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Abstract. Categorical data are found in a wide variety of important applications in environmental
sciences and dealing with multivariate analyses is a challenging topic. Rebuilding a multivariate
probability table becomes an issue and is expected to lead to poor probability estimates when a
very limited number of samples are at hand. In order to take into account the lack of data, the
information can be rewritten as inequality constraints instead of using the few sampled values as
direct probability estimates. There is thus a need for an efficient method that allows us to rebuild a
multivariate probability table from equalities and inequalities constraints. Rebuilding a probability
function from equalities constraints can be done through a classical maximum entropy (MaxEnt)
methodology. MaxEnt problem can be implemented by using iterated minimum norm (MinNorm)
approximations. Minimum divergence (MinDiv) methodology extends the problem to the case of
inequalities constraints and, again, MinNorm approximations can be applied and iterated. Thus,
iterated MinNorm approximations are a fast and efficient way to combine equalities and inequalities
constraints to rebuild a multivariate probability table. MinNorm methodology for solving problems
involving both equalities and inequalities constraints can be applied in a wide variety of applications.
MinNorm approximations become useful, for instance, when only few data are available or when
taking into account experts opinion rewritten as equalities and inequalities constraints is of prime
interest in probability estimates. An example in environmental sciences is presented in order to
illustrate the benefits of the methodology.
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INTRODUCTION

Categorical variables play an important role in a wide variety of applications in environ-
mental sciences and especially in soil sciences [1, 2], where dealing with multivariate
analysis involving qualitative information is a recurrent problem. Rebuilding a multi-
variate probability table becomes an issue and is expected to lead to poor probability es-
timates when a very limited number of samples is at hand. In order to take into account
the lack of data, the information can be rewritten as equality and inequality constraints
instead of using the few sampled values as direct probability estimates [3]. The max-
imum entropy (MaxEnt) and the minimum divergence (MinDiv) problems are dealing
separately with equalities and inequalities, respectively. A generalization of the results
for the minimum norm (MinNorm) approximations of the MinDiv problem allows both
cases to be processed together. The MaxEnt and the MinDiv problems are first explained
along with the idea of combining equalities and inequalities at once. The methodology
suggested and presented in this paper is an extension of Bayesian Data Fusion (BDF)



[4] and the Bayesian Maximum Entropy (BME) [5]. Then, a practical case study is ex-
posed : the estimation of soil drainage classes. The main objective of the application
presented in this paper is to show how inequalities information can be useful to improve
the spatial prediction of soil drainage classes and how MinNorm approximations can
deal with the mathematical coding for rebuilding probability table. Depending on the
amount of information included in the inequalities, MinNorm approximations can be
very close to the estimates obtained using directly the data at hand when a large number
of samples is available. Soil drainage is an important soil property, since it indicates the
limitations and potentials for forestry and crop productivity [6]. Indeed, drainage has di-
rect effects on plant growth, water flow and solute transport in soils and is an important
criterion in rating soils for many uses [7]. However, classical soil mapping methods of-
ten become laborious and expensive due to the intensive sampling it requires over large
areas [8, 6]. It is thus useful to integrate secondary variables in the spatial prediction of
the soil drainage classes. For the application of MinNorm approximations presented in
this paper, two sources of information are available: (i) 428 point observations of the
drainage classes derived from the Aardewerk database (hard data) [9] and (ii) a litholog-
ical map used as secondary variable (soft data). The estimated conditional probability
function P̂(Drainage=ci | Lithology=c j) is built integrating the secondary information
in four different ways, the information content of the secondary variable being progres-
sively degraded from the first to the last case.

THE MAXIMUM ENTROPY (MAXENT) PROBLEM

Let us assume an unknown probability vector p = (p1, . . . , pn)
′ subject to set of k (with

k ≤ n−1) linearly independent equality constraints
a′1p = b1

...
a′kp = bk
1′p = 1

⇐⇒


a11 · · · a1n

... . . . ...
ak1 · · · akn
1 · · · 1

p =


b1
...

bk
1

 ⇐⇒ Ap = b

(where the last constraint is the mandatory sum to one), so that rank(A) = k+1. Using
the maximum entropy criterion, the best choice for p is obtained when the corresponding
entropy H(p) is maximized, where

H(p) =−p′ lnp

with lnp= (ln p1, . . . , ln pn)
′, subject to the constraints Ap = b. This can be solved using

the Lagrangian formalism because H(p) is convex everywhere (see below). Denoting

O(p,µ) = H(p)+µ
′(Ap−b)

as the objective function to be maximized, where µ is a vector of Lagrangians, the
solution is obtained by setting all derivatives with respect to p and µ simultaneously



equal to 0, with
∂O(p,µ)

∂p
= − lnp−1+A′µ = 0

∂O(p,µ)
∂ µ

= Ap−b = 0

which can be written as the system of non-linear equations{
A′µ = lnp+1
Ap = b ⇐⇒

(
0 A′
A 0

)(
p
µ

)
=

(
lnp+1

b

)
(1)

that needs to be solved with respect to (p,µ)′.

THE MINIMUM DIVERGENCE (MINDIV) PROBLEM

Let us consider a reference probability vector q = (q1, . . . ,qn)
′ with q > 0. The diver-

gence or Kullback-Leibler distance D(p||q) of p from this reference q is then given
by

D(p||q) =
n

∑
i=1

pi ln
pi

qi
= p′ ln

(
[p]
[q]

)
with

{
D(p||q)≥ 0 ∀(p,q)
D(p||q) = 0⇐⇒ p = q

where [p]/[q] is the Hadamard division (i.e. the element-by-element division of p by q.
Clearly, if the reference is q = (1/n)1, then this reduces to

D(p||q) =−H(p)+ lnn

so that maximizing the entropy H(p) with respect to p is equivalent to look for the p
minimizing the divergence from q=(1/n)1, where H(q)= lnn is the maximum possible
value for the entropy of a probability vector of length n.

Instead of Ap = b, let us assume that it is the set of inequality constraints Ap≤ b
we want to account for, along of course with the mandatory equality constraint 1′p = 1.
These inequalities define an infinite set of possible probability vectors qi, i.e. the set

Ω = {qi : 1′qi = 1,Aqi = bi,bi ≤ b,qi ≥ 0}

where this set is convex, as it corresponds to the intersection between the convex unit
simplex and the (possibly unbounded) intersection of the set of half-spaces Ap≤ b. We
will exclude here the case where Ω is empty, i.e. there exists no q which can fulfil these
constraints, along with the case where Ω reduces to a single point, i.e. there is a unique
q which can fulfil them all.

Picking up any specific bi such that bi ≤ b, the maximum entropy solution for qi is
given by

q̂i = arg max
qi:Aqi=bi

H(qi)



Stated in other words, if bi is known, the best reference vector (as maximizing the
entropy) is q̂i, and the maximum entropy solution for p is obtained with D(p||q̂i) =
0⇐⇒ p = q̂i, so this is equivalent to the problem of maximizing H(p) subject to the
constraints Ap = bi.

As bi is unknown, let us now define the random vector Q defined over Ω such that for
any realization q we have Aq≤ b. It is no more possible to find a single vector p that
would maximize the entropy (i.e. that would set D(p||q) = 0) over all possible choice
for q, but we can look for the p that minimizes the expected divergence

E[D(p||Q)] =
∫

Ω

f (q)p′ ln
(
[p]
[q]

)
dq

where f (q) is the probability distribution function of Q defined over Ω, which is
unknown in general. Developing further the above expression gives

∫
Ω

f (q)p′ ln
(
[p]
[q]

)
dq = p′ lnp

∫
Ω

f (q)dq−
∫

Ω

f (q)

(
n

∑
i=1

pi lnqi

)
dq

= −H(p)−
n

∑
i=1

pi

∫
Ω

f (q) lnqidq

= −H(p)−
n

∑
i=1

piE[lnQi]

so that we have
E[D(p||Q)] =−H(p)−p′E[lnQ] ≥ 0 (2)

The minimum divergence solution for p is thus obtained by minimizing E[D(p||Q)]
(which is convex everywhere with respect to p) where the expectation is computed over
the domain Ω for Q.

COMBINING EQUALITIES AND INEQUALITIES AT ONCE

As we presented them, the MaxEnt and MinDiv problems are dealing separately with
equalities and inequalities, respectively. However, both cases can be processed together
by generalizing the previous results for the MinNorm approximation of the MinDiv
problem (not detailed here). Indeed, let us consider the constraints

Aep = be A`p≤ b`

where the equality constraints include the normalization constraint 1′p = 1. The general
expression for the MinNorm approximation thus becomes

p̃ = Dp+ c ⇐⇒ p = D−1(p̃− c)

where
p̃ = (p̃1, . . . , p̃n)

′ p̃i =
pi√
ki
+

1
2

√
ki lnki



D = diag{1/
√

k1, . . . ,1/
√

kn} c = (1/2)D−1(lnk−E[lnQ])

with the MinNorm solution given by

p̃ = D−1A′e
(
AeD−2A′e

)−1 (AeD−1c+be
)

and where E[lnQ] is computed over the set Ω`, with

Ω` = {qi : 1′qi = 1,A`qi = bi,bi ≤ b`,qi ≥ 0}

The MinDiv approximation for inequalities only is obtained by setting Ae = 1′ and be =
1, whereas the MaxEnt approximation for equalities only is found back by shrinking Ω`

to the single point q = (1/n)1, so that E[lnQ] = lnq =− lnn, leading to

n

∑
i=1

piE[lnQi] =− lnn

that plays the role of a constant that does not affect the minimization of the norm.

ESTIMATION OF E[lnQ]

From the Taylor series of lnqi around E[Qi] , it comes directly that the first- and second-
order approximation of E[lnQ] are given by

E[lnQi]' lnE[Qi] ∀i (1st-order)

E[lnQi]' lnE[Qi]−
Var[Qi]

2E2[Qi]
∀i (2nd-order)

with E[lnQi] ≤ lnE[Qi] from Jensen’s inequality. It is worth noting that using the first-
order approximation leads directly to the result p̂ = E[Q]. Indeed, using this approxima-
tion allows us to write from eq. (2) that

E[D(p||Q)]' p′ lnp−p′ lnE[Q] = D(p||E[Q])≥ 0

and from the divergence properties, the minimum value is thus

D(p||E[Q]) = 0 ⇐⇒ p = E[Q]

As good as it might appear to have a second-order approximation, it is worth remem-
bering that the Taylor series of the logarithm function is converging rather slowly and so,
depending on the accuracy requirements, these approximations could be considered as
reasonable or not. Providing higher-order approximation leads to serious complications,
and they might not even worth the pain precisely because of the slow convergence for the
series. However, a realistic option is the direct estimation of E[lnQ] from Monte-Carlo
integration, with

E[lnQ] = lim
N→∞

1
N

N

∑
j=1

lnq[ j]



where q[1], . . . ,q[N] are N independent random draws of probability vectors from the
distribution of Q. Although this might appear as a complicate task at a first sight because
of the possibly complex shape of Ω`, it turns out that this is easily accomplished if one
relies again on the tessellation of Ω` into a union of simplices, each of them being
an affine transform from the unit simplex. Indeed, it is sufficient to draw randomly N
vectors y[1], . . . ,y[N] from the unit simplex, where Y ∼ Dir(1), and to randomly map
them afterwards to the various simplices with a probability of selecting the ith simplex
as given by the corresponding wi. The whole procedure is extremely fast, as drawing
random vectors from the unit simplex is especially easy in our specific case.

CASE STUDY

Dataset

The study area is located in the Belgian Lorraine, in the south of the Luxembourg
province (Figure 1). Two sources of information are available for this application in
spatial prediction: (i) 428 point observations of the drainage classes derived from the
Aardewerk database that can be considered as error free (hard data) [9] and (ii) a
lithological map which is somehow inaccurate used as secondary variable (soft data).
For mapping purposes, a smaller area of 60 km2 is considered around Virton (Fig-
ure 2). Three soil drainage classes are obtained by grouping the original nine drainage
classes into three classes : c1="excessive to good drainage", c2="good to moderately bad
drainage" and c3="moderately bad to very bad drainage" [1]. Six lithological units are
considered : Modern alluvium (AMO), Luxembourg formation (LUX), Grandcourt for-
mation (GRT), Ethe formation (ETH), Mirwart formation (MIR) and Longwy formation
(LGW).

FIGURE 1. Study area. The lithological map with the sampling locations for the Aardewerk database.

In the GRT and ETH formations, the second drainage class is the most probable
while the third class is the most probable in the AMO, LUX, MIR and LGW formations
(Table1).



FIGURE 2. Area around Virton. Two sources of data, with (a) the sampled location for the Aardewerk
database and (b) the lithological map.

TABLE 1. P̂(D=ci|L=c j) from sampled values directly
[%]

j=1
AMO

j=2
LUX

j=3
GRT

j=4
ETH

j=5
MIR

j=6
LGW

i=1 55.6 62.7 22.2 28.1 78.6 67.0
i=2 44.4 34.9 66.7 61.4 14.3 31.9
i=3 0.0 2.4 11.1 10.5 7.1 1.1

Results

Let us define the conditional probability function Pi| j as P(Drainage=ci|Lithology=c j).
The secondary variable is integrated in the prediction according to four different cases
(Table 2) coded in MATLAB® : (i) from sampled values directly, (ii) from inequalities
that can include the order of magnitude of the probability of observing each class, (iii)
from ranking categories from the most likely class to the least likely class and (iv)
from identifying the most probable class only. The information content of the secondary
variable is thus progressively degraded from the first to the last case. Table 1 presents the
estimated conditional probability function P̂(Drainage=ci | Lithology=c j) where the 428
sampled values are used as direct estimates. The information content of the secondary
variable is then progressively degraded from table 3 to table 5.

TABLE 2. Coding for Pi| j [%] in the four cases

Case 1 Case 2 Case 3 Case 4

P1|1= 55.6 ; P2|1=44.4 ; P3|1=0.0 P2|1 > P3|1 < P1|1 P1|1 > P2|1 > P3|1 P2|1 < P1|1 > P3|1
P1|2=62.7 ; P2|2=34.9 ; P3|2=2.4 P1|2 > P2|2 > P3|2 P1|2 > P2|2 > P3|2 P2|2 < P1|2 > P3|2
P1|3=22.2 ; P2|3=66.7 ; P3|3=11.1 P1|3 < P2|3 > P3|3 P2|3 > P1|3 > P3|3 P1|3 < P2|3 > P3|3
P1|4=28.1 ; P2|4=61.4 ; P3|4=10.5 P1|4 < P2|4 > P3|4 P2|4 > P1|4 > P3|4 P1|4 < P2|4 > P3|4
P1|5=78.6 ; P2|5=14.3 ; P3|5=7.1 P2|5 < P1|5 > P3|5 P1|5 > P2|5 > P3|5 P2|5 < P1|5 > P3|5
P1|6=67.0 ; P2|6=31.9 ; P3|6=1.1 P1|6 > P2|6 > 10 P3|6 P1|6 > P2|6 > P3|6 P2|6 < P1|6 > P3|6



TABLE 3. P̂(D=ci|L=c j) from inequalities that can in-
clude the order of magnitude of the probability of observ-
ing each class [%] (Case 2)

j=1
AMO

j=2
LUX

j=3
GRT

j=4
ETH

j=5
MIR

j=6
LGW

i=1 45.7 64.6 15.7 15.7 68.5 67,9
i=2 45.5 27.3 68.5 68.5 15.8 31.0
i=3 8.8 8.1 15.7 15.7 15.7 1.1

TABLE 4. P̂(D=ci|L=c j) from ranking categories from
the most likely to the least likely class [%] (Case 3)

j=1
AMO

j=2
LUX

j=3
GRT

j=4
ETH

j=5
MIR

j=6
LGW

i=1 64.6 64.7 27.3 27.3 64.7 64.5
i=2 27.3 27.3 64.6 64.7 27.3 27.4
i=3 8.1 8.1 8.1 8.1 8.0 8.1

TABLE 5. P̂(D=ci|L=c j) from identification of the most
probable class [%] (Case 4)

j=1
AMO

j=2
LUX

j=3
GRT

j=4
ETH

j=5
MIR

j=6
LGW

i=1 68.4 68.5 15.8 15.7 68.6 68.5
i=2 15.8 15.7 68.5 68.5 15.7 15.7
i=3 15.8 15.8 15.8 15.8 15.7 15.9

The Bayesian Data Fusion methodology for categorical variables [10] is applied for
combining the two sources of information and obtaining the estimated probabilities of
the three soil drainage classes. Four maps of the maximum probability drainage classes
are presented with the information content of the secondary variables progressively
degraded from figure 3 (a), where sampled values are used directly to figure 3 (d), where
only the most probable class is identified.

At first sight, the four cases lead to similar patterns. Whatever the amount of informa-
tion taken into account as secondary information, the lithology plays an important role
in the prediction when no hard data are at hand in the neighbourhood.

CONCLUSIONS

The MaxEnt problem deals with equality constraints and the MinDiv methodology
extends the problem to inequality constraints. A generalization of the results for the
minimum norm (MinNorm) approximations of the MinDiv problem allows both cases
to be processed together.



FIGURE 3. Maps of the maximum probability drainage classes, with the multivariate probability table
rebuilt from (a) sampled values directly, (b) inequalities that can include the order of magnitude of the
probability of observing each class, (c) inequalities ranking each category from the most likely to the least
likely class and (d) inequalities that identify the most probable class only.

In the application presented in this paper, 428 point observations of the variable of
interest are available. This large number of point observations allows us to use the
sampled values as direct estimates for the conditional probability function. However,
in most applications in environmental sciences, only few data are at hand. In this case,
processing sampled values as if they were reliable estimates should be avoided and
MinNorm approximations can be a more reasonable approach. By the light of the results,
the amount of information integrated in cases 2, 3 and 4 leads to estimates similar to the
ones based directly on the large number of sampled values. MinNorm methodology for
solving problems involving both equalities and inequalities constraints can be applied in
a wide variety of applications. The small application described in this paper shows how
equality and inequality information can become useful to improve the prediction when
few data are at hand or when taking into account experts opinion rewritten as equalities
and inequalities constraints is of prime interest in probability estimates.
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