite the F−divergence as

DF [p : r] =
1

hF(θ1)

∫
(F(p)−F(r))

1
F ′(p)

dx. (3)

Definition 0.5 For a distribution function p parametrized by θ , define a probability
distribution called the F−escort probability distribution related to p as

p̂F(x) =
1

hF(θ)F ′(p)
, if hF(θ) =

∫ 1
F ′(p)

dx exist. (4)

Definition 0.6 Using p̂F , define the F̂−expectation of a random variable as
Ep̂( f (x)) = 1

hF (θ)

∫ 1
F ′(p) f (x)dx.



Then F−divergence can be written as DF [p : r] = Ep̂(F(p)−F(r)).
The geometric structures induced by the F−divergence DF can be obtained as

Lemma 0.7 The metric gDF
i j and the affine connection ∇DF induced by the

F−divergence DF are given by

gDF
i j (θ) = gF

i j(θ) = ∂i∂ jψF(θ); Γ
DF
i jk = ∂i∂ j∂kψF(θ).

The dual D∗F of DF induces an affine connection ∇D∗F with components Γ
D∗F
i jk = 0.

Note 0.8 The Legendre transformation of the convex function ψF(θ) is given by ηi =
∂iψF(θ). Since there is a one to one correspondence between η and θ , we can take η

as another co-ordinate system for S . The dual potential function is given by

φF(η) = max
θ

{θ .η−ψF(θ)} .

We have θ i = ∂ iφF(η); ∂ i = ∂

∂ηi
, so that η and θ are in dual correspondence.

ηi = ∂iψF(θ) = Ep̂(xi); ∂iη j = ∂i∂ jψF(θ) = gF
i j(θ).

Now with respect to the dual co-ordinate system (η j) of (θ i), the metric and the dual
connections are given by

g̃DF
i j (η) = ∂

i
∂

j
φF(η); Γ̃

DF
i jk (η) = 0; Γ̃

D∗F
i jk (η) = ∂

i
∂

j
∂

k
φF(η). (5)

Lemma 0.9 The dual potential function φF(η) is given by

φF(η) = Ep̂(F(p)) =
1

hF(θ)

∫ F(p)
F ′(p)

dx.

Remark 0.10 On the F-exponential family S , the F-divergence DF induces a dually
flat structure (gDF ,∇DF , ∇D∗F ). In this dually flat space, using the canonical divergence,
we can have the Pythagorean theorem and the projection theorem [12]. The potential
function ψF of the canonical parameter (θ i) can be called as the F−free energy. Since
F−potential function φF(η) is the Legendre dual of the F−free energy ψF(θ), we can
call it as negative F−entropy.

Conformal flattening of (F,G)-geometry

In [7], we introduced (F,G)−geometry with metric gG and dual connections ∇F,G,
∇H,G. Now we show that the geometry induced by the F-divergence DF is obtained by
the conformal flattening( [8], [9] ) of (F,G)-geometry.

Lemma 0.11 The metric gDF
i j induced by the F-divergence DF is the conformal flatten-

ing of the G-metric gG
i j by a gauge function K(θ) = 1

hF (θ)
, with G(p) = −pF ′′(p)

F ′(p) .



Proof
gDF

i j (θ) = ∂i∂ jψF(θ) =
1

hF(θ)

∫ −pF ′′(p)
F ′(p)

∂i p ∂ j p
1
p

dx (6)

= K(θ)gG
i j (7)

where K(θ) = 1
hF (θ)

and gG
i j =

∫
∂i p ∂ j p

G(p)
p dx is the G−metric with G(p) = −pF ′′(p)

F ′(p) .
Thus the new metric is obtained as a conformal transformation of the G−metric by a
gauge function K(θ). �

Theorem 0.12 The affine connection ∇DF induced by the F−divergence DF is the
(−1)-conformal transformation of the (H,G)-connection ∇H,G by the gauge function
K(θ) = 1

hF (θ)
, where G(p) = −pF ′′(p)

F ′(p) and H is the G-dual embedding of F.

Proof The G−dual embedding H of F is defined by H ′(P) = G(p)
pF ′(p) .

When G(p) = −pF ′′(p)
F ′(p) , then 1+ pH ′′(p)

H ′(p) = 1− 2pF ′′(p)
F ′(p) + pF ′′′(p)

F ′(p) .

Then we can rewrite the components of the connection ∇(H,G) as

Γ
(H,G)
i jk (θ) =

∫ [
∂i∂ j` ∂k` +(1+

pH ′′(p)
H ′(p)

)∂i` ∂ j` ∂k`

]
G(p) p dx (8)

=
1

hF(θ)

∫ (−pF ′′(p)
F ′(p)

− p2F ′′′(p)
F ′(p)

+
2p2(F ′′(p))2

(F ′(p))2

)
∂i` ∂ j` ∂k` pdx

+
1

hF(θ)

∫
(
−pF ′′(p)

F ′(p)
)∂i∂ j` ∂k` pdx (9)

Now when K(θ) = 1
hF (θ)

and G(p) = −pF ′′(p)
F ′(p) , we have

∂iK(θ)gG
jk(θ) =

−1
(hF(θ))2

(∫ pF ′′(p)
(F ′(p))2 ∂i` dx

)∫ pF ′′(p)
F ′(p)

∂ j` ∂k` p dx (10)

The components of the connection ∇DF are given by

Γ
DF
i jk =

1
hF(θ)

∫ (−pF ′′(p)
F ′(p)

− p2F ′′′(p)
F ′(p)

+
2p2(F ′′(p))2

(F ′(p))2

)
∂i` ∂ j` ∂k` pdx

+
1

hF(θ)

∫
(
−pF ′′(p)

F ′(p)
)∂i∂ j` ∂k` pdx

+
1

hF(θ)

∫
∂ j∂kψF(θ)

pF ′′(p)
(F ′(p))2 ∂i` dx

+
1

hF(θ)

∫
∂i∂kψF(θ)

pF ′′(p)
(F ′(p))2 ∂ j` dx (11)

= K(θ)ΓH,G
i jk +∂ jK(θ)gG

ik(θ)+∂iK(θ)gG
jk(θ) (12)

using (9) and (10) with G(p) = −pF ′′(p)
F ′(p) and K(θ) = 1

hF (θ)
. Hence the connection

induced by the divergence function DF is the (−1)-conformal transformation of (H,G)-



connection ∇H,G by a gauge function K(θ) . �
Similarly one can prove that

Theorem 0.13 The affine connection ∇D∗F induced by D∗F is the 1-conformal trans-
formation of the (F,G)-connection ∇F,G by a gauge function K(θ) = 1

hF (θ)
, where

G(p) = −pF ′′(p)
F ′(p) .

Thus the dually flat structure on F-exponential family is the conformal flattening of
the (F,G)−geometry. For F(p) = lnq(p) and G(p) = constant, (F,G)−geometry is the
Amari’s α-geometry (upto a constant factor). Then the F−exponential family reduces to
q-exponential family and the q-geometry is the conformal flattening of the α-geometry
[2], [10].

F−LIKELIHOOD ESTIMATOR

Fujimoto and Murata [11] introduced a generalized notion of independence called U-
independence. Here the generalized independence is defined using a smooth increasing
function F and its inverse as in [1]. Using this, generalized likelihood function and
likelihood estimators are defined. Further the geometry of the likelihood estimators is
discussed.

F−independence

Let F be an increasing concave function and Z be its inverse function. Define the
F-product of two numbers x,y as

x⊗F y = Z[F(x)+F(y)]

The F−product satisfies the following properties

Z(x)⊗F Z(y) = Z(x+ y); F(x⊗F y) = F(x)+F(y)

Definition 0.14 Two random variables X and Y are said to be F−independent with
normalization if the joint probability density function pF(x,y) is given by the F−product
of the marginal probability density functions p1(x) and p2(y),

pF(x,y) =
p1(x)⊗F p2(y)

Zp1,p2

(13)

where Zp1,p2 is the normalization defined by Zp1,p2 =
∫ ∫

Ω1Ω2
p1(x)⊗F p2(y)dxdy

The geometry of F−likelihood estimators

Let S = {p(x;θ) / θ ∈ E ⊆ Rn} be an n−dimensional statistical manifold defined
on a sample space Ω ⊆ R. Let {x1, .....,xN} be N independent observations from a pdf



p(x;θ) ∈S . Let us define a F−likelihood function LF(θ) as

LF(θ) = p(x1;θ)⊗F ....⊗F p(xN ;θ) (14)

When F(p) = logq p, then LF(θ) reduces to q−likelihood function Lq(θ) defined by
Matsuzoe and Ohara [1].
Since F is an increasing function, it is equivalent to consider F(LF(θ)) as well.

F(LF(θ)) = F(p(x1;θ))⊗F ....⊗F F(p(xN ;θ)) =
N

∑
i=1

F(p(xi;θ)) (15)

Definition 0.15 A maximum F−likelihood estimator θ̂ is defined as

θ̂ = argmax
θ∈E

LF(θ) = argmax
θ∈E

F(LF(θ)) (16)

Now let us look at the geometry of F−likelihood estimators for the F-exponential fam-
ily. Let S = {p(x;θ) / θ ∈ E ⊆ Rn} be a F−exponential family and let M be a curved
F-exponential family in S . Consider {x1, .....,xN} be N independent observations from
a probability density function p(x;u) = p(x;θ(u)) ∈M.

Theorem 0.16 The F−likelihood estimator for M is the orthogonal projection of that
of S to the submanifold M with respect to the connection ∇D∗F .

Proof The F−likelihood function is given by

F(LF(u)) =
N

∑
j=1

F(p(x j;u)) =
N

∑
j=1

[
n

∑
i=1

θ
i(u)x j

i −ψF(θ(u))

]
(17)

=
n

∑
i=1

θ
i(u)

N

∑
j=1

x j
i −NψF(θ(u)) (18)

∂iF(LF(u)) =
N

∑
j=1

x j
i −N∂iψF(θ(u)) (19)

Thus the maximum F−likelihood estimator for S is given by η̂i =
1
N ∑

N
j=1 x j

i .
The canonical divergence D∗F for S can be calculated as

D∗F [p(θ(u)); p(η̂)] = DF [p(η̂); p(θ(u))] (20)

= ψF(θ(u))+φF(η̂)−
n

∑
i=1

θ
i(u)η̂i (21)

= φF(η̂)− 1
N

F(LF(u)) (22)

Hence the F−likelihood is maximum if the canonical divergence (or the dual of the
F-divergence) is minimum. Equivalently, by the projection theorem, we can say that
F−likelihood estimator for M is the orthogonal projection of η̂ to the submanifold M
with respect to the connection ∇D∗F . �



F-MAX-ENT THEOREM

In [6], Amari et al. gave a geometric proof of the χ- version of the Max-ent theorem.
Here we define the F-entropy and give an analytic proof of the F-version of the Max-ent
theorem.
Definition 0.17 For any probability density function p(x), the F−entropy is defined as

HF(p) =−Ep̂(F(p)) =
1

hF(p)

∫ −F(p)
F ′(p)

dx (23)

if
∫ −F(p)

F ′(p) dx and hF(p) =
∫ 1

F ′(p)dx exist.

When F(p) = lnq p, the q−logarithm, then HF(p) reduces to the q−entropy Hq(p) =
1

1−q

(
1− 1

hq(p)

)
and when F(p) = ln p, HF(p) reduces to the Shannon entropy H(p) =

−
∫

p(x) ln p(x) dx.
Theorem 0.18 (F-Max-ent theorem)
Probability distributions maximizing the F-entropy HF under the F-linear constraints

Ep̂F [ck(x)] = ak; k = 1, ...,m (24)

for m random variables ck(x) and various values of ak ∈ R form an m-dimensional F-
exponential family

F(p(x;θ)) =
m

∑
i=1

θ
ici(x)−ψ(θ)

Proof Here, we use the method of Lagrange multipliers and the calculus of variation
principle.
To maximize HF(p) = 1

hF (p)

∫ −F(p)
F ′(p) dx subject to the m constraints

Ep̂F [ck(x)] =
1

hF(p)

∫ ck(x)
F ′(p)

dx = ak; k = 1, ...,m (25)

Consider, L (p,λ0,λ1, ..,λm) =
1

hF(p)

∫
∞

0

−F(p)
F ′(p)

dx+λ0

∫
∞

0
pdx

+
m

∑
i=1

λi
1

hF(p)

∫
∞

0

ck(x)
F ′(p)

dx−λ0−
m

∑
i=1

λiai (26)

So at maximum F-entropy distribution we have dL
d p = 0.

Using this we get λ0 =
1

hF (p) and

F(p) =
m

∑
i=1

λi(ci(x)−ai)+
1

hF(p)

∫
∞

0

F(p)
F ′(p)

dx (27)

=
m

∑
i=1

λi(ci(x)−ai)−HF(p) (28)

=
m

∑
i=1

λici(x)−σ(λi,ai) (29)



where σ(λi,ai) = ∑
m
i=1 λiai +HF(p).

Now using the m constraints we can solve for λi to get λi = −dHF (p)
dai

and λi’s are the
canonical co-ordinates for the F-exponential family. Hence ai’s are the dual co-ordinate
of the canonical co-ordinate λi. Using the dual co-ordinates λi,ai and their potential
functions, F(p) takes the form of a F-exponential family.
Thus F(p(x;θ)) = ∑

m
i=1 θ ici(x)−ψ(θ) �

CONCLUSION

Dually flat structure of the F-exponential family is obtained by the conformal flattening
of the (F,G)-geometry. The geometry of the F-likelihood estimators and the F-version
of the max-ent theorem are discussed. Further one can explore the asymptotic behavior
of the mle of the F-escort probability density function and its various applications.
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