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Abstract. This paper presents a method to approximate discrete joint probability distributions
using first-order dependence trees and the recent concept of cumulative residual entropy. A first-
order dependence tree is one where each variable is conditioned on at most one variable. The
cumulative residual entropy measure is the entropy functional applied to the survival function
instead of the probability measure. We formulate the cumulative residual Kullback-Leibler (KL)-
divergence and the cumulative residual mutual information measures in terms of the survival
function. We then show that the optimal first-order dependence tree approximation of the joint
distribution using the cumulative Kullback-Leibler divergence is the one with the largest sum
of cumulative residual mutual information pairs. The results parallel Chow-Liu’s approximation
of joint probability distributions using the traditional Kullback-Leibler divergence and mutual
information but applied to survival functions. We compare the approximation results with those
of Chow-Liu using the traditional entropy measure. Using a Monte Carlo simulation, we show that
the two approximations perform almost equally but they are not same.
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INTRODUCTION

The problem of approximating joint probability distributions is fundamental in numer-
ous fields including decision analysis and information systems [1, 2, 3, 4, 5]. It is often
convenient to approximate a joint probability distribution for both the computational
aspects of conducting Bayesian inference and for the elicitation of the conditional prob-
abilities. Several methods have been proposed to approximate joint probability distribu-
tions in the literature. For example, Chow and Liu [6] approximate a joint probability
distribution using the notion of a "first-order tree dependence" where each child has on-
ly one parent. Ku and Kullback [7] generalized Chow and Liu’s algorithm [6], allowing
any lower-order marginal distributions to be used in the approximation. In related work,
Keefer [8] presented a model for approximating probability dependence among binary
events and Abbas [9, 10, 11, 12, 13] explored the use of the maximum entropy principle
to approximate joint distributions and utility functions using any number of lower order
assessments and partial information.

In this paper we determine the best first order dependence tree approximation using
the concept of cumulative residual entropy (CRE), which is an alternative measure of
entropy that was introduced by Rao et.al. [14] using cumulative probability distributions.
The cumulative residual entropy measure requires numeric variables for the construction



of a cumulative distribution as opposed to the discrete entropy where probabilities can
be assigned to non-numeric variables.

The contribution of this paper is as follows. We first formulate the concepts of
Kullback-Leibler (KL)-divergence [15] and mutual information [16] in terms of cumu-
lative residual entropy. These definitions are different from Baratpour and Rad’s cumu-
lative KL, and Wang et.al’s cross cumulative residual entropy definitions [17, 18]. We
then derive the optimal first-order dependence tree approximation of the joint distribu-
tion in terms of the cumulative residual KL-divergence. We show that the optimal tree
approximation is the one with the highest sum of cumulative residual mutual information
pairs. This result parallels the Chow-Liu dependence tree formulation that was based on
Shannon’s entropy [19] but uses the survival function instead of the probability.

The remainder of this paper is structured as follows: Section 2 presents the basic
notation and definitions that will be used in the remaining sections of the paper. Section
3 discusses the optimal cumulative residual entropy-based dependence tree. Section
4 presents a Monte Carlo simulation to quantify and compare the accuracy of the
cumulative residual entropy approximation with the Chow-Liu approximation.

BASIC NOTATIONS AND DEFINITIONS

This section presents the basic notation and definitions that will be used in the remaining
sections of the paper. Let

Fx(x) = P(X ≤ x) (1)

be the marginal cumulative distribution function of the random variable X , and let

F(x,y) = P(X ≤ x,Y ≤ y) (2)

be the bivariate cumulative distribution function of random variables X and Y .
Define a marginal survival function for variable X as

Sx(x) = 1−Fx(x) = P(X > x) (3)

and a bivariate survival function for random variables X and Y as

S(x,y) = P(X > x,Y > y) = 1−Fx(x)−Fy(y)+F(x,y) (4)

The conditional survival function between two variables (X given Y ) is

Sx|y(x|y)∼=
S(x,y)
Sy(y)

(5)

Shannon [19] defined the entropy measure using a probability mass function as

H(X) =−
n

∑
i=1

pilogpi (6)

where pi is the probability of outcome i.



Kullback and Leibler [15] extended the entropy definition and introduced a new
measure. The KL- divergence of Q from P is defined as

DKL(P ||Q) =
n

∑
i=1

p(xi)log
(

p(xi)

q(xi)

)
(7)

Mutual information is a special case of KL-divergence between the joint distribution
of two variables and the product of their marginals. The mutual information between
variables X and Y is

MI(X ;Y ) = ∑
xεX

∑
yεY

p(x,y)log
(

p(x,y)
px(x)py(y)

)
(8)

Rao et.al. [14] proposed an alternative entropy measure, ε(S(x)), using cumulative
survival functions as

ε(S(x)) =−
∫

∞

0
S(x)logS(x)dx (9)

After Rao et.al.’s entropy definition, Baratpour and Rad [17] defined a measure similar
to KL-divergence as

CKL(SF : SG) =
∫

∞

0
SF(x)ln

SF(x)
SG(x)

dx− [E(F)−E(G)] (10)

where E(F) and E(G) are expected values of variables X and Y , respectively.
Wang et.al. [18] defined a quantity similar to mutual information which is called Cross

Cumulative Residual Entropy (CCRE) as

CCRE(X : Y ) = ε(X)−E[ε(Y |X)] (11)

In this paper, we apply cumulative residual entropy to KL-divergence and mutual
information. Our definitions are different from Baratpour and Rad’s cumulative KL, and
Wang et.al’s cross cumulative residual entropy definitions. We simplify the cumulative
KL divergence by removing the expected values of random variables and taking the
absolute value of the expression.

Definition 1: Cumulative Residual Kullback-Leibler Divergence
The cumulative residual KL-divergence between two distributions ST and SA is

KLCRE(ST ||SA) =

∣∣∣∣∑ST (x)log
ST (x)
SA(x)

∣∣∣∣ (12)

where KLCRE(ST ||SA)≥ 0 and equality holds if and only if ST = SA.
We also define another quantity similar to mutual information and called it as Cumu-

lative Residual Mutual Information (MICRE).
Definition 2: Cumulative Residual Mutual Information
The cumulative residual mutual information MICRE , between variables X and Y is



FIGURE 1. Example of a four-dimensional dependence tree

MICRE =

∣∣∣∣∣∑xεX
∑
yεY

S(x,y)
[

log
(

S(x,y)
Sx(x)Sy(y)

)]∣∣∣∣∣ (13)

The definition (13) is symmetric and expressed as a divergence of the product of the
marginal survival functions of two random variables from the joint survival function of
random variables.

FIRST-ORDER DEPENDENCE TREES USING CRE

In first order dependence trees, each variable is conditioned on at most one variable, and
there cannot be a cycle between the variables. Figure-1 shows an example of a first-order
dependence tree of four variables. A four-variate joint distribution P(X1,X2,X3,X4) can
be approximated as in Figure-1 using a first-order dependence tree as

Pt(X1,X2,X3,X4) = P(X1)P(X2|X1)P(X3|X2)P(X4|X2) (14)

In Chow-Liu’s first-order dependence tree approach, the mutual information between
each two variables is calculated. Chow and Liu show that a probability distribution of
first order dependence tree structure is the best approximation to the true distribution
with respect to the KL-divergence measure if its dependence tree has the maximum sum
of mutual information pairs from all such first order dependence trees.

Chow and Liu provide a simple algorithm for constructing the optimal tree and
determine which conditional probabilities are to be used in the product approximation.
The method is based on evaluating the mutual information pairs of variables. So, the
algorithm simply adds the maximum mutual information pairs to the tree.

We define the optimum first order dependence tree formulation with respect to the
Cumulative Residual KL-divergence measure.

Theorem 1:
The first-order dependence tree approximation is an optimum first order tree approx-

imation of the joint distribution with respect to the Cumulative Residual KL-divergence
in (12) if its dependence tree has the maximum sum of cumulative residual mutual infor-
mation pairs.

Proof: See appendix.



TABLE 1. 2x2x2x2 Joint Probability Distribution

To illustrate the implications of Theorem 1, we now apply the CRE approach to the
same probability distribution used in [6] to compare the two approaches.

Example: Consider four binary variables where each variable takes on values "0" and
"1". Table-1 shows the outcomes and corresponding probabilities of joint distribution.

To compare both methods we calculate the mutual information (MI) and cumulative
residual mutual information between pairs of variables (MICRE) using equations (8) and
(13) respectively. All combination of pairs of variables and mutual information and
cumulative residual mutual information quantities are given at Table-2.

We construct the optimal first order dependence trees using mutual information and
cumulative residual mutual information pairs at Table-2. Figure-2 shows the optimal
dependence tree approximations. The first three diagrams in Figure-2 are same as what
is found in Chow-Liu’s paper. The fourth one is the dependence tree obtained using
cumulative residual entropy.

MONTE CARLO SIMULATION FOR CRE FIRST ORDER
DEPENDENCE TREE

For numeric illustration, we discuss the simulation steps of a four-variate distribution
and each variable has three different values (3×3×3×3 joint distribution).

Step 1: Generate a joint distribution;

1. Generate 80 independent samples from a uniform [0,1] distribution

s1εU [0,1],s2εU [0,1], · · · · · · ,s80εU [0,1] (15)

2. Sort 80 independent samples from lowest to highest to form an ascending order

u1 ≤ u2 ≤ ·· · · · · ≤ u80 (16)



TABLE 2. Mutual Information pairs of Example-1

FIGURE 2. Optimal Tree Approximations Approximated by Chow-Liu and CRE Method

3. Take the difference between each two consecutive samples.

u1−0,u2−u1,u3−u2, · · · · · · ,u80−u79,1−u80 (17)

The increments form the 3×3×3×3 joint distribution sample at the end of step-1.
Step 2: In this step, we calculate mutual information and cumulative residual mutual

information for all possible pairs of variables by using equation (8) and (13), respective-
ly. We here have six different mutual information pairs: (X1−X2);(X1−X3);(X1−
X4);(X2− X3);(X2− X4);(X3− X4). Then, we assign mutual information pairs as
branch weights for each pair of variables.

Step 3: Construct the first order dependence tree using mutual information and cumu-
lative residual mutual information calculated in step-2 which has maximum total mutual
information and cumulative residual mutual information.



TABLE 3. Simulation Results of Chow-Liu and CRE based Approximations

We generated 10 million discrete joint probability distribution samples to check per-
formance and accuracy of Chow-Liu’s method and cumulative residual entropy method.
For convenience, we run the simulation with several different combination of join-
t distributions including; three binary variables, three three-outcome variables, three
four-outcome variables, three five-outcome variables, four binary variables, four three-
outcome variables, four four-outcome variables, and four five-outcome variables.Table
3 displays a summary of mean and variance of errors of second order joint probability
distributions calculated by Chow-Liu and cumulative residual entropy methods.

From Table 3, for the case of 3× 3× 3× 3 joint distributions, we have found that
Chow-Liu and CRE methods’ results are almost exactly same after 10 million runs. The
mean of absolute deviation for Chow-Liu method is 0.5888, and for CRE method is
0.5879. The ratio of the means of absolute deviation of Cho-Liu’s method to the CRE
method is less than (0.5888/0.5879)=0.15

The second observation we can see from Table-3 is that the mean and variance of
errors are very close in the long run for the two methods which means that the two
approximation methods are very close but they are not same. Also, we found that Chow-
Liu and CRE methods approximated the same first order dependence tree more than

Anoyher observation after simulation results we can see that the mean value of
absolute deviation for our CRE approximation method and traditional Chow-Liu method
are increasing when the number of outcomes of a variable increases. Also, the mean
value of least squares error decreases when the outcomes of a variable increase. This
implies that these two methods are sensitive to the number of variables and its outcomes.

CONCLUSION

In this paper, we discussed the problem of approximating multidimensional discrete
probability distributions using first-order dependence trees. We showed that the optimal
first-order dependence tree approximation in terms of the cumulative residual KL diver-
gence is the one with the largest sum of cumulative residual mutual information pairs.
We then ran a Monte Carlo simulation to illustrate the performance of the approxima-
tion. The results show that the cumulative residual approximation and the Chow-Liu
approximations give almost identical accuracy results.



Cumulative residual entropy method can be used as an alternative method to Chow-
Liu’s method if cumulative functions, especially survival functions, are present. There-
fore, we don’t need to calculate the density functions to approximate first order depen-
dence trees, and by using CRE method we can directly approximate first-order depen-
dence trees from cumulative functions.

APPENDIX

In this proof, we follow the proof of Chow-Liu’s first order dependence tree theorem
but applied to the survival functions and the two proposed measures defined on page-3:
cumulative residual KL-divergence (KLCRE) and cumulative residual mutual informa-
tion (MICRE). Let SA be a second order product approximation (first order dependence
tree). The optimal first-order dependence tree is determined by minimizing the cumula-
tive residual KL-divergence between true distribution ST and approximate distribution
SA as SA∗ = argminKLCRE [ST ||SA]. We first have the equation

KLCRE(ST ||SA) =−
∣∣∣∣∑ST (x)log

ST (x)
SA(x)

∣∣∣∣=
−

∣∣∣∣∣∑ST (x)logST (x)+∑ST (x)log
n

∏
i=1

SA(xi|x j(i))

∣∣∣∣∣ (18)

The first term of the right hand side of equation (18) is cumulative residual entropy of
true distribution ST , ε(ST ) =−∑ST (x)logST (x). So, re-arranging equation (18) gives

KLCRE(ST ||SA) =−

∣∣∣∣∣−ε(ST )+∑ST (x)log
n

∏
i=1

SA(xi|x j(i))

∣∣∣∣∣ (19)

We can write conditional survival function SA(xi|x j(i)) as
SA(xi,x j(i))

SA(x j(i))
, then equation (19)

can be written as

KLCRE(ST ||SA) =−

∣∣∣∣∣−ε(ST )+
n

∑
i=1

∑
xi,x j(i)

ST (xi,x j(i))log
SA(xi,x j(i))

SA(x j(i))

∣∣∣∣∣ (20)

Multiplying the numerator and the denominator of last term of equation (20) by
marginal survival function, SA(xi)

KLCRE(ST ||SA) =−

∣∣∣∣∣−ε(ST )+
n

∑
i=1

∑
xi,x j(i)

ST (xi,x j(i))log
SA(xi,x j(i))

SA(x j(i))
× SA(xi)

SA(xi)

∣∣∣∣∣ (21)

Our aim to multiply by SA(xi) is to re-arrange the equation (20) and obtain cumulative
residual mutual information. By using the logarithm of a product is the sum of the
logarithms of the factors rule, we can rewrite equation (21) as



KLCRE(ST ||SA) =

−

∣∣∣∣∣ε(ST )+
n

∑
i=1

∑
xi

ST (xi,x j(i))logSA(xi)+
n

∑
i=1

∑
xi,x j(i))

ST (xi,x j(i))log
SA(xi,x j(i))

SA(xi)SA(x j(i))

∣∣∣∣∣ (22)

In order to minimize the cumulative residual KL information, we expect that the
true and approximate distribution satisfy the equality condition that achieves the maxi-
mal value with SA(xi,x j(i)) = ST (xi,x j(i)). We rewrite the equation (22) by substituting
SA(xi,x j(i)) with ST (xi,x j(i))

KLCRE(ST ||SA) =

−

∣∣∣∣∣ε(ST )+
n

∑
i=1

∑
xi

ST (xi)logST (xi)+
n

∑
i=1

∑
xi,x j(i))

ST (xi,x j(i))log
SA(xi,x j(i))

ST (xi)ST (x j(i))

∣∣∣∣∣ (23)

Using the rule of subadditivity rule of absolute values, we can rewrite the equation
(23) as

KLCRE(ST ||SA)≤−|− ε(ST )|+

∣∣∣∣∣ n

∑
i=1

∑
xi

ST (xi)logST (xi)

∣∣∣∣∣+∣∣∣∣∣ n

∑
i=1

∑
xi,x j(i))

ST (xi,x j(i))log
SA(xi,x j(i))

ST (xi)ST (x j(i))

∣∣∣∣∣ (24)

So, minimizing the cumulative residual KL divergence is same as minimizing the right
hand side of the equation (21). First and second terms of right hand side of equation (21)
are independent to the dependence tree, therefore minimizing the cumulative residual
KL divergence is equivalent to maximizing the sum of cumulative residual mutual
information in each branch.
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