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Abstract. We report Fisher information geometry of the barycenter map associated with Busemann
function By of an Hadamard manifold X and present its application to Riemannian geometry of X
from viewpoint of Fisher information geometry. This report is an improvement of [I-Sat’ 13] together
with a fine investigation of the barycenter map.
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1. BARYCENTER MAP

Let u be a probability measure on the ideal boundary dX of X. A point x € X is called a
barycenter of 1, when x is a critical point of the p-average Busemann function on X;;

Bu(y)= [ Bo(y)du(e)yeX. m

Denote by 22T = 27 (9X,d0) the space of probability measures 4 = f(6)d6 de-
fined on dX satisfying 4 < d6 and with continuous density f = f(6) > 0. A point
x € X is a barycenter of a measure u if and only if the p-average one-form dB(-) =
Jocox dBo(-)du(0) vanishes at x.

We follow the idea given by [Douady-E], [Bes-C-G’95].

Theorem 1.1([I-Sat’14-2]). The function B, admits for any u € 2 a barycenter,
provided (i) X satisfies the axiom of visibility and (ii) Bg(x) is continuous in 6 € dX.

X is said to satisfy the axiom of visibility, when any two ideal points 6, 6; of dX,
0 # 61, can be joined with a geodesic in X (see [Eber-O]). In [Bes-C-G’95] the existence
theorem is verified under the condtions that (i) By satisfies lim,_,g, Bg(x) = +co, when
01 # 6 and (ii) Bg(-) is continuous with respect to 6. The condition (i) can be replaced
by the axiom of visibility (refer to [Ball-G-S]) to obtain Theorem 1.1.

For the uniqueness, we have:

Theorem 1.2([I-Sat’ 14-2],[I-Sat’ 14-3]). Assume (i) and (ii) in Theorem 1.1. If, for some
Uy € P the p,-average Hessian

(VB )i(1)= [ (VdBo)i(-)dpo(6) @



is positive definite on 7,X at any x € X, then the existence of barycenter is unique for
any u € 2.

Thus, we obtain a map, called the barycenter map:
bar: P = 27 (9X,d0) — X, 1+ x,
where x is a barycenter of u.

Notice that the differentiability of By, is guaranteed when the Hessian of By is uni-
formly bounded with respect to 6 and (X, g) is of uniformly bounded Ricci curvature.

2. A FIBRE SPACE STRUCTURE OF 2" OVER X AND FISHER
INFORMATION METRIC

It is easily shown that the map bar is regular at any p, that is, the differential map
dbary : Ty 2" — T,X

is surjective(see [Bes-C-G’96]). Moreover the map bar is itself surjective and hence it
yields a fibre space projection with fibre bar—!(x) over x € X,

P (9X,d6) 3)
1 bar
X

provided X carries Busemann-Poisson kernel P(x,0)d0 = exp{—¢Bg(x)}, the funda-
mental solution of Dirichlet problem at the boundary dX, namely, Poisson kernel repre-
sented by Bg(x) in an exponential form (¢ = ¢(X) > 0 is the volume entropy of X). An
Hadamard manifold admitting Busemann-Poisson kernel turns out to be asymptotically
harmonic ([Led],[I-Sat’11]), since ABy is constant for any 6.

The tangent space Ty bar~! (x) of bar~!(x) is characterized as:
(teT, 7" / (dBg):(U)dz(0) = 0, YU € T.X},
0coXx
SO one gets:
Proposition 2.1. 7 € T, 2" belongs to Tybar~!(x) if and only if
Gy (7,Nu(U)) =0,VU € T,X 4)

where G, is the Fisher information metric of #* at yt and N, : T,.X — T, & is a linear
map defined by

Ny:TX — T,2" S
U + (dBg)x(U)du(6).



From this we have:

Proposition 2.2. Atany u € &7 the tangent space 7, " admits an orthogonal direct
sum decomposition into the vertical and horizontal subspaces as

Ty P+ = Tybar~ (x) © ImN,, x = bar(p), (6)

with dim /mN, = dimX.

Definition 2.1([Am-N], [Fried] and [I-Sat’11]). A positive definite inner product Gy
on the tangent space 7, & is defined by:

B dt , . dt +
Gulzm) = [ GO (0)du(e), T.1 € 7", )

The collection {Gy |u € £T} provides a Riemannian metric on &7, called Fisher
information metric G.

As G is viewed as a Riemannian metric on an infinite dimensional manifold &, the
Levi-Civita connection V is given (see [Fried, p.276])

\

1

1 /dt, .dtT dt,  .dt
__<@<e)d—;(e)— @w)d—;(f))du(ﬂ))u, ®)

at a point € 227 for constant vector fields 7, 7; on &+,
The space &+ with the metric G has then constant sectional curvature % (refer to
[Fried, Satz 2, §1]). By using formula (8) we have:

Theorem 2.3.([I-Sat’ 14-2],[I-Sat’ 14-3]) Let y(¢) be a geodesic in & satisfying y(0) =
p and ¥'(0) = 7 € Ty &*, where 7 is a unit tangent vector; G(7,7) = 1. Then ¥(t) is
described as

2
) = (cos%-l—sm% 3—5(9)) du(6) ©)

2
= (eos 205 Lsin gy 4t (4
= (cos 2—|—200s231n2 du<9)+$1n 5 (d,u) (9)) du(e).

Note that the geodesic lies inside of &7 as far as the density maintains positivity with
respect to 0 € dX.

Corollary 2.4.([I-Sat’ 14-2],[I-Sat’ 14-3]) Every geodesic in &7 is periodic, of period
27. The length ¢ of a geodesic segment joining two probability measures ¢ and (g of
P is given by:

/dﬂl / | d
— 0)d 10
cos /8)( d.u o dlil )duy (6 (10)

and equality “ =" in (10) holds provided at least cos(5) + s1n(§)g— (6) > 0 for any 6.



For these see also [Fried, p. 279]. The integration in RHS of (10) is the f-divergence

Dy(ullan) = [ £ du.fw) = Vi ar

in statistical models (refer to [Am-N, p. 56]).
The formula (9), an improvement of the formula given by T. Friedrich (refer to [Fried,
p-279]), can then assert the following:

Corollary 2.5.([I-Sat’ 14-2],[I-Sat’ 14 3]) Let u Uy € P, u# uy. Then, there exists a
unique geodesic tt(z) such that p(0 = U1, where d > 0 is defined by

cos— /,/ff: )du(6) =D (k||u). (12)

Corollary 2.6.([I-Sat’14-2],[I-Sat’14-3]) Let y(r) = exp, 7 be a geodesw satisfying

7(0) = u and ¥/ (0) = 7. Then ¥ is entirely contained in the fibre bar~!(x) over x =
bar(p) if and only if 7 satisfies at u

The equation (13) implies that the tangent vector 7 is a totally geodesic vector with
respect to the second fundamental form H, i.e., 7 satisfies H(7,7) = 0 at u, since the
image Im Ny, of the linear map N, distributes a normal bundle of bar~!(x) at the measure

w. Here, Hy (7,71) := (V¢11)* at p.

Example 2.1. Let o be the base point for dX, dimX > 2 such that dX = §,X and
bar(p) = o for the canonical measure L = d6 € P . Identify (dBy), with —Y;0'¢;,
' € R, with respect to an orthonormal basis {e;} of T,X. Define T = %e)iefde, i#ja
vector tangent to &2 (c is a constant normalizing 7 as a unit). Then T € Tubar_1 (0) is

seen and y(r) = exp,, 17 is a geodesic which is, from Corollary 2.6, contained in bar~'(o)
for ¢, provided at least the density function is positive. In fact, the 7 satisfies (13).

3. BARYCENTRICALLY ASSOCIATED MAPS AND ISOMETRIES
OF X

A Riemannian isometry ¢ of X transforms every geodesic into a geodesic and hence in-
duces naturally a map ¢ : dX — dX, a homeomorphism with respect to the cone topol-
ogy. Further, the normalized Busemann function admits a cocycle formula ([Gui-L-T]);

Bg(9x) =By-15(x) +Bg(@o),V(x,0) € X x dX (14)
(o 1s the normalization point of By).
Proposition 3.1 (Equivariant action formula [Bes-C-G’95, (5.1)]).

baro{; = @obar, namely (15)
bar(sp) = o@(bar(n)) Vue 77,



where ®; : T — 2% is the push-forward of a homeomorphism ® of X

| mO) @ 0)= | (ho®)(6) du(6) (16)

6edX

for any function 7 = h(6) on dX (see [Vill, p.4]).
So, we consider the situation converse of Proposition 3.1 as

Definition 3.1. Let @ : dX — dX be a homeomorphism of dX. Then, a bijective map
¢ : X — X is called barycentrically associated to ®, when ¢ satisfies the relation
bar o ®; = @ o bar in the diagram

PH(9X,d0) 2 2 (9X,d0) (17)
 bar  bar
X 2, X

So, an isometry ¢ is a map barycentrically associated to ® = .

Let bar : #* — X be the barycenter map. Then, with respect to a homeomorphism
® : JX — JX and a bijective map ¢ : X — X we obtain the following ([I-Sat’14],
[[-Sat’14-2],[1-Sat’ 14-3])

Theorem 3.2. Assume that a pair (®,¢) with ¢ € C! satisfies: (a) bar(Pyu) =
@(bar(p)), vV € 2%, and (b) O(@(x)) = P;(O(x)), Vx € X;

PH(9X,d0) = P (9X,d6) (18)
10 10
X 2, X

Then, ¢ must be a Riemannian isometry of X.

Here, ® : X — Pty P(y,0)d6 is a map associated with a Busemann-Poisson
kernel P(x,0) = exp{—gBg(x)}. For the definition of Poisson kernel refer to [Sch-Y]
and [Bes-C-G’95] and see also [I-Sat’14-2] for the definition of Busemann-Poisson
kernel.

Remark 3.1. If X admits a Busemann-Poisson kernel, then ® gives a cross section of
the fibre space #* — X, since bar(,) = x for W, = P(x,0)d6 ([Bes-C-G’95, (5.1)]),
and moreover, every U € 1 admits a unique barycenter from Theorem 1.2, since it
holds

[ (VdBo)(U.V)d(8) =g [ (dBo)(U)(dB):(U)dpn(0), U,V €TX (19
X X

that is

(Vd By, )x(U,V) = q Gy, (N, (U), Ny, (V)) (20)



(g > 0 1s the volume entropy of X) and at any y € X
(Vd By,),(U,U) > C(Vd By,),(U,U) 21)

for some constant C > 0, depending on x, y. From these, the ti,-average Hessian Vd B,
turns out to be positive definite everywhere.

With respect to the conditions (a) and (b) of Theorem 3.2 we have

Theorem 3.3. Let X be an Hadamard manifold. Assume that X satisfies assumptions (i)
and (ii) of Theorem 1.1 and moreover admits a Busemann-Poisson kernel. Let @ : 0X —
dX be a homeomorphism. If a bijective map ¢ : X — X is C! with surjective differential
d@,, Vx € X, then the condition (b), namely, @(¢(x)) = P4 (0(x)), Vx € X, implies (a),
namely, bar(®yu) = @(bar(u)),Vu € Z+.

4. DAMEK-RICCI SPACES AND MOTIVATION

A Damek-Ricci space is a solvable Lie group, an R-extension of a generalized Heisen-
berg group and carries a left invariant Riemannian metric and further provides a space on
which harmonic analysis is developed ([Ank-D-Y],[Dam-R]). For precise definition and
differential geometry of Damek-Ricci space, refer to [Bern-T-V]. Damek-Ricci spaces
are Hadamard manifolds whose typical examples are complex hyperbolic, quaternionic
hyperbolic and Cayley hyperbolic spaces as strictly negatively curved ones, except for
real hyperbolic spaces ([Dotti],[Lanz]). Any Damek-Ricci space satisfies the axiom of
visibility and has 6-continous Busemann function (refer to [I-Sat’10] for these) . More-
over, it admits a Busemann-Poisson kernel (see [I-Sat’10]) so that it satisfies (i) and (i1)
of Theorem 1.1, and Theorem 1.2. The most important implication of Damek-Ricci
spaces is that they provide the counterexample of Lichnerowicz conjecture of non-
compact harmonic manifold version (refer to [Bern-T-V]).

So, relating to this, our motivation is to characterize Damek-Ricci spaces from a
viewpoint of geometry, since only a Lie group characterization of Damek-Ricci space
is known from Heber’s theorem ([Heb]). A Damek-Ricci space turns out recently to
be Gromov-hyperbolic, whereas it admits zero sectional curvature (see [I-Sat’14-2]) for
this and refer to [Coo-D-P], [Bourd], [Kniep] for the Gromov hyperbolicity).

Thus, we pose the following. Let X, be a Damek-Ricci space and X an Hadamard
manifold, quasi-isometric to X,, and assume that if X admits a Busemann-Poisson kernel,
then, is X isometric, or homothetic to X, as a Riemannian manifold ? At least, from this
assumption, we have that any Riemanian isometry of X,, induces a homeomorphism of
dX of X (for the detail, see [I-Sat’14-2]). From this fact, we have faced our central
theme, namely, differential geometry of a map being associated barycentrically to a
homeomorphism of dX, as discussed in sections 1 and 3, where we answered partially
to the above question.
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