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Abstract. A family of probability distributions parametrized by an open domain Λ in Rn defines
the Fisher information matrix on this domain which is positive semi-definite. In information ge-
ometry the standard assumption has been that the Fisher information matrix is positive definite
defining in this way a Riemannian metric on Λ. If we replace the "positive definite" assumption
by "0-deformable" condition a foliation with a transvesely Hessian structure appears naturally. We
develop the study of transversely Hessian foliations in view of applications in information geometry.
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Introduction – Information Geometry

The Fisher metric is one of the basic tools in information geometry. It is defined
on an open domain in Rm which parametrizes the set of probability distributions under
consideration. The assumpsions made lead to the study of affine manifolds with Rie-
mannian metric, with both geometrical structures loosely related. The assumption that
the defined operator is positive definite is rather strong, therefore we propose to study
the consequences of a weaker condition. In this situation a foliation with a very partic-
ular transverse structure appears. Such foliated manifolds are natural generalizations of
Hessian manifolds when these manifolds are considered as foliated by points.

Let Λ be a domain in Rm. We consider families of probability distributions on a set
X parametrized by λ ∈ Λ.

P = {p(x;λ )|λ ∈ Λ}

(1) Λ is a domain in Rm,
(2) p(x;λ ) for a fixed x is a smooth function in λ ,
(3) the operation of integration with respect to x and differentiation with respect to λ

are commutative.
Definition Let P = {p(x;λ )|λ ∈ Λ} be. We set lλ = l(x;λ ) = logp(x;λ ) and denote by
Eλ the expectation with respect to pλ = p(x;λ ). Then a matrix g = [gi j(λ )] defined by

gi j(λ ) = Eλ [
∂ lλ
∂λ i

∂ lλ
∂λ j ] =

∫
X

∂ l(x;λ )

∂λ i
∂ l(x;λ )

∂λ j p(x;λ )dx

is called the Fisher information matrix.



Simple calculations show, see [7], that

gi j(λ ) =−Eλ [
∂ 2lλ

∂λ i∂λ j ].

The Fisher information matrix g = [gi j(λ )] is positive semi-definite on Λ:

Σi. jgi j(λ )cic j =
∫
X
{Σici ∂ l(x;λ )

∂λ i }2 p(x,λ )dx ≥ 0.

In information geometry the standard assumption has been, cf. [7], p.105,:

(4) The Fisher information matrix g= [gi j(λ )] for a family of probability distributions
P = {p(x;λ )|λ ∈ Λ} is positive definite on Λ.

We weaken this condition assuming only that the Fisher information matrix is a
0-deformable tensor field on Λ. Then a foliation appears in a very natural way, and
under some mild assumptions it has a transverse Hessian structure. The main part of this
note is devoted to a sketch of a theory of transversely Hessian foliation which can be
applied to a classification of space of probability distributions in the non-regular case.
Finally, we are going to discuss two problems. The first one (P1) consists in searching
for an invariant which determines a statistical model P(x,λ ) up to an isomorphism. The
second (P2) is the search for a necessary and sufficient condition condition ensuring that
a model is locally isomorphic to an exponential model.

TRANSVERSELY HESSIAN FOLIATIIONS

We continue the study of a family of probability distributions described in Introduction.
Assume that the tensor g is 0-deformable. Then there exists a torsion-free connection ∇,
cf. [6], for which the tensor g is parallel, i.e., ∇g = 0, and the distribution kerg :

kerg = {v ∈ T M:g(v,v) = 0}= {v ∈ T M:g(v,w) = 0 ∀w ∈ T M}
is parallel with respect to ∇ as 0 = ∇X g(Y,Z) = Xg(Y,Z)− g(∇XY,Z)− g(Y,∇X Z)
where X ,Z ∈ T M and Y ∈ kerg. As g(Y,Z) = 0 and we get that g(∇XY,Z) = 0 for any
Z ∈ T M, which ensures that ∇XY ∈ kerg provided that Y ∈ kerg. As the connection ∇

is torsion-free, 0 = T (X ,Y ) = ∇XY +∇Y X − [X ,Y ]. If X ,Y ∈ kerg then ∇XY ∈ kerg
and ∇Y X ∈ kerg. Therefore for any X ,Y ∈ kerg [X ,Y ] ∈ kerg, the distribution kerg
is involutive, and it defines a foliation F . The pseudo Riemannian metric g induces
a (normal) Riemannian metric gN in the normal bundle N(M,F ). The connection
∇ defines a connection ∇N in the normal bundle N(M,F ) which is the Levi-Civita
connection of the metric gN .

The induced metric will be called foliated if Xg(Y,Z) = 0 for any vector field X
tangent to the foliation F and any foliated vector fields Y and Z orthogonal to F . It is
the case if ∇XY ∈ TF for any vector field X tangent to the foliation F and any foliated
vector fields Y , i.e. a vector field whose flow preserves the foliation. As the connection
∇ is torsion-free this condition is equivalent to ∇Y X ∈ TF for any vector Y ∈ T M and
any vector field X ∈ TF . More information and equivalent conditions see [8].



The flat connection D should be related in some way to the foliation F . If we assume
a similar condition for D, i.e. DZW ∈ TF for any vector Z ∈ T M and any vector field
W ∈ TF , then DN

X [Y ] = [DXY ] where [Y ] denotes the section of the normal bundle
defined by the vector field Y . The connection DN is transversally projectable (foliated)
if DN

XY is a foliated section for any foliated section Y and a foliated vector field X , i.e.
an infinitesimal automorphism of F .

Let F be a foliation of codimension q on a manifold M of dimension m.The pair
(M,F ) is called a foliated manifold. The dimension of its leaves is p, i.e. p+ q = m.
Assume that the foliation F is transversely affine, cf. [5, 9]. A Riemannian metric ĝ is
bundle-like if for any adapted chart ϕ = (x1, ...,xp,y1, ...,yq) g = Σ

p
i j=1gi j(x,y)dxidx j +

Σ
q
a,b=1gab(y)dyadyb. A bundle-like metric ĝ is said to be transversely Hessian if the

horizontal part g of the metric is expressed by the formula

g = Σ
q
i. j=1

∂ 2h
∂yi∂y j dyidy j

Remark. In principle h need not be basic, i.e. it may depend on variables xi, we just
assume that it does not.

Definition We say that the foliation is transversely Hessian if it is transversely affine and
it admits a bundle-like metric which is transversely Hessian.

Therefore a transversely Hessian foliation is at the same time a Riemannian foliation
and a transversely affine foliation althought both structures have not much in common.

The fact that the foliation is transversely affine is equivalent to the existence of
a foliated connection D in the normal bundle N(M,F ). Denote by the same letter
g the Riemannian metric induced by the horizontal part of ĝ in the normal bundle.
The metric g and the connection D are related by the normal Codazzi equations if
DX g(Y,Z) = DY g(X ,Z) for any foliated sections X ,Y,Z of the normal bundle.

Normal Codazzi structure on a foliated manifold (M,F ) is a pair (D,g) consisting
of a foliated connection D and a foliated metric g in the normal bundle satisfying the
equation DX g(Y,Z) = DY g(X ,Z) for any foliated sections X ,Y,Z of the normal bundle.

Having a normal Codazzi structure (D,g) on a foliated manifold (M,F ) we can
define a new foliated torsionfee connection D′ by the formula Xg(Y,Z) = g(DXY,Z)+
g(Y,D′

X Z) for any foliated sections X ,Y,Z of the normal bundle. The connection D′ is
called the dual connection of the connection D with respect to the metric g.

Let ∇ be the normal Levi-Civita connection of the normal foliated Riemannian metric
g in N(M,F ). ∇ is a foliated connection. The difference γ = ∇−D is also a foliated
tensor. Moreover, as both connections are torsion-free, γXY = γY X .

A normal foliated Hessian structure (D,g) is said to be of Koszul type if there exists a
closed basic form ω such that g = Dω . Like in the standard case we have the following:

Theorem 1 Let (M,F ) be a foliated manifold. Assume that F is transversely affine
with foliated flat connection D and g is a foliated metric on (M,F ). Then the following
conditions are equivalent



i) g is a normal Hessian metric;
ii) DX g(Y,Z) = DY g(X ,Z) for any foliated sections X ,Y,Z of the normal bundle;
iii) ∂gi j

∂yk =
∂gk j
∂yi

iv) g(γXY,Z) = g(Y,γX Z)
v) γi jk = γ jik

Let F be a transversely affine foliation on a manifold M, let N(M,F ) be its normal
bundle. It admits a foliation F N of the same dimension as F but of codimension 2q.

Let ϕ =(x1, ...,xp,y1, ...,yq) be an adapted chart. Then on the normal bundle N(M,F )
we have an adapted chart ϕN = (x1, ...,xp,y1, ...,yq,dy1, ...,dyq), of course the coordi-
nates xi are identified with xi p where p is the projection onto the base M in the normal
bundle. Moreover, putting zi = yi+

√
−1dyi we define transversely holomorphic coordi-

nate system on the normal bundle. Therefore if the foliations F is tranversely affine the
foliation F N is tranversely holomorphic for a foliated complex structure JN . Moreover,
on the normal bundle we define a normal Riemannian metric gT by the local formula

gT = Σ
q
i jgi j pdzidz̄ j

In this case we have the following proposition

Proposition 1 Let (M,F ) be a foliated manifold, and g be a foliated metric. Then the
following conditions are equivalent:

(1) g is a foliated Hessian metric on (M,F ,D)
(2) gT is a Kälerian metric on N(M,F ,JN)

DUAL FOLIATED CONNECTIONS

Let (M,F ,D,g) be a tranversely Hessian foliated manifold. Let ∇ be the Levi-Civita
connection in the normal bundle of F associated to the Riemannian metric g. Then
the connection D′ = 2∇−D is a flat tranversely projectable connection in the normal
bundle and Xg(Y,Z)= g(D′

XY,Z)+g(Y,D′
X Z). Moreover, (M,F ,D′,g) is a transversely

Hessian foliated manifold. D′ is called the dual connection of the transversely Hessian
foliated manifold (M,F ,D,g).

Lemma 1 Let g be a foliated metric on the normal bundle. Let (D,D′) be a Codazzi pair
with respect to g. Then if one of the connections is foliated so is the other.

Lemma 2 Let D be a torsion-free connection and let g be a Riemannian metric in the
normal bundle. Define a new connection D′ by

Xg(Y,Z) = g(DXY,Z)+g(Y,D′
X Z)

for any foliated sections X ,Y,Z. Then the following conditions (1)-(3) are equivalent:
(1) the connection D′ is torsion free,
(2) the pair (D,g) satisfies the Codazzi equation

DX g(Y,Z) = DY g(X ,Z),



(3) let ∇ be the Levi-Civita connection for g, and let γXY = ∇XY −DXY. Then g and
γ satisfy

g(γXY,Z) = g(Y,γX Z).

If the pair (D,g) satisfies the Codazzi equation, then the pair (D′,g) also satisfies this
equation and

D′ = 2∇−D,

DX g(Y,Z) = 2g(γXY,Z)

Remarks. Proposition 1 asserts that a flat connection D and a Riemannian metric g in
the normal bundle of a foliation F form a normal Hessian structure iff they satisfy the
Codazzi equation. The same is true for foliated structures.

Definition A pair (D,g), g being a Riemannian metric in the normal bundle and D a
torsion-free connection in this vector bundle is called a normal Codazzi structure if it
satisfies the Codazzi equation for any foliated sections X ,Y,Z :

DX g(Y,Z) = DY g(X ,Z).

If both objects are foliated, then the pair (D,g) is called a foliated Codazzi struc-
ture. A foliated manifold (M,F ) is called a foliated Codazzi manifold, and is denoted
(M,F ;D,g). If g is a foliated Riemannian metric and D a foliated connecction, then the
pair is called a foliated Codazzi manifold.

For a normal Codazzi structure (D,g) the connection defined by

Xg(Y,Z) = g(DXY,Z)+g(Y,D′
X Z)

is called the dual normal connection of D with respect to g, and the pair (D′,g) is said
to be the dual normal Codazzi structure of (D,g). If (M,F ;D,g) is a foliated Codazzi
manifold, so is (M,F ;D′,g).

A foliated Codazzi structure is said to be of constant curvature c if the curvature tensor
RD of the connection D satisfies

RD(X ,Y )Z = c(g(Y,Z)X −g(X ,Z)Y )

for any sections X ,Y,Z of the normal bundle.

Proposition 2 Let (M,F ;D,g) be a foliated Codazzi manifold, and (D′,g) be its dual
Codazzi structure.

(1) Denoting by RD and RD′ the curvature tensors of D and D′, respectively, we have

g(RD(X ,Y )Z,W )+g(Z,RD′(X ,Y )W ) = 0,

for any sections X ,Y,Z,W of the normal bundle.
(2) If (D,g) is a Codazzi structure of constant curvature c, then (D′,g) is also a

Codazzi structure of constant curvature c.



Proposition 3 A foliated Codazzi structure (D,g) is of constant curvature 0 iff the
foliation F is transverely Hessian with the transverse structure given by the pair (D,g)
.

NORMAL (FOLIATED) CURVATURES

Let (D,g) be a normal Hessian structure on a foliated manifold (M,F ).i.e. a Hessian
structure on the normal bundle N(M,F ). Let γ = ∇−D be the difference tensor of the
normal Levi-Civita connection of g and D. A normal tensor field Q of type (1,3) defined
as Q = Dγ is called the normal Hessian curvature tensor of (D,g).

If the structure is foliated so is its normal Hessian curvature tensor. The components
Qi

jkl of Q with respect to an adapted foliated affine coordinate system (x1, ..xp,y1, ...,yq)
are given by

Qi
jkl =

∂γ i
jl

∂yk .

Wa have standard results for these curvaturies of the connections in the normal bundle
N(M,F ), cf.[7].

Proposition 4 A) Let gi j =
∂ 2ϕ

∂yiy j . Then for i, j,k, l = 1, ...q.

(1) Qi jkl =
1
2

∂ 4ϕ

∂yiy jykyl − 1
2grs ∂ 3ϕ

∂yiykyr
∂ 3ϕ

∂y jylys .

(2) Qi jkl = Qkli j = Qk jil = Qilk j = Q jilk.
B) Let R be the normal Riemannian curvature tensor for the normal Riemannian metric
g. Then

Ri jkl =
1
2
(Qi jkl −Q jikl).

C) Let RN be the normal Riemannian curvature tensor for the normal Kählerian metric
gN of the foliated manifold (N(M,F ),F N). Then

RN
i jkl =

1
2

Qi jkl ◦π

where π is the natural projection N(M,F )→ M.

Let ω be the normal volume form defined by g. We define a closed 1-form α and a
symmetric bilinear normal form β by

DX ω = α(X)ω, β = Dα.

The forms α and β are called the first normal Koszul form nad the second normal Koszul
form, respectively, of the normal Hessian structure (D,g) on a foliated manifold (M,F ).

Proposition 5 (1) α(X) = TrNγX ,

(2) αi =
1
2

∂ logdet|gkl |
∂xi = γr

ri

(3) βi j =
∂αi
∂x j =

1
2

∂ 2logdet|gkl |
∂xi∂x j = Qr

ri j = Qi j
r
r.



Proposition 6 Let RN
i j be the normal Ricci tensor for the normal Kählerian metric gN of

the foliated manifold (N(M,F ),F N). Then RN
i j =−1

2βi j ◦π.

If the normal Hessian structure (D,g) satisfies the condition β = λg, λ =
β i

i
q then

the normal Hessian structure is called Einstein-Hessian.

Theorem 2 Let (M,F ) be a foliated manifold, and (D,g) be a normal Hessian
structure. Let (JN ,gN) be the normal Kähler structure of the foliated manifold
(N(M,F ),F N) induced by (D,g). Then the following conditions are equivalent

(1) (D,g) is Einstein-Hessian;
(2) (JN ,gN) is Einstein-Kählerian.

Normal Hessian sectional curvature
Let QN be the normal Hessian curvature tensor. The formula

Q̂Nik(ξ ) = Q̂Ni
j
k

lξ jl

defines an endomorphism Q̂N on the space of symmetric contravariant normal two
tensors, i.e., on ⊗2N(M,F )

qN(ξ ) =
< Q̂N(ξ ),ξ >

< ξ ,ξ >

for any ξ ∈ ⊗2N(M,F ) and <,> the inner product defined by the normal Riemannian
metric g of the foliated Hessian structure. We say that the foliated Hessian structure is
of constant normal sectional curvature if qN is a constant function on ⊗2N(M,F ).

Proposition 7 The normal Hessian sectional curvature of a foliated Hessian structure
(M,D,g;F ) is constant and equal to c iff

Q̂i jkl =
c
2
{ĝi jĝkl + ĝil ĝ jk}

Corollary 3 Let (M,D,g;F ) be a foliated Hessian structure. Then the following two
conditions are equivalent:

(1) the Hessian normal sectional curvature is a constant c;
(2) the holomorphic normal sectional curvature of (N(M,F ),JN ,gN ;F N) is constant

and equal to -c.

Corollary 4 Let (M,D,g;F ) be a foliated Hessian structure of constant normal Hes-
sian sectional curvature c. Then the foliated Riemannian manifold (M,g;F ) is a foliated
Riemannian manifold modelled on a space form of constant section curvature − c

4 .

MODELS

We use the notion of exponential model in the sense of [1], That means the fol-
lowing: λ = (λ1, ..,λm) are affine coordinate functions in Rm and x stands for the



random variable. Then (Θ,P) is exponential if there exists a map (c,F,ψ)(λ ,x) =
(c(x),F1(x), ..,Fm(x)) ∈ Rm+1 and a smooth real function ψ(λ ) such that

P(λ ,x) = exp(c(x)+∑Fj(x)λ j −ψ(λ ).

Let (Λ,P) and (Λ′,P′) be two statistical models for a measurable set (Ξ,Ω) and for
(Ξ′,Ω′), respectively. A morphism of model is a map assigning to(λ ,x) ∈ Λ×Ξ the
element φ(λ ,φ∗(x)) ∈ Λ′×Ξ′ subject to two requirements:
(r1): φ is differentiable, φ∗ is measurable.
(r2) : P′(φ(λ ,φ∗(x))) = P(λ ,x).

Let us denote by L (Λ) the affine space of linear connections in Λ and by N (Λ) the
subspace of locally flat connections in Λ .

To a model P(x,λ ) we associate a mapping q which is defined on L (Λ) by the
formula

q(∇)(x,λ ) = ∇
2(l(x,λ )).

On the right hand side we have a 2-linear form defined on the tangent space Tλ Λ.
The discussion of the property (P1) leads to the following:

Theorem 5 The mapping q determines P(x,λ ) up to an isomorphism.

Each ∇ ∈ N (Λ) defines a cochain complex C∗(∇) whose homogeneous cochains of
a positif degree k are contravariant tensors of degree k in Λ, [2], [3], [4]. We denote by
d∇ the coboundary operator in C∗(∇). Let g be the Fisher information metric of Λ.

Theorem 6 The model space Λ is isomorphic to an exponential model iff the Fisher
information metric g is d∇-closed for a ∇ ∈N (Λ).
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