Fisher Information Geometry of The Barycenter Map

Mitsuhiro Itoh* and Hiroyasu Satoh[†]

*Institute of Mathematics, University of Tsukuba, Japan [†]Nippon Institue of Technology, Japan

Abstract. We report Fisher information geometry of the barycenter map associated with Busemann function B_{θ} of an Hadamard manifold X and present its application to Riemannian geometry of X from viewpoint of Fisher information geometry. This report is an improvement of [I-Sat'13] together with a fine investigation of the barycenter map.

Keywords: Busemann function, ideal boundary, probability measure, barycenter, Fisher information metric

PACS: 02.40.Ky, 02.50.-r

1. BARYCENTER MAP

Let μ be a probability measure on the ideal boundary ∂X of X. A point $x \in X$ is called a *barycenter* of μ , when x is a critical point of the μ -average Busemann function on X;

$$\mathbf{B}_{\mu}(y) = \int_{\boldsymbol{\theta} \in \partial X} B_{\boldsymbol{\theta}}(y) d\mu(\boldsymbol{\theta}), y \in X.$$
(1)

Denote by $\mathscr{P}^+ = \mathscr{P}^+(\partial X, d\theta)$ the space of probability measures $\mu = f(\theta)d\theta$ defined on ∂X satisfying $\mu \ll d\theta$ and with continuous density $f = f(\theta) > 0$. A point $x \in X$ is a barycenter of a measure μ if and only if the μ -average one-form $d\mathbf{B}_{\mu}(\cdot) = \int_{\theta \in \partial X} dB_{\theta}(\cdot) d\mu(\theta)$ vanishes at x.

We follow the idea given by [Douady-E], [Bes-C-G'95].

Theorem 1.1([I-Sat'14-2]). The function \mathbf{B}_{μ} admits for any $\mu \in \mathscr{P}^+$ a barycenter, provided (i) X satisfies the axiom of visibility and (ii) $B_{\theta}(x)$ is continuous in $\theta \in \partial X$.

X is said to satisfy the axiom of visibility, when any two ideal points θ , θ_1 of ∂X , $\theta \neq \theta_1$, can be joined with a geodesic in *X* (see [Eber-O]). In [Bes-C-G'95] the existence theorem is verified under the conditions that (i) B_{θ} satisfies $\lim_{x\to\theta_1} B_{\theta}(x) = +\infty$, when $\theta_1 \neq \theta$ and (ii) $B_{\theta}(\cdot)$ is continuous with respect to θ . The condition (i) can be replaced by the axiom of visibility (refer to [Ball-G-S]) to obtain Theorem 1.1.

For the uniqueness, we have:

Theorem 1.2([I-Sat'14-2],[I-Sat'14-3]). Assume (i) and (ii) in Theorem 1.1. If, for some $\mu_o \in \mathscr{P}^+$ the μ_o -average Hessian

$$(\nabla d\mathbf{B}_{\mu_o})_x(\cdot,\cdot) = \int_{\theta \in \partial X} (\nabla dB_{\theta})_x(\cdot,\cdot) d\mu_o(\theta)$$
(2)

is positive definite on T_xX at any $x \in X$, then the existence of barycenter is unique for any $\mu \in \mathscr{P}^+$.

Thus, we obtain a map, called the *barycenter map*:

$$bar: \mathscr{P}^+ = \mathscr{P}^+(\partial X, d\theta) \to X, \mu \mapsto x,$$

where *x* is a barycenter of μ .

Notice that the differentiability of \mathbf{B}_{μ} is guaranteed when the Hessian of B_{θ} is uniformly bounded with respect to θ and (X,g) is of uniformly bounded Ricci curvature.

2. A FIBRE SPACE STRUCTURE OF \mathscr{P}^+ OVER X AND FISHER INFORMATION METRIC

It is easily shown that the map *bar* is regular at any μ , that is, the differential map

$$d \, bar_{\mu}: T_{\mu} \mathscr{P}^+ \to T_y X$$

is surjective(see [Bes-C-G'96]). Moreover the map *bar* is itself surjective and hence it yields a fibre space projection with fibre $bar^{-1}(x)$ over $x \in X$,

$$\mathcal{P}^{+}(\partial X, d\theta) \tag{3}$$

$$\downarrow bar$$

$$X$$

provided X carries Busemann-Poisson kernel $P(x, \theta)d\theta = \exp\{-qB_{\theta}(x)\}\)$, the fundamental solution of Dirichlet problem at the boundary ∂X , namely, Poisson kernel represented by $B_{\theta}(x)$ in an exponential form (q = q(X) > 0 is the volume entropy of X). An Hadamard manifold admitting Busemann-Poisson kernel turns out to be asymptotically harmonic ([Led],[I-Sat'11]), since ΔB_{θ} is constant for any θ .

The tangent space $T_{\mu}bar^{-1}(x)$ of $bar^{-1}(x)$ is characterized as:

$$\{ au\in T_{\mu}\mathscr{P}^+\mid \int_{ heta\in\partial X}(dB_{ heta})_x(U)d au(heta)=0,\,orall U\in T_xX\},$$

so one gets:

Proposition 2.1. $\tau \in T_{\mu} \mathscr{P}^+$ belongs to $T_{\mu} bar^{-1}(x)$ if and only if

$$G_{\mu}\left(\tau, N_{\mu}(U)\right) = 0, \,\forall U \in T_{x}X \tag{4}$$

where G_{μ} is the Fisher information metric of \mathscr{P}^+ at μ and $N_{\mu}: T_x X \to T_{\mu} \mathscr{P}^+$ is a linear map defined by

$$N_{\mu}: T_{x}X \to T_{\mu}\mathscr{P}^{+}$$

$$U \mapsto (dB_{\theta})_{x}(U)d\mu(\theta).$$
(5)

From this we have:

Proposition 2.2. At any $\mu \in \mathscr{P}^+$ the tangent space $T_{\mu} \mathscr{P}^+$ admits an orthogonal direct sum decomposition into the vertical and horizontal subspaces as

$$T_{\mu}\mathscr{P}^{+} = T_{\mu}bar^{-1}(x) \oplus ImN_{\mu}, x = bar(\mu),$$
(6)

with dim $ImN_{\mu} = \dim X$.

Definition 2.1([Am-N], [Fried] and [I-Sat'11]). A positive definite inner product G_{μ} on the tangent space $T_{\mu} \mathscr{P}^+$ is defined by:

$$G_{\mu}(\tau,\tau_{1}) = \int_{\theta \in \partial X} \frac{d\tau}{d\mu}(\theta) \frac{d\tau_{1}}{d\mu}(\theta) d\mu(\theta), \ \tau,\tau_{1} \in T_{\mu} \mathscr{P}^{+}.$$
(7)

The collection $\{G_{\mu} | \mu \in \mathscr{P}^+\}$ provides a Riemannian metric on \mathscr{P}^+ , called Fisher information metric G.

As G is viewed as a Riemannian metric on an infinite dimensional manifold \mathscr{P}^+ , the Levi-Civita connection ∇ is given (see [Fried, p.276])

$$\nabla_{\tau_1} \tau = -\frac{1}{2} \left(\frac{d\tau}{d\mu}(\theta) \frac{d\tau_1}{d\mu}(\theta) - \int \frac{d\tau}{d\mu}(\theta) \frac{d\tau_1}{d\mu}(\theta) d\mu(\theta) \right) \mu, \tag{8}$$

at a point $\mu \in \mathscr{P}^+$ for constant vector fields τ , τ_1 on \mathscr{P}^+ . The space \mathscr{P}^+ with the metric *G* has then constant sectional curvature $\frac{1}{4}$ (refer to [Fried, Satz 2, §1]). By using formula (8) we have:

Theorem 2.3.([I-Sat'14-2],[I-Sat'14-3]) Let $\gamma(t)$ be a geodesic in \mathscr{P}^+ satisfying $\gamma(0) =$ μ and $\gamma'(0) = \tau \in T_{\mu} \mathscr{P}^+$, where τ is a unit tangent vector; $G(\tau, \tau) = 1$. Then $\gamma(t)$ is described as

$$\gamma(t) = \left(\cos\frac{t}{2} + \sin\frac{t}{2} \frac{d\tau}{d\mu}(\theta)\right)^2 d\mu(\theta)$$

$$= \left(\cos^2\frac{t}{2} + 2\cos\frac{t}{2}\sin\frac{t}{2} \frac{d\tau}{d\mu}(\theta) + \sin^2\frac{t}{2} \left(\frac{d\tau}{d\mu}\right)^2(\theta)\right) d\mu(\theta).$$
(9)

Note that the geodesic lies inside of \mathscr{P}^+ as far as the density maintains positivity with respect to $\theta \in \partial X$.

Corollary 2.4.([I-Sat'14-2],[I-Sat'14-3]) Every geodesic in \mathscr{P}^+ is periodic, of period 2π . The length ℓ of a geodesic segment joining two probability measures μ and μ_1 of \mathscr{P}^+ is given by:

$$\cos\frac{\ell}{2} \le \int_{\partial X} \sqrt{\frac{d\mu_1}{d\mu}}(\theta) d\mu(\theta) = \int_{\partial X} \sqrt{\frac{d\mu}{d\mu_1}}(\theta) d\mu_1(\theta)$$
(10)

and equality " = " in (10) holds provided at least $\cos(\frac{\ell}{2}) + \sin(\frac{\ell}{2})\frac{d\tau}{d\mu}(\theta) > 0$ for any θ .

For these see also [Fried, p. 279]. The integration in RHS of (10) is the f-divergence

$$D_{f}(\mu || \mu_{1}) = \int f(\frac{d\mu_{1}}{d\mu}) d\mu, f(u) = \sqrt{u}$$
(11)

in statistical models (refer to [Am-N, p. 56]).

The formula (9), an improvement of the formula given by T. Friedrich (refer to [Fried, p.279]), can then assert the following:

Corollary 2.5.([I-Sat'14-2],[I-Sat'14-3]) Let μ , $\mu_1 \in \mathscr{P}^+$, $\mu \neq \mu_1$. Then, there exists a unique geodesic $\mu(t)$ such that $\mu(0) = \mu$, $\mu(d) = \mu_1$, where d > 0 is defined by

$$\cos\frac{d}{2} = \int_{\theta} \sqrt{\frac{d\mu_1}{d\mu}(\theta)} d\mu(\theta) = \mathbf{D}_f(\mu||\mu_1).$$
(12)

Corollary 2.6.([I-Sat'14-2],[I-Sat'14-3]) Let $\gamma(t) = \exp_{\mu} t\tau$ be a geodesic satisfying $\gamma(0) = \mu$ and $\gamma'(0) = \tau$. Then γ is entirely contained in the fibre $bar^{-1}(x)$ over $x = bar(\mu)$ if and only if τ satisfies at μ

$$G_{\mu}(\nabla_{\tau}\tau, N_{\mu}(U)) = 0, \forall U \in T_{x}X.$$
(13)

The equation (13) implies that the tangent vector τ is a totally geodesic vector with respect to the second fundamental form *H*, i.e., τ satisfies $H(\tau, \tau) = 0$ at μ , since the image $Im N_{\mu}$ of the linear map N_{μ} distributes a normal bundle of $bar^{-1}(x)$ at the measure μ . Here, $H_{\mu}(\tau, \tau_1) := (\nabla_{\tau} \tau_1)^{\perp}$ at μ .

Example 2.1. Let *o* be the base point for ∂X , dim $X \ge 2$ such that $\partial X \cong S_o X$ and $bar(\mu) = o$ for the canonical measure $\mu = d\theta \in \mathscr{P}^+$. Identify $(dB_\theta)_o$ with $-\sum_i \theta^i e_i$, $\theta^i \in \mathbf{R}$, with respect to an orthonormal basis $\{e_i\}$ of $T_o X$. Define $\tau = \frac{1}{c} \theta^i \theta^j d\theta$, $i \ne j$ a vector tangent to $\mathscr{P}^+(c$ is a constant normalizing τ as a unit). Then $\tau \in T_\mu bar^{-1}(o)$ is seen and $\gamma(t) = \exp_\mu t\tau$ is a geodesic which is, from Corollary 2.6, contained in $bar^{-1}(o)$ for *t*, provided at least the density function is positive. In fact, the τ satisfies (13).

3. BARYCENTRICALLY ASSOCIATED MAPS AND ISOMETRIES OF X

A Riemannian isometry φ of X transforms every geodesic into a geodesic and hence induces naturally a map $\hat{\varphi} : \partial X \to \partial X$, a homeomorphism with respect to the cone topology. Further, the normalized Busemann function admits a cocycle formula ([Gui-L-T]);

$$B_{\theta}(\varphi x) = B_{\hat{\varphi}^{-1}\theta}(x) + B_{\theta}(\varphi o), \forall (x,\theta) \in X \times \partial X$$
(14)

(*o* is the normalization point of B_{θ}).

Proposition 3.1 (Equivariant action formula [Bes-C-G'95, (5.1)]).

$$bar \circ \hat{\varphi}_{\sharp} = \varphi \circ bar, \text{ namely}$$

$$bar(\hat{\varphi}_{\sharp}\mu) = \varphi(bar(\mu)) \quad \forall \mu \in \mathscr{P}^{+},$$
(15)

where $\Phi_{\sharp}: \mathscr{P}^+ \to \mathscr{P}^+$ is the push-forward of a homeomorphism Φ of ∂X ;

$$\int_{\theta \in \partial X} h(\theta) \, d[\Phi_{\sharp}\mu](\theta) = \int_{\theta \in \partial X} \left(h \circ \Phi\right)(\theta) \, d\mu(\theta) \tag{16}$$

for any function $h = h(\theta)$ on ∂X (see [Vill, p.4]).

So, we consider the situation converse of Proposition 3.1 as

Definition 3.1. Let $\Phi : \partial X \to \partial X$ be a homeomorphism of ∂X . Then, a bijective map $\varphi : X \to X$ is called *barycentrically associated* to Φ , when φ satisfies the relation $bar \circ \Phi_{\sharp} = \varphi \circ bar$ in the diagram

$$\mathcal{P}^{+}(\partial X, d\theta) \xrightarrow{\Phi_{\sharp}} \mathcal{P}^{+}(\partial X, d\theta)$$

$$\downarrow bar \qquad \downarrow bar$$

$$X \xrightarrow{\varphi} \qquad X$$

$$(17)$$

So, an isometry φ is a map barycentrically associated to $\Phi = \hat{\varphi}$.

Let $bar : \mathscr{P}^+ \to X$ be the barycenter map. Then, with respect to a homeomorphism $\Phi : \partial X \to \partial X$ and a bijective map $\varphi : X \to X$ we obtain the following ([I-Sat'14], [I-Sat'14-2], [I-Sat'14-3])

Theorem 3.2. Assume that a pair (Φ, φ) with $\varphi \in C^1$ satisfies: (a) $bar(\Phi_{\sharp}\mu) = \varphi(bar(\mu)), \forall \mu \in \mathscr{P}^+$, and (b) $\Theta(\varphi(x)) = \Phi_{\sharp}(\Theta(x)), \forall x \in X;$

$$\begin{array}{cccc} \mathscr{P}^{+}(\partial X, d\theta) & \stackrel{\Phi_{\sharp}}{\longrightarrow} & \mathscr{P}^{+}(\partial X, d\theta) \\ & \uparrow \Theta & \uparrow \Theta \\ & X & \stackrel{\varphi}{\longrightarrow} & X \end{array}$$
(18)

Then, φ must be a Riemannian isometry of X.

Here, $\Theta: X \to \mathscr{P}^+; y \mapsto P(y, \theta) d\theta$ is a map associated with a Busemann-Poisson kernel $P(x, \theta) = \exp\{-qB_{\theta}(x)\}$. For the definition of Poisson kernel refer to [Sch-Y] and [Bes-C-G'95] and see also [I-Sat'14-2] for the definition of Busemann-Poisson kernel.

Remark 3.1. If *X* admits a Busemann-Poisson kernel, then Θ gives a cross section of the fibre space $\mathscr{P}^+ \to X$, since $bar(\mu_x) = x$ for $\mu_x = P(x, \theta)d\theta$ ([Bes-C-G'95, (5.1)]), and moreover, every $\mu \in \mathscr{P}^+$ admits a unique barycenter from Theorem 1.2, since it holds

$$\int_{\partial X} (\nabla dB_{\theta})_{x}(U,V) d\mu_{x}(\theta) = q \int_{\partial X} (dB_{\theta})_{x}(U) (dB_{\theta})_{x}(U) d\mu_{x}(\theta), U, V \in T_{x}X$$
(19)

that is

$$(\nabla d \mathbf{B}_{\mu_x})_x(U,V) = q \ G_{\mu_x}\left(N_{\mu_x}(U), N_{\mu_x}(V)\right)$$
(20)

(q > 0 is the volume entropy of *X*) and at any $y \in X$

$$(\nabla d \mathbf{B}_{\mu_x})_y(U,U) \ge C (\nabla d \mathbf{B}_{\mu_y})_y(U,U)$$
(21)

for some constant C > 0, depending on x, y. From these, the μ_x -average Hessian $\nabla d \mathbf{B}_{\mu_x}$ turns out to be positive definite everywhere.

With respect to the conditions (a) and (b) of Theorem 3.2 we have

Theorem 3.3. Let *X* be an Hadamard manifold. Assume that *X* satisfies assumptions (i) and (ii) of Theorem 1.1 and moreover admits a Busemann-Poisson kernel. Let $\Phi : \partial X \to \partial X$ be a homeomorphism. If a bijective map $\varphi : X \to X$ is C^1 with surjective differential $d\varphi_x$, $\forall x \in X$, then the condition (b), namely, $\Theta(\varphi(x)) = \Phi_{\sharp}(\Theta(x)), \forall x \in X$, implies (a), namely, $bar(\Phi_{\sharp}\mu) = \varphi(bar(\mu)), \forall \mu \in \mathscr{P}^+$.

4. DAMEK-RICCI SPACES AND MOTIVATION

A Damek-Ricci space is a solvable Lie group, an **R**-extension of a generalized Heisenberg group and carries a left invariant Riemannian metric and further provides a space on which harmonic analysis is developed ([Ank-D-Y],[Dam-R]). For precise definition and differential geometry of Damek-Ricci space, refer to [Bern-T-V]. Damek-Ricci spaces are Hadamard manifolds whose typical examples are complex hyperbolic, quaternionic hyperbolic and Cayley hyperbolic spaces as strictly negatively curved ones, except for real hyperbolic spaces ([Dotti],[Lanz]). Any Damek-Ricci space satisfies the axiom of visibility and has θ -continous Busemann function (refer to [I-Sat'10] for these). Moreover, it admits a Busemann-Poisson kernel (see [I-Sat'10]) so that it satisfies (i) and (ii) of Theorem 1.1, and Theorem 1.2. The most important implication of Damek-Ricci spaces is that they provide the counterexample of Lichnerowicz conjecture of non-compact harmonic manifold version (refer to [Bern-T-V]).

So, relating to this, our motivation is to characterize Damek-Ricci spaces from a viewpoint of geometry, since only a Lie group characterization of Damek-Ricci space is known from Heber's theorem ([Heb]). A Damek-Ricci space turns out recently to be Gromov-hyperbolic, whereas it admits zero sectional curvature (see [I-Sat'14-2]) for this and refer to [Coo-D-P], [Bourd], [Kniep] for the Gromov hyperbolicity).

Thus, we pose the following. Let X_o be a Damek-Ricci space and X an Hadamard manifold, quasi-isometric to X_o and assume that if X admits a Busemann-Poisson kernel, then, is X isometric, or homothetic to X_o as a Riemannian manifold ? At least, from this assumption, we have that any Riemanian isometry of X_o induces a homeomorphism of ∂X of X (for the detail, see [I-Sat'14-2]). From this fact, we have faced our central theme, namely, differential geometry of a map being associated barycentrically to a homeomorphism of ∂X , as discussed in sections 1 and 3, where we answered partially to the above question.

REFERENCES

- Am-N. S. Amari and H. Nagaoka, *Methods of Information Geometry*, Trans. Math. Monogr., 191, AMS, Oxford, 2000.
- Ank-D-Y. J.-P. Anker, E. Damek and C. Yacoub, Spherical analysis on harmonic AN groups, Ann. Scuola Norm. Sup. Pisa Cl. Sci.,(4),23(1996) 643-679.
- Bern-T-V. J. Berndt, F. Tricerri and L. Vanhecke, *Generalized Heisenberg Groups and Damek-Ricci* Harmonic Spaces, Lecture Notes, 1598, Springer, Berlin, 1991.
- Ball-G-S. W. Ballmann, M. Gromov and V. Schroeder, *Manifolds of Nonpositive Curvature*, Prog. Math., 61, Birkhäuser, Boston, 1985.
- Bes-C-G'95. G. Besson, G. Courtois and S. Gallot, Entropes et Rigidités des Espaces Localement Symétriques de Courbure Strictement Négative, GAFA, 5(1995) 731-799.
- Bes-C-G'96. G. Besson, G. Courtois and S. Gallot, A simple and constructive proof of Mostow's rigidity and the minimal entropy theorems, Erg. Th. Dyn. Sys., 16 (1996), 623-649.
- Bourd. M. Bourdon, Structure conforme au bord et flot géodésique d'un CAT(-1)-espace, L'Enseignement Math., 41 (1995), 63-102.
- Coo-D-P. M. Coornaert, T. Delzant and A. Papadopoulos, *Géométrie et théorie des groupes*, Lecture Notes, 1441, Springer-Verlag, Berlin, 1990.
- Dam-R. E. Damek and F. Ricci, Harmonic analysis on solvable extensions of *H*-type groups, J. Geom. Anal., 2 (1992), 213-248.
- Dotti. I. Dotti, On the curvature of certain extensions of H-type groups, Proc. A. M. S., 125 (1997), 573-578.
- Douady-E. E. Douady and C. Earle, Conformally natural extension of homeomorphisms of the circle, Acta Math., 157 (1986), 23-48.
- Eber-O. P. Eberlein and B. O'Neill, Visibility manifolds, Pacific J. Math., 46 (1973), 45-110.
- Fried. T. Friedrich, Die Fisher-Information und symplektische Strukturen, Math. Nach., 153 (1991), 273-296.
- Gui-L-T. Y. Guivarc'h, L. Li and J. C. Taylor, *Compactifications of Symmetric Spaces*, Birkhäuser, Boston, 1997.
- Heb. J. Heber, On harmonic and asymptotically harmonic homogeneous spaces, Geom. Funct. Anal., 16 (2006), 869-890.
- I-Sat'10. M. Itoh and H. Satoh, Information geometry of Poisson kernel on Damek-Ricci spaces, Tokyo J. Math., 33 (2010), 129-144.
- I-Sat'11. M. Itoh and H. Satoh, The Fisher information metric, Poisson kernels and harmonic maps, Diff. Geom. Appl., 29, Supplement 1 (2011), S107-S115.
- I-Sat'13. M. Itoh and H. Satoh, Fisher Information geometry of barycenter of probability measures, an oral present. in *Geometric Sciences of Information*, Paris, 2013.
- I-Sat'14. M. Itoh and H. Satoh, Information Geometry of Barycenter Map, to appear in proceed. of ICMSC-RCS, Daejeon, Korea, 2014.
- I-Sat'14-2. M. Itoh and H. Satoh, Information geometry of Busemann-barycenter for probability measures, submitted.
- I-Sat'14-3. M. Itoh and H. Satoh, Geometry of Fisher information metric and the barycenter map, in preparation.
- Kniep. G. Knieper, New Results on noncompact harmonic manifolds, Comment. Math. Helv., 87 (2012), 669-703.
- Lanz. M. Lanzendorf, Einstein metrics with nonpositive sectional curvature on extensions of Lie algebras of Heisenberg type, Geom. Dedicata, 66 (1997), 187-202.
- Led. F. Ledrappier, Harmonic measures and Bowen-Margulis measures, Israel J. Math., 71 (1990), 275-287.
- Sch-Y. R. Schoen and S.-T. Yau, Lectures on Differential Geometry, Intern. Press, Boston, 1994.
- Vill. C. Villani, Topics in Optimal Transportation, Grad. Stud. in Math., 58, AMS, Providence, 2003.