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Abstract. We report Fisher information geometry of the barycenter map associated with Busemann
function Bθ of an Hadamard manifold X and present its application to Riemannian geometry of X
from viewpoint of Fisher information geometry. This report is an improvement of [I-Sat’13] together
with a fine investigation of the barycenter map.
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1. BARYCENTER MAP

Let µ be a probability measure on the ideal boundary ∂X of X . A point x ∈ X is called a
barycenter of µ , when x is a critical point of the µ-average Busemann function on X ;

Bµ(y) =
∫

θ∈∂ X
Bθ (y)dµ(θ),y ∈ X . (1)

Denote by P+ = P+(∂X ,dθ) the space of probability measures µ = f (θ)dθ de-
fined on ∂X satisfying µ ≪ dθ and with continuous density f = f (θ) > 0. A point
x ∈ X is a barycenter of a measure µ if and only if the µ-average one-form dBµ(·) =∫

θ∈∂X dBθ (·)dµ(θ) vanishes at x.
We follow the idea given by [Douady-E], [Bes-C-G’95].

Theorem 1.1([I-Sat’14-2]). The function Bµ admits for any µ ∈ P+ a barycenter,
provided (i) X satisfies the axiom of visibility and (ii) Bθ (x) is continuous in θ ∈ ∂X .

X is said to satisfy the axiom of visibility, when any two ideal points θ , θ1 of ∂X ,
θ ̸= θ1, can be joined with a geodesic in X (see [Eber-O]). In [Bes-C-G’95] the existence
theorem is verified under the condtions that (i) Bθ satisfies limx→θ1 Bθ (x) = +∞, when
θ1 ̸= θ and (ii) Bθ (·) is continuous with respect to θ . The condition (i) can be replaced
by the axiom of visibility (refer to [Ball-G-S]) to obtain Theorem 1.1.

For the uniqueness, we have:

Theorem 1.2([I-Sat’14-2],[I-Sat’14-3]). Assume (i) and (ii) in Theorem 1.1. If, for some
µo ∈ P+ the µo-average Hessian

(∇dBµo)x(·, ·) =
∫

θ∈∂X
(∇d Bθ )x(·, ·)dµo(θ) (2)



is positive definite on TxX at any x ∈ X , then the existence of barycenter is unique for
any µ ∈ P+.

Thus, we obtain a map, called the barycenter map:

bar : P+ = P+(∂X ,dθ)→ X , µ 7→ x,

where x is a barycenter of µ .

Notice that the differentiability of Bµ is guaranteed when the Hessian of Bθ is uni-
formly bounded with respect to θ and (X ,g) is of uniformly bounded Ricci curvature.

2. A FIBRE SPACE STRUCTURE OF P+ OVER X AND FISHER
INFORMATION METRIC

It is easily shown that the map bar is regular at any µ , that is, the differential map

d barµ : TµP+ → TyX

is surjective(see [Bes-C-G’96]). Moreover the map bar is itself surjective and hence it
yields a fibre space projection with fibre bar−1(x) over x ∈ X ,

P+(∂X ,dθ) (3)
↓ bar
X

provided X carries Busemann-Poisson kernel P(x,θ)dθ = exp{−qBθ (x)}, the funda-
mental solution of Dirichlet problem at the boundary ∂X , namely, Poisson kernel repre-
sented by Bθ (x) in an exponential form (q = q(X)> 0 is the volume entropy of X). An
Hadamard manifold admitting Busemann-Poisson kernel turns out to be asymptotically
harmonic ([Led],[I-Sat’11]), since ∆Bθ is constant for any θ .

The tangent space Tµbar−1(x) of bar−1(x) is characterized as:

{τ ∈ TµP+ |
∫

θ∈∂X
(dBθ )x(U)dτ(θ) = 0, ∀U ∈ TxX},

so one gets:

Proposition 2.1. τ ∈ TµP+ belongs to Tµbar−1(x) if and only if

Gµ
(
τ,Nµ(U)

)
= 0, ∀U ∈ TxX (4)

where Gµ is the Fisher information metric of P+ at µ and Nµ : TxX → TµP+ is a linear
map defined by

Nµ : TxX → TµP+ (5)
U 7→ (dBθ )x(U)dµ(θ).



From this we have:

Proposition 2.2. At any µ ∈ P+ the tangent space TµP+ admits an orthogonal direct
sum decomposition into the vertical and horizontal subspaces as

TµP+ = Tµbar−1(x)⊕ ImNµ , x = bar(µ), (6)

with dim ImNµ = dimX .

Definition 2.1([Am-N], [Fried] and [I-Sat’11]). A positive definite inner product Gµ
on the tangent space TµP+ is defined by:

Gµ(τ,τ1) =
∫

θ∈∂X

dτ
dµ

(θ)
dτ1

dµ
(θ)dµ(θ), τ,τ1 ∈ TµP+. (7)

The collection {Gµ |µ ∈ P+} provides a Riemannian metric on P+, called Fisher
information metric G.

As G is viewed as a Riemannian metric on an infinite dimensional manifold P+, the
Levi-Civita connection ∇ is given (see [Fried, p.276])

∇τ1τ =−1
2

(
dτ
dµ

(θ)
dτ1

dµ
(θ)−

∫ dτ
dµ

(θ)
dτ1

dµ
(θ)dµ(θ)

)
µ, (8)

at a point µ ∈ P+ for constant vector fields τ , τ1 on P+.
The space P+ with the metric G has then constant sectional curvature 1

4 (refer to
[Fried, Satz 2, §1]). By using formula (8) we have:

Theorem 2.3.([I-Sat’14-2],[I-Sat’14-3]) Let γ(t) be a geodesic in P+ satisfying γ(0)=
µ and γ ′(0) = τ ∈ TµP+, where τ is a unit tangent vector; G(τ,τ) = 1. Then γ(t) is
described as

γ(t) =

(
cos

t
2
+ sin

t
2

dτ
dµ

(θ)
)2

dµ(θ) (9)

=

(
cos2 t

2
+2cos

t
2

sin
t
2

dτ
dµ

(θ)+ sin2 t
2

(
dτ
dµ

)2

(θ)

)
dµ(θ).

Note that the geodesic lies inside of P+ as far as the density maintains positivity with
respect to θ ∈ ∂X .

Corollary 2.4.([I-Sat’14-2],[I-Sat’14-3]) Every geodesic in P+ is periodic, of period
2π . The length ℓ of a geodesic segment joining two probability measures µ and µ1 of
P+ is given by:

cos
ℓ

2
<
∫

∂X

√
dµ1

dµ
(θ)dµ(θ) =

∫
∂X

√
dµ
dµ1

(θ)dµ1(θ) (10)

and equality “ = ” in (10) holds provided at least cos( ℓ2)+ sin( ℓ2)
dτ
dµ (θ)> 0 for any θ .



For these see also [Fried, p. 279]. The integration in RHS of (10) is the f -divergence

D f (µ||µ1) =
∫

f (
dµ1

dµ
)dµ, f (u) =

√
u (11)

in statistical models (refer to [Am-N, p. 56]).
The formula (9), an improvement of the formula given by T. Friedrich (refer to [Fried,

p.279]), can then assert the following:

Corollary 2.5.([I-Sat’14-2],[I-Sat’14-3]) Let µ , µ1 ∈ P+, µ ̸= µ1. Then, there exists a
unique geodesic µ(t) such that µ(0) = µ , µ(d) = µ1, where d > 0 is defined by

cos
d
2
=
∫

θ

√
dµ1

dµ
(θ)dµ(θ) = D f (µ||µ1). (12)

Corollary 2.6.([I-Sat’14-2],[I-Sat’14-3]) Let γ(t) = expµ tτ be a geodesic satisfying
γ(0) = µ and γ ′(0) = τ . Then γ is entirely contained in the fibre bar−1(x) over x =
bar(µ) if and only if τ satisfies at µ

Gµ(∇ττ,Nµ(U)) = 0, ∀U ∈ TxX . (13)

The equation (13) implies that the tangent vector τ is a totally geodesic vector with
respect to the second fundamental form H, i.e., τ satisfies H(τ,τ) = 0 at µ , since the
image Im Nµ of the linear map Nµ distributes a normal bundle of bar−1(x) at the measure
µ . Here, Hµ(τ,τ1) := (∇ττ1)

⊥ at µ .

Example 2.1. Let o be the base point for ∂X , dimX ≥ 2 such that ∂X ∼= SoX and
bar(µ) = o for the canonical measure µ = dθ ∈ P+. Identify (dBθ )o with −∑i θ iei,
θ i ∈ R, with respect to an orthonormal basis {ei} of ToX . Define τ = 1

c θ iθ jdθ , i ̸= j a
vector tangent to P+(c is a constant normalizing τ as a unit). Then τ ∈ Tµbar−1(o) is
seen and γ(t)= expµ tτ is a geodesic which is, from Corollary 2.6, contained in bar−1(o)
for t, provided at least the density function is positive. In fact, the τ satisfies (13).

3. BARYCENTRICALLY ASSOCIATED MAPS AND ISOMETRIES
OF X

A Riemannian isometry φ of X transforms every geodesic into a geodesic and hence in-
duces naturally a map φ̂ : ∂X → ∂X , a homeomorphism with respect to the cone topol-
ogy. Further, the normalized Busemann function admits a cocycle formula ([Gui-L-T]);

Bθ (φx) = Bφ̂−1θ (x)+Bθ (φo), ∀(x,θ) ∈ X ×∂X (14)

(o is the normalization point of Bθ ).

Proposition 3.1 (Equivariant action formula [Bes-C-G’95, (5.1)]).

bar ◦ φ̂♯ = φ ◦bar, namely (15)
bar(φ̂♯µ) = φ(bar(µ)) ∀µ ∈ P+,



where Φ♯ : P+ → P+ is the push-forward of a homeomorphism Φ of ∂X ;

∫
θ∈∂X

h(θ) d[Φ♯µ](θ) =
∫

θ∈∂ X
(h◦Φ)(θ) dµ(θ) (16)

for any function h = h(θ) on ∂X (see [Vill, p.4]).

So, we consider the situation converse of Proposition 3.1 as

Definition 3.1. Let Φ : ∂X → ∂X be a homeomorphism of ∂X . Then, a bijective map
φ : X → X is called barycentrically associated to Φ, when φ satisfies the relation
bar ◦Φ♯ = φ ◦bar in the diagram

P+(∂X ,dθ)
Φ♯−→ P+(∂X ,dθ) (17)

↓ bar ↓ bar

X
φ−→ X

So, an isometry φ is a map barycentrically associated to Φ = φ̂ .

Let bar : P+ → X be the barycenter map. Then, with respect to a homeomorphism
Φ : ∂X → ∂X and a bijective map φ : X → X we obtain the following ([I-Sat’14],
[I-Sat’14-2],[I-Sat’14-3])

Theorem 3.2. Assume that a pair (Φ,φ) with φ ∈ C1 satisfies: (a) bar(Φ♯µ) =
φ(bar(µ)), ∀µ ∈ P+, and (b) Θ(φ(x)) = Φ♯ (Θ(x)) , ∀x ∈ X ;

P+(∂X ,dθ)
Φ♯−→ P+(∂X ,dθ) (18)

↑ Θ ↑ Θ

X
φ−→ X

Then, φ must be a Riemannian isometry of X .

Here, Θ : X → P+ ;y 7→ P(y,θ)dθ is a map associated with a Busemann-Poisson
kernel P(x,θ) = exp{−qBθ (x)}. For the definition of Poisson kernel refer to [Sch-Y]
and [Bes-C-G’95] and see also [I-Sat’14-2] for the definition of Busemann-Poisson
kernel.

Remark 3.1. If X admits a Busemann-Poisson kernel, then Θ gives a cross section of
the fibre space P+ → X , since bar(µx) = x for µx = P(x,θ)dθ ([Bes-C-G’95, (5.1)]),
and moreover, every µ ∈ P+ admits a unique barycenter from Theorem 1.2, since it
holds∫

∂X
(∇dBθ )x(U,V )dµx(θ) = q

∫
∂X

(dBθ )x(U)(dBθ )x(U)dµx(θ),U,V ∈ TxX (19)

that is

(∇d Bµx)x(U,V ) = q Gµx

(
Nµx(U),Nµx(V )

)
(20)



(q > 0 is the volume entropy of X) and at any y ∈ X

(∇d Bµx)y(U,U)≥C (∇d Bµy)y(U,U) (21)

for some constant C > 0, depending on x, y. From these, the µx-average Hessian ∇d Bµx

turns out to be positive definite everywhere.

With respect to the conditions (a) and (b) of Theorem 3.2 we have

Theorem 3.3. Let X be an Hadamard manifold. Assume that X satisfies assumptions (i)
and (ii) of Theorem 1.1 and moreover admits a Busemann-Poisson kernel. Let Φ : ∂X →
∂X be a homeomorphism. If a bijective map φ : X → X is C1 with surjective differential
dφx, ∀x ∈ X , then the condition (b), namely, Θ(φ(x)) = Φ♯ (Θ(x)) , ∀x ∈ X , implies (a),
namely, bar(Φ♯µ) = φ(bar(µ)), ∀µ ∈ P+.

4. DAMEK-RICCI SPACES AND MOTIVATION

A Damek-Ricci space is a solvable Lie group, an R-extension of a generalized Heisen-
berg group and carries a left invariant Riemannian metric and further provides a space on
which harmonic analysis is developed ([Ank-D-Y],[Dam-R]). For precise definition and
differential geometry of Damek-Ricci space, refer to [Bern-T-V]. Damek-Ricci spaces
are Hadamard manifolds whose typical examples are complex hyperbolic, quaternionic
hyperbolic and Cayley hyperbolic spaces as strictly negatively curved ones, except for
real hyperbolic spaces ([Dotti],[Lanz]). Any Damek-Ricci space satisfies the axiom of
visibility and has θ -continous Busemann function (refer to [I-Sat’10] for these) . More-
over, it admits a Busemann-Poisson kernel (see [I-Sat’10]) so that it satisfies (i) and (ii)
of Theorem 1.1, and Theorem 1.2. The most important implication of Damek-Ricci
spaces is that they provide the counterexample of Lichnerowicz conjecture of non-
compact harmonic manifold version (refer to [Bern-T-V]).

So, relating to this, our motivation is to characterize Damek-Ricci spaces from a
viewpoint of geometry, since only a Lie group characterization of Damek-Ricci space
is known from Heber’s theorem ([Heb]). A Damek-Ricci space turns out recently to
be Gromov-hyperbolic, whereas it admits zero sectional curvature (see [I-Sat’14-2]) for
this and refer to [Coo-D-P], [Bourd], [Kniep] for the Gromov hyperbolicity).

Thus, we pose the following. Let Xo be a Damek-Ricci space and X an Hadamard
manifold, quasi-isometric to Xo and assume that if X admits a Busemann-Poisson kernel,
then, is X isometric, or homothetic to Xo as a Riemannian manifold ? At least, from this
assumption, we have that any Riemanian isometry of Xo induces a homeomorphism of
∂X of X (for the detail, see [I-Sat’14-2]). From this fact, we have faced our central
theme, namely, differential geometry of a map being associated barycentrically to a
homeomorphism of ∂X , as discussed in sections 1 and 3, where we answered partially
to the above question.
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