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Abstract. Quantum mechanics has a rich geometrical structure whiowalfor a geometrical
formulation of the theory. This formalism was introduceddilgble and later developed by a number
of other authors. The usual approach has been to start freratémdard description of quantum
mechanics and identify the relevant geometrical featnaistian be used for the reformulation of the
theory. Here this procedure is inverted: the geometricattire of quantum theory is derived from
information geometry, a geometrical structure that may dresiclered more fundamental, and the
Hilbert space of the standard formulation of quantum meidsas constructed using geometrical
guantities. This suggests that quantum theory has its noatformation geometry.
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INTRODUCTION

In the Schrodinger picture of non-relativistic quantum hreacs, the state of a particle
is represented by a wave functiog$x,t), wherex are the coordinates of the configu-
rations space anis the time. The probability of finding the particle at pasitix and
timet is given by the probability density = ¢* (). The evolution of the wave function
is determined by the Schrodinger equatidi) = —(R?/2m) 02w +V g, wheremis the
mass of the particle and a potential term. In the Hilbert space formulation of the-the
ory, physical observables are represented by linear apsratting on wave functions
and the Schrédinger equation takes the form of an operatatien,ihy = Hy, where

H = —(R?/2m)0% +V is the Hamiltonian operator.

The Hilbert space formulation of quantum mechanics [1]é&dtandard one, but other
alternative approaches are possible. The theory has aemmetrical structure which
allows for a geometrical formulation, introduced by Kiblp2 and later developed by
a number of other authors. A review of the various geomdtfazanulations is beyond
the scope of this paper. For a detailed but accessible géscrisee Ref. [3].

The usual approach has been to start from the standard plestmof quantum me-
chanics and identify the relevant geometrical featureiscdiabe used for the reformula-
tion of the theory. Here this procedure is inverted: the getical structure of quantum
theory isderivedfrom information geometry, a geometrical structure thay e con-
sidered more fundamental, and the Hilbert space of the atdridrmulation of quantum
mechanics is constructed using geometrical quantities.

The starting point of the analysis is very basic: A space ababilities and the
information metric, which defines a geometry known as infation geometry. The
next step is to take dynamics into consideration, via aroacgrinciple. Once this



is done, new geometrical structures which go beyond infonageometry appear
in a natural way. The description of dynamics in terms of atoacprinciple in the
Hamiltonian formalism introduces a doubling of the dimensility of the space and a
symplectic structure, and requirements of consistencydxt metric and symplectic
structures lead to a complex structure and to a Kahler gegmiatthis way, all the
geometrical structure that is needed for the geometricatddation of quantum theory
is derived from information geometry. The procedure, whieim be carried out for
both continuous [4] and discrete [5, 6] systems, has a numibemarkable features:
the complex structure appears by requiring consistenayd®t metric and symplectic
structures, wave functions arise as the natural complesdauates of the Kahler space,
and time evolution is described by a one-parameter groupivdny transformations.
This suggests that quantum theory has its roots in infoonageometry.

The work presented here relies heavily on, and extends, damk in collaboration
with M. J. W. Hall [4, 5].

INFORMATION GEOMETRY

Consider am-dimensional configuration space, with coordinates {x*,...,x"}, and
probability densitiedP(x) satisfyingP(x) > 0 and [d"xP(x) = 1. Let the translation
groupT act on the probability densities,: P(x) — P(x+ 8). There is a natural metric
on the space of parameters, the Fisher-Rao metric [7], givems case by
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wherea is a constant. The line elemedit? = yjkAjA" (where|AK| << 1) defines an
infinitesimal distance between two probability distrilunsP(x+ 8) andP(x+ 6 +A).

The metric of Eq. (1) can also be written as a metric on condigom space. To do this,

make the change of variables- 6 — x and usoapfg’;e) = ‘7P(g’§je) . The transformation

puts the metric in the equivalent form
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The metric is now proportional to the Fisher information matt will be convenient to
use this form in what follows. _

Finally, the line elementlo? = yjkAJA" induces a line element in the space of proba-
bility densities,
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where | introduced the notatid® = P(x), 6P = dg)gf‘)Aj. The line element of Eq. (2)
was introduced by Jeffreys [8]. The induced megpp, which is diagonal, is given by

gpp(X,X) = Z—PX(S(X X). (3)



DYNAMICS AND SYMPLECTIC GEOMETRY

Consider now probabilitie®(x,t) that evolve in time. There are two constraints that
must be satisfied at all times P must satisfy/ d"xP(x,;t) = 1, which means that the
functionall [P] = [ d"xP(x,t) must be a constant of the motion, aRgk,t) > 0.

The problem of time evolution under these constraints isesbloy deriving the
equations of motion from an action principle. This is a remdibe ansatz Constants
of the motion like the functiondl are often associated with invariance of a Lagrangian
or Hamiltonian under particular types of transformations.

It will be convenient to write the equations of motion usinigamiltonian formalism.
To do this, introduce an auxiliary fiel8 which is canonically conjugate tB and a
corresponding Poisson bracket for any two functiodR S| andG|[P, § given by
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where | introduced the compact notatiBn= F [P, S| for functionals ofP andS. The
equations of motion of the fundamental variables is given by
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whereZ [P, S is theensemble Hamiltoniathat generates time translations.
The condition that [P] is a constant of the motion takes the fofin.#’} = 0 or

0
/ dx "2 =0, (4)

Consider the most general case in which the ensemble Hamaittean depend daand
Sand their higher derivatives. Then [9]
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After an integration by parts, Eq. (4) reducesftdx%s = 0. This must be satisfied

regardless of the choice &fandS, thus% = 0; i.e.,. can not be a function d, it
can only be a function of the derivatives &fThis implies the invariance of# under
thegauge transformation

S—s+c, (5)

wherec is a constant.

One can show that the conditiétix,t) > O is also satisfied at all times provided it is
satisfied initially and® and the vector field that is associated with its time evolusiat-
isfy some mild smoothness conditions (see the Appendix)s Hamiltonian evolution
satisfies the necessary requirements provigi€ds invariant under the gauge transfor-
mation of Eqg. (5).

The main advantage of introducing a Hamiltonian formulated dynamics rather
that a Lagrangian formulation comes from the additionalngetnical structure that is



characteristic of the Hamiltonian formalism. As is well kimg the Poisson bracket can
be rewritten geometrically as

{F,G}:/d”xd”x’ (8P 5S) Q(xX) ( g;ﬁ )

whereQ is the corresponding symplectic form, given in this case by

Q(xX) = ( o cl))é(x—x’) . (6)

A Hamiltonian description therefore leads to a sympledtigcture and a corresponding
symplectic geometij)L 0]. This has far reaching consequences.

KAHLER GEOMETRY

The symplectic structure is defined over the whole phasessfde metric, however, is
only defined over the subspace of probabiliteed his is unsatisfactory. Is it possible to
extend the metric of Eq. (3) to define a metric over the core@ptace?

It can be done provided certain conditions which ensure dmepatibility of metric
and symplectic structures are satisfied (see the Appendiebf[4] for a discussion).
These conditions amount to requiring that the phase spageshiédhler structure. Thus
the natural geometry of the space of probabilities in motga Kahler geometry

A Kahler structure brings together metric, symplectic andhplex structures in a
harmonious way. To define such a space, introduce a completisteJ3 and impose
the following conditions [11],

Qap = gacJCb ) (7)
JacgabJ% = Oed> (8)
BE = -5, (9)

Eq. (7) ensures compatibility betwe&y, and gap, EQ. (8) is the condition that the
metric should be Hermitian, and Eq. (9) ensures d§as a complex structure.

The metric over the subspace of probabilities is diagondlgiven bygpp(x,X') =
2%X(S(x—x’). Assume that the full metrigyy, is also diagonal; that is, of the form
Gab(X,X') = Gap(X) d(x—X) (this assumption corresponds ttaality assumption). Then
Oap IS real and symmetric, of the form
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The elementgps= gspandgssneed to be determined using the Kahler conditions. The
solution is given by [4]
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with Qg as in Eq. (6). The functionay is not fixed by the Kahler conditions.

To determineAy, it is convenient to look at the analogous but simpler foatioh
for the discrete case [5, 6]. Then, the functionals that detire Kahler conditions are
replaced by finite dimensional matrices; in particular,ftnectional Ay is replaced by a
matrix A. 5

In the case of a discrete configuration sp&@encov has shown that the information
metric is the only metric that is invariant under a family abpabilistically natural
mappings known asongruent embeddings by a Markov mappjhg)]; see also Refs.
[13, 14]. The Markov mappings introduced Bencov play a crucial role in the proof
of uniqueness of the information metric. A similar approaan be applied to the
discrete version of the metric of Eg. (10). It turns out thHa form of A can be
determined by requiring invariance of the K&hler metric end particular type of
canonical transformation which extends the notion of a Markapping to the full
phase space: The result is tifaimust be independent of the coordinates of the phase
space and proportional to the the unit matrix [6].

Based on the analogy of the discrete case, Aget A, whereAis a constant. Whether
mappings analogous to the Markov mappings introduce@dmcov in the discrete case
can be formulated in the continuous case remains an opeti@ues

COMPLEX COORDINATES AND WAVE FUNCTIONS

Up to now, | have made use of real coordind®e$. Kahler geometry, however, is best
expressed in terms of complex coordinates. | carry out a t@ntpansformation that

shows that the metric of Eq. (10) describes in fact a flat Kiépece. _
SetAx = A, whereA is a constant, in Egs. (10) and consider first the particidaec
A = 0. The tensors that define the Kéhler geometry take the form

L0 e
Qab(_ol é)c‘i(x%), gab(zgx z_px)é(x%), Jab( % 6)6(xx’).

[of

Introduce now théladelung transformation

Y =+PexpiS/a), Y =VPexp—iS/a), (11)

which is a canonical transformation. A simple calculatitiows that the tensors that

define the Kahler geometry, expressed in termgyof*, take the standard form which
is characteristic of flat-space [11],

Qu=( 0 6 Jax w= (g § Jox-xn H=( g 7 )ox-x)
Thus, wherA = 0, there is a natural set of fundamental variables givewlandy*. In
terms of these variables, the tensors that define the Kabtangtry take their simplest
form. If a is set equal td, these fundamental variables are preciselythee functions

of quantum mechanics. This is a remarkable result becausdised on geometrical

arguments only. The derivation does not use any assumgtmmsguantum theory.
kCorFlsu%Ier now the more general cdsg 0. The tensors that define the Kahler structure
take the form
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In this case, define thmodified Madelung transformation
Q= \/5exp[i (/\S/a —vyln \/I3>} . Q= \/5exp[—i (/\S/a —vyln \/5>] . (12)

whereA = 1/(1+ A?) andy = —A/(1+ A?). Once more, the tensors that define the
Kahler geometry, expressed now in termsgpfe*, take the standard form which is
characteristic of flat-space,

~( o0 % (0 ¢ a_ [ -1 0
Qab( _ia b >6(xx’), gab( a B )6(xx’), Jb( 0 i )6(xx’).
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This shows that the geometry of the Kahler space is the sarathetA = 0 or A £ 0.
In fact, it is possible to map one case to the other usingda@lependent canonical
transformation. It is clear then that both cases lead to éimeestheory (provided one
setsa = hwhenA =0 or £ = hwhenA # 0), and in the following sections | will set
A =0 and use the complex coordinates (wave functignand *.

The transformation that takes you from the coordinates of Ep) to the coordinates
of Eq. (12) is a particular case of a family of nonlinear gatrgasformations introduced
by Doebner and Goldin [15] (compare to their Eq. (2.2)). Asped out by Doebner and
Goldin, the theory that results from this particular farmolfynonlinear gauge transfor-
mations is physically equivalent to standard quantum mackaHere we arrive at the
same conclusion, but now on the basis of the equivalenceeotvib case®\ = 0 and
A # 0 via a canonical transformation. One may therefore viewpitesent derivation
of the geometrical formulation of quantum mechanics asigiog a new route to this
family of Doebner-Goldin nonlinear gauge transformations

HILBERT SPACE

One can now introduce a Hilbert space formulation. There ssaadard construction
which associates a complex Hilbert space with any Kéhlecesp@iven two complex
functionsy/(x) and¢ (x), define the Dirac product by [2]

ooy = 5 [oxfoe)mrial ()]

- oo [(98) (% 0))(2))
- /dnx<p*¢

In this way, the Hilbert space structure of quantum meclsafattows from the Kah-
ler geometry. This suggests that the Hilbert space streaafiquantum mechanics is
perhaps not as fundamental as its geometrical structure.

As is well known, the group of unitary transformations playgindamental role in
guantum theory. To understand the role of the unitary groupeé geometrical formu-
lation presented here, it is convenient once more to lookatanalogous but simpler
formulation for the discrete case of ardimensional complex space [5, 6]. Since the



Kahler structure includes a symplectic structure, the groisymplectic transforma-
tions, Sp(A,R), will play an important role in the theory. But the group cdrisforma-
tions of the theory can not be the full symplectic group dudécadditional requirements
that they have to satisfy. The first requirement is that threggrve the normalization of
the probability. The second requirement is that the mefrih@ Kéhler space be form
invariant under the transformations. Requiring normaiizeof the probability and met-
ric invariance leads to the group of rotations on timeddnensional sphere, OG2R).
Unitary transformations are the only symplectic transfations which are also rota-
tions; i.e., Sp(8,R) N O(2n,R)= U (n) [10]. Therefore, in the discrete case the group of
unitary transformationtl (n) is singled out, with time evolution being described by a
one-parameter group of unitary transformations [5, 6]. Aalagous results applies to
the continuous case.

DISCUSSION

The geometry of quantum theory can be derived from inforomegieometry, the natural
geometry on the space of probabilities, using only a fewmg$ions. The derivation,

which can be carried out for both the discrete and continwaises, has a number of
interesting features:

- Doubling of the dimensionality of the space (i.€R} — {P,S}) from dynamical
considerations,

« Complex structure from consistency between metric and $getip structures,

« Wave functions as the natural complex coordinates of thddf&ipace,

+ Representation in terms of canonical transformations efaqular case of a family
of Doebner-Goldin nonlinear gauge transformations,

 Time evolution described by a one-parameter group of ynitansformations,

« Hilbert space formulation expressed in terms of geométqguantities associated
with the Ké&hler space.

The derivation presented here relies heavily on, and estemdjeometrical recon-
struction of quantum theory by Reginatto and Hall which sakdormation geometry
as its starting point [4, 5]. Mehrafarin [16] and Goyal [18] have also developed re-
constructions of quantum theory using information-geosicatapproaches. A detailed
comparison to their approaches has not been carried outg@etver, one of the main
differences is in the handling afynamicswhich plays a crucial role here. In particular,
the use of an action principle to describe the dynamics dégidities leads in a natural
way to geometrical structure that goes beyond informateomnggetry.
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APPENDIX

| look at the conditions that lead ®(x,t) > 0 when initiallyP(x,0) > 0.

~ Write the conservation of probability;dxP(x,t) = 1, as the continuity equation
P+ O- (PV) = 0, whereV(x,t) is the vector field associated with the time evolution
of P. For simplicity, consider the one-dimensional case,

oP ov

The case of interest is when# 0, otherwiseP is time independent. Taking the time
derivative of Eq. (13) and replacirgusing once more Eq. (13(x) can be expressed

as
. ov\° 9%v [ov\'| oP[_odv ] o9%P
P_P[(a_x) +VW‘(0_X)]+&{3"0_X_V}+W"Z'

| consider the case whefRy_y, = 0 at timet = 0 with %|sz0 =0 and%bﬂo >0
(i.e., the pointXy is a minimum ofP). If the vector fieldv is sufficiently smooth so that

. vand <g—‘)§>' remain finite, therP|y—x, = 0 andP|x_x, = 0°P/Ix?V?|x—x, > 0. Since
Plx=x, = 0 at timet = 0, these relations imply th& does not become negative at a later

time.

P= (13)

REFERENCES

1. J. von NeumannMathematical Foundations of Quantum MechaniBsinceton University Press,
Princeton, 1955.

2. T.W.B. Kibble,Commun. math. Phy&5, 189-201 (1979).

3. A.Ashtekar and T. A. Schilling, “Geometrical Formulatiof Quantum Mechanics”, i@n Einstein’s
Path, Essays in Honor of Engelbert Schiickiedited by A. Harvey, Springer, Berlin, 1999, pp. 23-65.

4. M. Reginatto and M.J.W. HalRAIP Conf. Proc1443 96-103 (2012).

5. M. Reginatto and M.J.W. HalRIP Conf. Proc1553 246-253 (2013).

6. M. Reginatto, “From information to quanta: a derivatidntlte geometric formulation of quantum
theory from information geometry,” arXiv:1312.0429v1.

7. C. R. Rao, “Differential Metrics in Probability Spacem’Differential Geometry in Statistical Infer-
ence edited by S.-I. Amari, O. E. Barndorff-Nielsen, R. E. KaSs,L. Lauritzen, and C. R. Rao,
Institute of Mathematical Statistics, Hayward, CA, 19873, p17-240.

8. H. JeffreysProc. Roy. Soc. A86, 453-461 (1946).

9. A. O. BarutElectrodynamics and Classical Theory of Fields and PaetidDover Publications, New
York, 1980.

10. V. I. Arnold, Mathematical Methods of Classical Mechani@sd ed., Springer-Verlag, New York,
1989.

11. S.I. GoldbergCurvature and HomologyDover Publications, New York, 1982.

12. N. N.CencovStatistical decision rules and optimal inferenéamer. Math. Soc., Providence, 1981.

13. L. L. CampbellProc. Amer. Math. So@8, 135-141 (1986).

14. A. CatichaEntropic Inference and the Foundations of PhysldSP Press, S&o Paulo, Brazil, 2012.

15. H.-D. Doebner and G. A. GoldiRhys. Rev. 54, 3764-3771 (1996).

16. M. Mehrafarinjnt. J. Theor. Phys44, 429-442 (2005).

17. P. GoyalPhys. Rev. A8, 052120 (2008).

18. P. GoyalNew Journal of Physic$2, 023012 (2010).



