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Abstract. Quantum mechanics has a rich geometrical structure which allows for a geometrical
formulation of the theory. This formalism was introduced byKibble and later developed by a number
of other authors. The usual approach has been to start from the standard description of quantum
mechanics and identify the relevant geometrical features that can be used for the reformulation of the
theory. Here this procedure is inverted: the geometrical structure of quantum theory is derived from
information geometry, a geometrical structure that may be considered more fundamental, and the
Hilbert space of the standard formulation of quantum mechanics is constructed using geometrical
quantities. This suggests that quantum theory has its rootsin information geometry.
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INTRODUCTION

In the Schrödinger picture of non-relativistic quantum mechanics, the state of a particle
is represented by a wave functionsψ(x, t), wherex are the coordinates of the configu-
rations space andt is the time. The probability of finding the particle at position x and
time t is given by the probability densityP= ψ∗ψ. The evolution of the wave function
is determined by the Schrödinger equation,ih̄ψ̇ =−(h̄2/2m)∇2ψ +Vψ, wherem is the
mass of the particle andV a potential term. In the Hilbert space formulation of the the-
ory, physical observables are represented by linear operators acting on wave functions
and the Schrödinger equation takes the form of an operator equation,ih̄ψ̇ = Ĥψ, where
Ĥ =−(h̄2/2m)∇2+V is the Hamiltonian operator.

The Hilbert space formulation of quantum mechanics [1] is the standard one, but other
alternative approaches are possible. The theory has a rich geometrical structure which
allows for a geometrical formulation, introduced by Kibble[2] and later developed by
a number of other authors. A review of the various geometrical formulations is beyond
the scope of this paper. For a detailed but accessible description, see Ref. [3].

The usual approach has been to start from the standard description of quantum me-
chanics and identify the relevant geometrical features that can be used for the reformula-
tion of the theory. Here this procedure is inverted: the geometrical structure of quantum
theory isderivedfrom information geometry, a geometrical structure that may be con-
sidered more fundamental, and the Hilbert space of the standard formulation of quantum
mechanics is constructed using geometrical quantities.

The starting point of the analysis is very basic: A space of probabilities and the
information metric, which defines a geometry known as information geometry. The
next step is to take dynamics into consideration, via an action principle. Once this



is done, new geometrical structures which go beyond information geometry appear
in a natural way. The description of dynamics in terms of an action principle in the
Hamiltonian formalism introduces a doubling of the dimensionality of the space and a
symplectic structure, and requirements of consistency between metric and symplectic
structures lead to a complex structure and to a Kähler geometry. In this way, all the
geometrical structure that is needed for the geometrical formulation of quantum theory
is derived from information geometry. The procedure, whichcan be carried out for
both continuous [4] and discrete [5, 6] systems, has a numberof remarkable features:
the complex structure appears by requiring consistency between metric and symplectic
structures, wave functions arise as the natural complex coordinates of the Kähler space,
and time evolution is described by a one-parameter group of unitary transformations.
This suggests that quantum theory has its roots in information geometry.

The work presented here relies heavily on, and extends, workdone in collaboration
with M. J. W. Hall [4, 5].

INFORMATION GEOMETRY

Consider ann-dimensional configuration space, with coordinatesx ≡ {x1, . . . ,xn}, and
probability densitiesP(x) satisfyingP(x) ≥ 0 and

∫

dnxP(x) = 1. Let the translation
groupT act on the probability densities,T : P(x)→ P(x+θ). There is a natural metric
on the space of parameters, the Fisher-Rao metric [7], givenin this case by

γ jk =
α
2

∫

dnx
1

P(x+θ)
∂P(x+θ)

∂θ j

∂P(x+θ)
∂θk , (1)

whereα is a constant. The line elementdσ2 = γ jk∆ j∆k (where|∆k| << 1) defines an
infinitesimal distance between two probability distributionsP(x+θ) andP(x+θ +∆).

The metric of Eq. (1) can also be written as a metric on configuration space. To do this,
make the change of variablesx+θ → x and use∂P(x+θ )

∂θ j =
∂P(x+θ )

∂x j . The transformation
puts the metric in the equivalent form

γ jk =
α
2

∫

dnx
1

P(x)
∂P(x)

∂x j

∂P(x)
∂xk .

The metric is now proportional to the Fisher information matrix. It will be convenient to
use this form in what follows.

Finally, the line elementdσ2 = γ jk∆ j∆k induces a line element in the space of proba-
bility densities,

ds2 =
α
2

∫

dnx
1
Px

δPxδPx =

∫

dnxdnx′gPP(x,x
′)δPx δPx′ , (2)

where I introduced the notationPx = P(x), δPx ≡ ∂P(x)
∂x j ∆ j . The line element of Eq. (2)

was introduced by Jeffreys [8]. The induced metricgPP, which is diagonal, is given by

gPP(x,x
′) =

α
2Px

δ (x−x′). (3)



DYNAMICS AND SYMPLECTIC GEOMETRY

Consider now probabilitiesP(x, t) that evolve in time. There are two constraints that
must be satisfied at all timest: P must satisfy

∫

dnxP(x, t) = 1, which means that the
functionalI [P] =

∫

dnxP(x, t) must be a constant of the motion, andP(x, t)≥ 0.
The problem of time evolution under these constraints is solved by deriving the

equations of motion from an action principle. This is a reasonableansatz: Constants
of the motion like the functionalI are often associated with invariance of a Lagrangian
or Hamiltonian under particular types of transformations.

It will be convenient to write the equations of motion using aHamiltonian formalism.
To do this, introduce an auxiliary fieldS which is canonically conjugate toP and a
corresponding Poisson bracket for any two functionalsF[P,S] andG[P,S] given by

{Fx,Gx′}=
∫

dnx′′
(

δFx

δPx′′

δGx′

δSx′′
− δFx

δSx′′

δGx′

δPx′′

)

,

where I introduced the compact notationFx = F [Px,Sx] for functionals ofP andS. The
equations of motion of the fundamental variables is given by

Ṗ= {P,H }= δH

δS
, Ṡ= {S,H }=−δH

δP
,

whereH [P,S] is theensemble Hamiltonianthat generates time translations.
The condition thatI [P] is a constant of the motion takes the form{I ,H }= 0 or

∫

dx
δH

δS
= 0. (4)

Consider the most general case in which the ensemble Hamiltonian can depend onP and
Sand their higher derivatives. Then [9]

δH

δS
=

∂H

∂S
− ∂

∂xµ

[

∂H

∂ (∂S/∂xµ )

]

+
∂ 2

∂xµxν

[

∂H

∂ (∂ 2S/∂xµ ∂xν)

]

− ...

After an integration by parts, Eq. (4) reduces to
∫

dx∂H

∂S = 0. This must be satisfied

regardless of the choice ofP andS, thus∂H

∂S = 0; i.e.,H can not be a function ofS, it
can only be a function of the derivatives ofS. This implies the invariance ofH under
thegauge transformation

S→ s+c, (5)

wherec is a constant.
One can show that the conditionP(x, t)≥ 0 is also satisfied at all times provided it is

satisfied initially andP and the vector field that is associated with its time evolution sat-
isfy some mild smoothness conditions (see the Appendix). Thus Hamiltonian evolution
satisfies the necessary requirements providedH is invariant under the gauge transfor-
mation of Eq. (5).

The main advantage of introducing a Hamiltonian formulation of dynamics rather
that a Lagrangian formulation comes from the additional geometrical structure that is



characteristic of the Hamiltonian formalism. As is well known, the Poisson bracket can
be rewritten geometrically as

{F,G}=
∫

dnxdnx′ (δPx δSx) Ω(x,x′)
(

δPx′

δSx′

)

,

whereΩ is the corresponding symplectic form, given in this case by

Ω(x,x′) =
(

0 1
−1 0

)

δ (x−x′) . (6)

A Hamiltonian description therefore leads to a symplectic structure and a corresponding
symplectic geometry[10]. This has far reaching consequences.

KÄHLER GEOMETRY

The symplectic structure is defined over the whole phase space. The metric, however, is
only defined over the subspace of probabilitiesP. This is unsatisfactory. Is it possible to
extend the metric of Eq. (3) to define a metric over the complete space?

It can be done provided certain conditions which ensure the compatibility of metric
and symplectic structures are satisfied (see the Appendix ofRef. [4] for a discussion).
These conditions amount to requiring that the phase space have a Kähler structure. Thus
the natural geometry of the space of probabilities in motionis a Kähler geometry.

A Kähler structure brings together metric, symplectic and complex structures in a
harmonious way. To define such a space, introduce a complex structureJa

b and impose
the following conditions [11],

Ωab = gacJ
c
b , (7)

Ja
cgabJ

b
d = gcd , (8)

Ja
bJb

c = −δ a
c . (9)

Eq. (7) ensures compatibility betweenΩab and gab, Eq. (8) is the condition that the
metric should be Hermitian, and Eq. (9) ensures thatJa

b is a complex structure.
The metric over the subspace of probabilities is diagonal and given bygPP(x,x′) =

α
2Px

δ (x− x′). Assume that the full metricgab is also diagonal; that is, of the form
gab(x,x′) = gab(x)δ (x−x′) (this assumption corresponds to alocalityassumption). Then
gab is real and symmetric, of the form

gab =

( α
2Px

gPS

gSP gSS

)

δ (x−x′).

The elementsgPS= gSPandgSSneed to be determined using the Kähler conditions. The
solution is given by [4]

gab=

( α
2Px

Ax

Ax
2Px
α (1+A2

x)

)

δ (x−x′), Ja
b=

(

Ax
2Px
α (1+A2

x)
− α

2Px
−Ax

)

δ (x−x′), (10)



with Ωab as in Eq. (6). The functionalAx is not fixed by the Kähler conditions.
To determineAx, it is convenient to look at the analogous but simpler formulation

for the discrete case [5, 6]. Then, the functionals that define the Kähler conditions are
replaced by finite dimensional matrices; in particular, thefunctionalAx is replaced by a
matrixA.

In the case of a discrete configuration space,Čencov has shown that the information
metric is the only metric that is invariant under a family of probabilistically natural
mappings known ascongruent embeddings by a Markov mapping[12]; see also Refs.
[13, 14]. The Markov mappings introduced byČencov play a crucial role in the proof
of uniqueness of the information metric. A similar approachcan be applied to the
discrete version of the metric of Eq. (10). It turns out that the form of A can be
determined by requiring invariance of the Kähler metric under a particular type of
canonical transformation which extends the notion of a Markov mapping to the full
phase space: The result is thatA must be independent of the coordinates of the phase
space and proportional to the the unit matrix [6].

Based on the analogy of the discrete case, I setAx =A, whereA is a constant. Whether
mappings analogous to the Markov mappings introduced byČencov in the discrete case
can be formulated in the continuous case remains an open question.

COMPLEX COORDINATES AND WAVE FUNCTIONS

Up to now, I have made use of real coordinatesP, S. Kähler geometry, however, is best
expressed in terms of complex coordinates. I carry out a complex transformation that
shows that the metric of Eq. (10) describes in fact a flat Kähler space.

SetAx = A, whereA is a constant, in Eqs. (10) and consider first the particular case
A= 0. The tensors that define the Kähler geometry take the form

Ωab =

(

0 1
−1 0

)

δ (x− x′), gab =

( α
2Px

0
0 2Px

α

)

δ (x− x′), Ja
b =

(

0 2Px
α

− α
2Px

0

)

δ (x− x′).

Introduce now theMadelung transformation

ψ =
√

Pexp(iS/α), ψ∗ =
√

Pexp(−iS/α), (11)

which is a canonical transformation. A simple calculation shows that the tensors that
define the Kähler geometry, expressed in terms ofψ, ψ∗, take the standard form which
is characteristic of flat-space [11],

Ωab =

(

0 iα
−iα 0

)

δ (x− x′), gab=

(

0 α
α 0

)

δ (x− x′), Ja
b =

(

−i 0
0 i

)

δ (x− x′).

Thus, whenA= 0, there is a natural set of fundamental variables given byψ andψ∗. In
terms of these variables, the tensors that define the Kähler geometry take their simplest
form. If α is set equal tōh, these fundamental variables are precisely thewave functions
of quantum mechanics. This is a remarkable result because itis based on geometrical
arguments only. The derivation does not use any assumptionsfrom quantum theory.

Consider now the more general caseA 6=0. The tensors that define the Kähler structure
take the form

Ωab=

(

0 1
−1 0

)

δ (x−x′),gab=

( α
2Px

Ax

Ax
2Px(1+A2

x)
α

)

δ (x−x′),Ja
b =

(

Ax
2Px(1+A2

x)
α

− α
2Px

−Ax

)

δ (x−x′).



In this case, define themodified Madelung transformation

φ =
√

Pexp
[

i
(

ΛS/α − γ ln
√

P
)]

, φ∗ =
√

Pexp
[

−i
(

ΛS/α − γ ln
√

P
)]

, (12)

whereΛ = 1/(1+A2) and γ = −A/(1+A2). Once more, the tensors that define the
Kähler geometry, expressed now in terms ofφ , φ∗, take the standard form which is
characteristic of flat-space,

Ωab=

(

0 i α
Λ

−i α
Λ 0

)

δ (x− x′), gab=

(

0 α
Λα

Λ 0

)

δ (x− x′), Ja
b =

(

−i 0
0 i

)

δ (x− x′).

This shows that the geometry of the Kähler space is the same whetherA= 0 or A 6= 0.
In fact, it is possible to map one case to the other using anA-dependent canonical
transformation. It is clear then that both cases lead to the same theory (provided one
setsα = h̄ whenA = 0 or α

Λ = h̄ whenA 6= 0), and in the following sections I will set
A= 0 and use the complex coordinates (wave functions)ψ andψ∗.

The transformation that takes you from the coordinates of Eq. (11) to the coordinates
of Eq. (12) is a particular case of a family of nonlinear gaugetransformations introduced
by Doebner and Goldin [15] (compare to their Eq. (2.2)). As pointed out by Doebner and
Goldin, the theory that results from this particular familyof nonlinear gauge transfor-
mations is physically equivalent to standard quantum mechanics. Here we arrive at the
same conclusion, but now on the basis of the equivalence of the two casesA = 0 and
A 6= 0 via a canonical transformation. One may therefore view thepresent derivation
of the geometrical formulation of quantum mechanics as providing a new route to this
family of Doebner-Goldin nonlinear gauge transformations.

HILBERT SPACE

One can now introduce a Hilbert space formulation. There is astandard construction
which associates a complex Hilbert space with any Kähler space. Given two complex
functionsψ(x) andϕ(x), define the Dirac product by [2]

〈φ |ϕ〉 =
1
2

∫

dnx

{

(φ ,φ∗) · [g+ iΩ] ·
(

ϕ
ϕ∗

)}

=
1
2

∫

dnx

{

(φ ,φ∗)
[(

0 1
1 0

)

+ i

(

0 i
−i 0

)](

ϕ
ϕ∗

)}

=
∫

dnx φ∗ϕ

In this way, the Hilbert space structure of quantum mechanics follows from the Käh-
ler geometry. This suggests that the Hilbert space structure of quantum mechanics is
perhaps not as fundamental as its geometrical structure.

As is well known, the group of unitary transformations playsa fundamental role in
quantum theory. To understand the role of the unitary group in the geometrical formu-
lation presented here, it is convenient once more to look at the analogous but simpler
formulation for the discrete case of ann-dimensional complex space [5, 6]. Since the



Kähler structure includes a symplectic structure, the group of symplectic transforma-
tions, Sp(2n,R), will play an important role in the theory. But the group of transforma-
tions of the theory can not be the full symplectic group due tothe additional requirements
that they have to satisfy. The first requirement is that they preserve the normalization of
the probability. The second requirement is that the metric of the Kähler space be form
invariant under the transformations. Requiring normalization of the probability and met-
ric invariance leads to the group of rotations on the 2n-dimensional sphere, O(2n,R).
Unitary transformations are the only symplectic transformations which are also rota-
tions; i.e., Sp(2n,R) ∩ O(2n,R)=U(n) [10]. Therefore, in the discrete case the group of
unitary transformationsU(n) is singled out, with time evolution being described by a
one-parameter group of unitary transformations [5, 6]. An analogous results applies to
the continuous case.

DISCUSSION

The geometry of quantum theory can be derived from information geometry, the natural
geometry on the space of probabilities, using only a few assumptions. The derivation,
which can be carried out for both the discrete and continuouscases, has a number of
interesting features:

• Doubling of the dimensionality of the space (i.e.,{P} → {P,S}) from dynamical
considerations,

• Complex structure from consistency between metric and symplectic structures,
• Wave functions as the natural complex coordinates of the Kähler space,
• Representation in terms of canonical transformations of a particular case of a family

of Doebner-Goldin nonlinear gauge transformations,
• Time evolution described by a one-parameter group of unitary transformations,
• Hilbert space formulation expressed in terms of geometrical quantities associated

with the Kähler space.

The derivation presented here relies heavily on, and extends, a geometrical recon-
struction of quantum theory by Reginatto and Hall which takes information geometry
as its starting point [4, 5]. Mehrafarin [16] and Goyal [17, 18] have also developed re-
constructions of quantum theory using information-geometrical approaches. A detailed
comparison to their approaches has not been carried out yet;however, one of the main
differences is in the handling ofdynamics, which plays a crucial role here. In particular,
the use of an action principle to describe the dynamics of probabilities leads in a natural
way to geometrical structure that goes beyond information geometry.
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APPENDIX

I look at the conditions that lead toP(x, t)≥ 0 when initiallyP(x,0)≥ 0.
Write the conservation of probability,

∫

dxP(x, t) = 1, as the continuity equation
Ṗ+∇ · (P~v) = 0, where~v(x, t) is the vector field associated with the time evolution
of P. For simplicity, consider the one-dimensional case,

Ṗ=−∂P
∂x

v−P
∂v
∂x

. (13)

The case of interest is whenv 6= 0, otherwiseP is time independent. Taking the time
derivative of Eq. (13) and replacinġP using once more Eq. (13),̈P(x) can be expressed
as

P̈= P

[

(

∂v
∂x

)2

+v
∂ 2v
∂x2 −

(

∂v
∂x

)·]

+
∂P
∂x

[

3v
∂v
∂x

− v̇

]

+
∂ 2P
∂x2 v2.

I consider the case whereP|x=x0 = 0 at timet = 0 with ∂P
∂x |x=x0 = 0 and ∂ 2P

∂x2 |x=x0 > 0
(i.e., the pointx0 is a minimum ofP). If the vector fieldv is sufficiently smooth so that
∂v
∂x, v̇ and

(

∂v
∂x

)·
remain finite, theṅP|x=x0 = 0 andP̈|x=x0 = ∂ 2P/∂x2v2|x=x0 > 0. Since

P|x=x0 = 0 at timet = 0, these relations imply thatP does not become negative at a later
time.

REFERENCES

1. J. von Neumann,Mathematical Foundations of Quantum Mechanics, Princeton University Press,
Princeton, 1955.

2. T.W.B. Kibble,Commun. math. Phys.65, 189-201 (1979).
3. A. Ashtekar and T. A. Schilling, “Geometrical Formulation of Quantum Mechanics”, inOn Einstein’s

Path, Essays in Honor of Engelbert Schücking, edited by A. Harvey, Springer, Berlin, 1999, pp. 23-65.
4. M. Reginatto and M.J.W. Hall,AIP Conf. Proc.1443, 96-103 (2012).
5. M. Reginatto and M.J.W. Hall,AIP Conf. Proc.1553, 246-253 (2013).
6. M. Reginatto, “From information to quanta: a derivation of the geometric formulation of quantum

theory from information geometry,” arXiv:1312.0429v1.
7. C. R. Rao, “Differential Metrics in Probability Spaces,”in Differential Geometry in Statistical Infer-

ence, edited by S.-I. Amari, O. E. Barndorff-Nielsen, R. E. Kass,S. L. Lauritzen, and C. R. Rao,
Institute of Mathematical Statistics, Hayward, CA, 1987, pp. 217-240.

8. H. Jeffreys,Proc. Roy. Soc. A186, 453-461 (1946).
9. A. O. Barut,Electrodynamics and Classical Theory of Fields and Particles, Dover Publications, New

York, 1980.
10. V. I. Arnold, Mathematical Methods of Classical Mechanics, 2nd ed., Springer-Verlag, New York,

1989.
11. S.I. Goldberg,Curvature and Homology, Dover Publications, New York, 1982.
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