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Abstract. We investigate kernel density estimation where the kernel function varies from point
to point. Density estimation in the input space means to find a set of coordinates on a statistical
manifold. This novel perspective helps to combine efforts from information geometry and machine
learning to spawn a family of density estimators. We present example models with simulations. We
discuss the principle and theory of such density estimation.
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INTRODUCTION

Density estimation in ℜm aims to approximate an underlying true distribution T (xxx)
which, by assumption, generates a given set of samples {xxxi}n

i=1. Kernel density esti-
mation (KDE) as a non-parametric approach, without assuming any parametric model,
approximates T (xxx) by

p(xxx) =
1
n

n

∑
i=1

pi(xxx), (1)

where pi(xxx), or simply pi, is a local density function (kernel). We focus on the case where
pi(xxx) = G(xxx |xxxi,Σi) is a multivariate Gaussian distribution with mean xxxi and covariance
matrix Σi. The proposed methodology can be extended to other kernels.

This type of estimators appeared more than half a century ago [13]. A large volume
of past efforts concentrated on the case Σi = h2I, where I is the identity matrix, and how
to choose a proper band-width h. This classical case is commonly referred to as Parzen-
Rosenblatt window method and is abbreviated as “Parzen” in this paper. The modern
computing power presents the opportunity to multiply the number of parameters to bet-
ter describe the data. Following the developments of mixture models [10], manifold
Parzen windows (MParzen) [21, 4] finds {Σi} that are different for different samples,
so that p(xxx) follows the local principal directions of the data manifold. In a supervised
setting, where {xxxi} are labelled, neighbourhood component analysis (NCA) [8] learns
a global Σ to maximize the leave-one-out nearest-neighbour (NN) classification accu-
racy. As the unsupervised counterpart of NCA, local component analysis (LCA) [16]
learns either a global Σ or a set {Σi} to maximize the leave-one-out likelihood. The idea
to align local Gaussian distributions also appears in non-linear dimensionality reduc-
tion (NLDR) methods [5]. From a unified geometric perspective, these efforts can be
viewed as learning a data geometry of the input space ℜm, where the metric near xxxi is
approximately Σ

−1
i , and the geodesics are likely passing through the data [11].



This paper introduces a meta-method called information geometric density estimation
(IGDE) 1. It implements eq. (1) by embedding {xxxi} into a statistical manifold, then using
the embedding images {pi} as the local densities. Its design involves constructing a low-
dimensional sub-manifold of an ambient statistical manifold as the embedding target
space, and choosing a measurement scheme of the embedding {pi} on this sub-manifold.
We present in more detail a sub-family of IGDE which utilize neighbour-based learning
methods. They try to make nearby densities of the same class to be similar so as to form
a data manifold, and to prevent the densities grow into the class gaps.

In the following, we first review the space of Gaussian distributions. Then we intro-
duce neighbour-based IGDE with demonstrative experiments. In the end, we discuss the
design principles of IGDE methods and their theoretical background.

THE GAUSSIAN MANIFOLD

All m-dimensional multi-variate Gaussian distributions form a statistical manifold
M m = {(µµµ,Σ)} 2, where any point (µµµ,Σ) is a Gaussian distribution G(· |µµµ,Σ). The
Riemannian geometry of M is defined by the Fisher information metric (FIM) [14], the
unique Riemannian metric under some conditions including invariance.

Distance is a basic measure that can be used in our problem. With respect to FIM,
the geodesic distance disti j, i.e. the length of a shortest path, between two points
pi = (µµµ i,Σi) and p j = (µµµ j,Σ j) on M is, in general, complex. We point the reader
to [7] for a comprehensive study of different cases. We use the (asymmetric) Kullback-
Leibler (KL) divergence δi j =

∫
dxxxpi(xxx)

(
log pi(xxx)− log p j(xxx)

)
as an approximation of

dist2
i j/2. This approximation is accurate when pi and p j are close enough [1].

M is equipped with a pair of dually affine connections [1]. As M is in the expo-
nential family, we can write any distribution (µµµ,Σ) in the canonical form G(xxx |µµµ,Σ) =
exp
(

tr(θθθ 1xxxxxxT )+θθθ
T
2 xxx−ψ(θθθ 1,θθθ 2)

)
, where ψ is a convex potential function, and tr(·)

is the trace. With respect to the canonical parameters θθθ 1 = −Σ−1/2, θθθ 2 = Σ−1µµµ , the
coefficients of an e-connection vanish. A sub-manifold of M is called e-flat if it is lin-
ear in these θ -coordinates. Correspondingly, the expectation parameters ηηη1 = E(xxxxxxT ) =
Σ+µµµµµµT , ηηη2 =E(xxx) = µµµ make an m-connection, which is dual to the e-connection, van-
ish. A sub-manifold that is linear in the η-coordinates is called m-flat. This dually-flat
structure has a deep connection with machine learning dynamics [1].

NON-PARAMETRIC NEIGHBOUR-BASED IGDE

From an information geometric view, the density estimator in eq. (1) works by finding
an embedding E : ℜm→M of the input samples {xxxi} to the Gaussian manifold M , then

1 This paper concentrates on KDE-like density estimation. The discussed principle, however, is not limited
to the non-parametric case. We use the general term “IGDE” for future parametric extensions.
2 The upper-script “m” in M m does not denote the dimensionality of M , which is m(m + 3)/2, but
denotes the dimensionality of the associated random variable. M m can be simply denoted as M .



giving a statistical mixture of {E (xxxi)} with uniform weights. We do not impose a para-
metric structure E (xxx |ΘΘΘ) of the embedding E . Instead, we assume ∀i, E (xxxi) = (xxxi,Σi),
and each (xxxi,Σi) lies on a specific sub-manifold of M . Then, we optimize the embedding
with respect to the free parameters {Σi} by utilizing neighbour-based learning meth-
ods [3, 9, 8] to preserve pair-wise local information. In the target embedding, this lo-
cal information is encoded into a probability matrix Pn×n. Each row pppi = (pi1, . . . , pin)
is normalized, representing the probability for E (xxxi) selecting each other E (xxx j) as its
neighbour with respect to the information geometry of M . It can be defined as

pi j =
exp(−δi j)

∑ j:i 6= j exp(−δi j)
or pt

i j =
1/(1+δi j)

∑ j:i6= j 1/(1+δi j)
(∀ j 6= i). (2)

In the following, the upper-script “t” denotes symbols that are associated with pt
i j in

eq. (2). The quality of the embedding is measured by a cost function f , usually in the
form f = −tr(QT P) or f = −tr(QT logP), where Q = (qi j)n×n ≥ 0 is a fixed target
weight matrix based on the input samples. Minimizing f means to align P to Q in the
best possible way, and to inject the input information to the output embedding. Usually,
f is smooth so that we can write its total differential in the form d f = tr(W T dD),
where D = (δi j)n×n, and W = (wi j)n×n means the pair-wise forces applied on the
embedding points during learning. Table 1 lists several possible implementations based
on NCA [8], stochastic neighbour embeddings (SNE) [9, 20] and Laplacian eigenmaps
(LE) [3]. Note, these methods were mostly used for embedding the input data into a
low-dimensional Euclidean space.

TABLE 1. Different neighbour-based learning methods that can be applied to IGDE. “Same class”
means, if i and j are in the same class and i 6= j, then qi j = 1 ; otherwise qi j = 0. “◦” and “�” are the
element-wise product and division of two matrices, respectively. eee = (1,1, . . . ,1)T . NCA can be based
on L1 norm (the “NCA” row) or KL-divergence (the “NCA-KL” row).

f Q W W t

NCA −tr(QT P) same class (Q− (Q◦P)eeeeeeT )◦P
(
Q− (Q◦P)eeeeeeT )◦P� (1+D)

NCA-KL −tr(QT logP) same class Q− (QeeeeeeT )◦P
(
Q− (QeeeeeeT )◦P

)
� (1+D)

SNE −tr(QT logP) heat kernel+normalize Q−P (Q−P)� (1+D)

LE tr(QT D) heat kernel Q —

As an example, we look into how to adapt L1-norm-based NCA (the first case in
the “NCA” row in table 1) to supervised density estimation based on a set of labeled
samples {(xxxi,yi) : xxx ∈ ℜm; yi ∈ {1, . . . ,L}}. In a cross-validation scenario, each E (xxxi)
(i = 1, . . . ,n) selects a random neighbour E (xxx j) according to pppi and gets classified to
the class y j, which is correct if and only if yi = y j. The classification accuracy can
be maximized with respect to the embedding points {E (xxxi)}. According to table 1, if
yi = y j, then wi j = pi j(1−∑ j:yi=y j pi j) ≥ 0, decaying with increasing δi j. This means,
nearby densities within the same class are attracting each other, which helps to better
describe the data manifold [21]. If yi 6= y j, then wi j = −pi j ∑ j:yi=y j pi j ≤ 0, decaying
with increasing δi j. Nearby densities of different classes are repelling each other, which
helps to clear the gap between two classes.

If we perform the above embedding on M m without any constraints, the problem of
over-fitting arises due a large number of free parameters in the order of O(nm2). We



must impose certain regularity conditions and construct a sub-manifold as the target
space. First, we assume that the local densities are deteriorated and focused on a l-
dimensional hyperplane in ℜm. Equivalently, we apply a linear projection Um×l (l ≤ m)
on {xxxi} and estimate the density of {UT xxxi} instead. U can be either precomputed using
dimensionality reduction techniques, e.g. NCA [8], and fixed during learning, or learned
by integrating dimensionality reduction with density estimation. In the latter case, the
scale of U must be constrained, e.g. by UTU = Il×l , to avoid trivial solutions. Moreover,
we assume that ∀i, Σi = SiST

i +h2I, where h > 0 is a pre-fixed minimum bandwidth, and
Si is a l× r (r ≤ l) matrix which satisfies tr(SiST

i ) = (τ−1)h2. τ ≥ 1 is also a pre-fixed
parameter, meaning the highest possible ratio of Σi’s largest eigenvalue to its smallest
eigenvalue. The above two assumptions constrain the embedding to a singular region
on M , where the Gaussian distributions deteriorate. The number of free parameters in
{E (xxxi)} is reduced to nlr.

The pair-wise KL divergence δi j with respect to the above assumptions is

δi j(U,Si,S j) =
1
2

tr
((

UT (xxxi− xxx j)(xxxi− xxx j)
TU +Σi

)
Σ
−1
j

)
− 1

2
log |ΣiΣ

−1
j |−

l
2
. (3)

In this paper, “| · |” denotes either the determinant or the volume. Recall that d f =
tr(W T dD). This together with eq. (3) and Σi = SiST

i +h2I gives

∂ f
∂U

=
n

∑
i=1

n

∑
j=1

wi j
∂δi j

∂U
=

n

∑
i=1

n

∑
j=1

w ji(xxxi− xxx j)(xxxi− xxx j)
TUΣ

−1
i , (4)

∂ f
∂Si

=2
n

∑
j=1

(
wi j

∂δi j

∂Σi
+w ji

∂δ ji

∂Σi

)
Si =

[
n

∑
j=1

(
w ji−wi j

)
Σ
−1
i

+
n

∑
j=1

wi jΣ
−1
j −Σ

−1
i

n

∑
j=1

w ji
(
Σ j +UT (xxxi− xxx j)(xxxi− xxx j)

TU
)

Σ
−1
i

]
Si. (5)

The projection of the gradient in eq. (5) on the constraint tr(SiST
i ) = (τ − 1)h2 is

∂ f/∂Si − tr(ST
i ∂ f/∂Si)Si/((τ − 1)h2). Based on this projected gradient, as well as

eq. (4) if U has to be learned, learning can be implemented by any gradient-based
optimizer, which has to carefully avoid local optima.

The hyper-parameters l, r, h and τ have to be tuned. l is the reduced dimensionality
after the global projection U . For data visualization, one can set l = 2 or 3. When the
data is (assumed to be) pre-processed by dimensionality reduction methods, one can
leave U = I and l = m. This l appears in any other density estimator which integrates
dimensionality reduction. Therefore, it is fair to say that, neighbour-based IGDE has
3 hyper-parameters and an optional module to perform dimensionality reduction. r,
usually in the range 1 ∼ 10, is the rank of the local Si’s. It corresponds to the intrinsic
dimensionality of the data and can be set accordingly [19]. h and τ determine the shape
and total energy of each pi. An empirical range of τ is 2 ∼ 5. Large values of l, r, τ

and small values of h are likely to cause over-fitting. One can choose an optimal set of
hyper-parameters by cross-validation for high likelihood on the validation sets.



EXAMPLES

We present IGDE examples, not for a systematical experimental study, but to discuss the
advantages of IGDE. In particular, we compare the two variations of IGDE-NCA in the
“NCA” row of table 1, denoted, in order, by IGDE-NCAg and IGDE-NCAt , with Parzen
and MParzen in supervised density estimation.

The spiral and pathbased datasets3 consist of 2D point clouds with 3 classes
each. Spiral resembles 3 entangled spirals (see figure 1). Pathbased resembles
two blobs inside a circle (see figure 2(c)). In each run, the associated dataset is added
Gaussian noise G(· |000,σ2

noiseI), and then, half of the dataset is randomly sampled for
training, where 20% is used for validation. In this supervised case, MParzen is based
on k-NN within the same class. IGDE-NCA is implemented by simple gradient descent
with momentum. All hyper-parameters, including Parzen’s h ∈ {0.01,0.02, . . . ,2.00},
MParzen’s regularization parameter σ ∈ {0.01,0.02, . . . ,0.10,0.2, . . . ,1.0}, neighbour-
hood size k ∈ {1,2, . . . ,20}, number of principal components d ∈ {1,2}, and IGDE-
NCA’s h ∈ {0.5,0.6,0.7,0.8,0.9}, τ = 4, r = 1, l = 2, are tuned to minimize the same-
class average negative log-likelihood (SANLL) −∑

n
i=1 log( 1

ni
∑ j:yi=y j p j(xxxi))/n on the

validation set, where ni is the number of training samples in the same class as the test
sample i. Note, we choose a coarse configuration grid for IGDE-NCA, because it re-
quires a time-consuming training process. In theory, on a fine grid, IGDE-NCA can
achieve even better performance.

Figure 1 shows the density contours and color-maps in one trial, where σnoise is 0.4.
Parzen is not able to capture well the data manifold. Its density is discontinuous and
looks blurred. MParzen is likely to over-fit, producing many zigzags and looking skinny
and angular. This is because MParzen is based on the k-NN graph, which is not robust
to noise. IGDE-NCAg often presents some local bumps. This is because its learner often
ends in a sub-optimal region, where f is almost flat with tiny gradient. In essence, it
is easy for E (xxxi) and E (xxx j) from different classes to have a small pi j in eq. (2) due
to the locality of the Gaussian kernel. IGDE-NCAg needs more advanced optimization
than simple gradient descent to give better results. The visualization by IGDE-NCAt

is, in general, more appealing. The similarity pt
i j between two nearby E (xxxi) and E (xxx j)

is exaggerated by a non-local kernel, which helps to enhance the forces (W or W t in
table 1) during learning. Such density maps are only intuitive measurements and vary
slightly across different runs. Figure 2(a,b) shows the testing SANLL on 3 different
noise levels. Remarkably, IGDE-NCAt achieves much better performance with smaller
variance as compared to the other methods. MParzen has a low SANLL (but large
variations) on spiral added with small-noise, because the data has a smooth manifold
structure. It performs poor on pathbased, which has two blobs (clustered structure).
At a large noise level, both IGDE-NCAg and IGDE-NCAt are preferred over MParzen.

To conclude, the good performance of MParzen on manifold-structured datasets relies
on the validation process. It is limited by the noisy k-NN graph and the lack of a
learning process to exchange information between neighbourhoods. IGDE-NCA, as

3 http://cs.joensuu.fi/sipu/datasets/
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FIGURE 1. Contours (top) and color-maps (bottom) of the estimated density on the spiral dataset.
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FIGURE 2. (a-b) Testing SANLL (avg.±std.) against 3 noise levels (0.2, 0.4, 0.6) after 300 runs on two
datasets. (c) The density map of pathbased by IGDE-NCAt in one trial.

a demonstration of the IGDE concept, is designed to overcome both difficulties. It
implements an information flow between nearby structures. As preliminary experiments,
this concept is verified by its good performance on two different toy datasets. IGDE-
NCA inherits the O(n2) computational complexity of NCA and thus does not scale up
well. It needs further developments to be applied on real data.

DISCUSSION

The key proposal of this manuscript is to implement the density estimator in eq. (1) by
optimizing an embedding E : ℜm →M . A family of IGDE methods can be spawned
along the following two axes.



À There is a wide array of embedding target spaces. The ambient manifold M can
be non-Gaussian depending on the type of data. For example, in graph-based density
estimation, e.g. social network analysis, one could use the statistical simplex as M ,
where any point pi ∈M is a local distribution on the graph nodes. Usually, a sub-
manifold Mθ ⊂M is constructed to reduce the model flexibility. Its definition involves
a decomposition of global information and local information. In MParzen [21] and
neighbour-based IGDE, ηηη i

1 = h2I +(xxxixxxT
i +SiST

i ) is a linear combination of the global
h2I and the local low-rank (xxxixxxT

i +SiST
i ), and ηηη i

2 = xxxi is fixed. This m-flat structure (see
section 2) makes it easy to constrain the total energy and effective support of pi in ℜm,
and to avoid singularities on M . Alternatively, in LCA [16], they assume that pi is a
product of a global Gaussian (µµµ,Σ) and a local Gaussian (xxxi,Σi). This can be written
as θθθ

i
1 = −Σ−1/2−Σ

−1
i /2, θθθ

i
2 = Σ−1µµµ +Σ

−1
i xxxi. This e-flat structure helps decompose

global information (e.g. high dimensional noise or global metric) and local information
which are independent, because a sum in the θ -coordinates corresponds to a product of
probabilities. Á Another direction to develop IGDE is on how to measure the embedding
on Mθ . Locally, we usually have to approximate the geometric quantities, e.g. distance,
on Mθ defined by FIM. Besides KL-divergence used in this paper, there is a pool of
information divergences with diverse properties [12]. At a global scale, the overall cost
of the embedding can refer to efforts on NLDR [3, 9, 5, 20], which contributed diverse
objective functions and heuristics.

The goal of IGDE can be understood by the minimum description length (MDL)
principle [15] formulated as

min

[
−

n

∑
i=1

log2 p(xxxi)+ |enc(O)|+n log2
|O|
ε

]
. (6)

The first term is the encoding length of the data given a fixed model p in eq. (1).
Minimizing this term pulls {pi} towards the boundary Σ = 000 of M , making p like
the empirical distribution. In neighbour-based IGDE, this strength is weakly conducted
by constraining the energy of each pi. The second and third terms in eq. (6) express
the length of p in a hierarchical coding scheme. We first find a sub-manifold O ⊂M
enclosing {pi}. Its description length is |enc(O)| (“enc” is for “encoding”). This O
corresponds to the data manifold after the embedding E . Then, we cover O with tiny
patches {P1,P2, . . .} with equal volume ε (similar to figure 3.3 in [2]) and zero
overlap. Within each patch Pi, all distributions are regarded the same. The code length
to record each pi is log2(|O|/ε). Minimizing the last two terms in eq. (6) pulls {pi}
to the high entropy region on M , and gives {pi} a a low dimensional and compact
enclosure O . In neighbour-based IGDE, this strength is conducted through NLDR to
form local low-rank structures on M . In addition to eq. (6), in a supervised scenario,
where each class is represented by an Oi, maximizing the margin between these sub-
manifolds reduces the description length of supervised information (see [17] pp. 194).

By the third term in eq. (6), the encoding length of p scales with n. This means high
storage complexity and the risk of over-flexible models. This is the price for a nearly
assumption-free estimator, as the manifold assumption is only a weak assumption. To
tackle these difficulties, one way is to build a parametric E (xxx |ΘΘΘ) [4]. Alternatively, a
two-step procedure is to “simplify” the resulting density [18].



IGDE is similar to information geometric dimensionality reduction (IGDR) [6] in that
they both investigate the low-dimensional structures of a set of points on a statistical
manifold. They have very different objectives, though. IGDR performs dimensionality
reduction on a given set of probability density functions based on their pair-wise in-
formation geometric measurements. IGDE learns a set of probability density functions,
corresponding to the input samples, to estimate a density function in the input space.
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