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Abstract. A survey of geometry of Bayesian statistics is given. From the viewpoint of differential
geometry, a prior distribution in Bayesian statistics is regarded as a volume element on a statistical
model. In this paper, properties of Bayesian estimators are studied by applying equiaffine structures
of statistical manifolds. In addition, geometry of anomalous statistics is also studied. Deformed
expectations and deformed independeces are important in anomalous statistics. After summarizing
geometry of such deformed structues, a generalization of maximum likelihood method is given. A
suitable weight on a parameter space is important in Bayesian statistics, whereas a suitable weight
on a sample space is important in anomalous statistics.

Keywords: information geometry, equiaffine structure, statistical manifold, anomalous statistics,
Tsallis statistics
PACS: 02.40.Ky, 02.50.Tt, 02.50.Cw

INTRODUCTION

Information geometry is a differential geometric approach of statistical inferences. After
the formulation of dual affine connections on statistical models by Amari and Nagaoka
(cf. [1]), information geometry has been applied various fields of mathematical sciences
(e.g. [3] and [10]). In particular, a Riemannian manifold with mutually dually flat affine
connection is called a dually flat space. This geometric structure has close relations
among geometry of statistical inferences and relative entropies.

Information geometry of Bayesian statistics has been studied by Komaki [4], Takeuchi
and Amari [14], and Takeuchi, Amari and Matsuzoe [6], etc. In Bayesian statistics,
a prior distribution on a parameter space plays an important role. From a viewpoint
of differential geometry, a prior distribution is regarded as a volume element on a
manifold of statistical model since a parameter space is a local coordinate system of a
statistical model. For the arguments of projected Bayesian estimators and bias correction
of estimators, differential geometric gradient vector fields of volume elements, called the
Tchebychev vector fields, are important.

On the other hand, a method of statistical inference based on non-additive entropy
has been studied (cf. [2], [9], and [11]), which is called Tsallis statistics or anomalous
statistics. In this method, deformed probability distributions, called escort distributions,
play important roles. (See Definition 9 and Proposition 10.) Deformations of probability
measures on sample spaces are important in anomalous statistics while deformations of
measures on parameter spaces are important in Bayesian statistics. A dually flat structure
on a deformed exponential family is introduced from the escort distribution.

In this paper, we give a survey about information geometry of Bayesian statistics.
Then we consider relations between Bayesian statistics and anomalous statistics.



GEOMETRY OF STATISTICAL MODELS

We assume that all the objects are smooth throughout this paper. We also assume that
differentials and integrals are interchangeable, and a given manifold is an open domain.

Let Ω be a sample space, and letΞ be an open subset onRn. We say thatS is a
statistical model(or aparametric model) on Ω if S is a set of probability densities with
parameterξ ∈ Ξ, that is,

S=

{
p(x;ξ )

∣∣∣∣∫Ω
p(x;ξ )dx= 1, p(x;ξ )> 0,ξ ∈ Ξ ⊂ Rn

}
.

Under suitable conditions,Scan be regarded as a manifold with local coordinate system
{Ξ,ξ 1, . . . ,ξ n}. (cf. [1])

We define a symmetric(0,2)-tensor fieldgF and a totally symmetric(0,3)-tensor field
TF onSby

gF
i j (ξ ) =

∫
Ω

(
∂

∂ξ i logp(x;ξ )
)(

∂
∂ξ j logp(x;ξ )

)
p(x;ξ )dx

= Ep[∂i lξ ∂ j lξ ],

TF
i jk(ξ ) =

∫
Ω

(
∂

∂ξ i logp(x;ξ )
)(

∂
∂ξ j logp(x;ξ )

)(
∂

∂ξ k logp(x;ξ )
)

p(x;ξ )dx

= Ep[∂i lξ ∂ j lξ ∂klξ ],

where∂i = ∂/∂ξ i , lξ = logp(x;ξ ) andEp[∗] is the standard expectation with respect
to p(x;ξ ). Under suitable conditions,gF is a Riemannian metric onS. We callgF the
Fisher metriconS, andTF thecubic form(or theskewness tensor field) onS.

Fix a real numberα ∈ R. We define theα-connection∇(α) onSby

gF(∇(α)
X Y,Z) = gF(∇(0)

X Y,Z)− α
2

TF(X,Y,Z),

where∇(0) is the Levi-Civita connection onSwith respect togF . An α-connection∇(α)

is torsion-free and satisfies(∇(α)
X gF)(Y,Z) = (∇(α)

Y gF)(X,Z). Two affine connections
∇(α) and∇(−α) satisfy

XgF(Y,Z) = gF(∇(α)
X Y,Z)+gF(Y,∇(−α)

X Z).

We say that∇(α) and∇(−α) are mutuallydualwith respect togF .
A statistical modelS is said to be anexponential familyif

S=

{
p(x;θ)

∣∣∣∣∣p(x;θ) = exp

[
Z(x)+

n

∑
i=i

θ iFi(x)−ψ(θ)

]
,θ ∈ Θ ⊂ Rn

}
,

whereF1, . . . ,Fn,Z are functions onΩ, Θ is an open subset inRn, andψ is a function
onΘ. Without loss of generality, we can choose the dominating measure onΩ such that
Z(x) = 0. In this paper, we assume thatZ(x) = 0.

Suppose thatM is a submanifold ofS. We callM acurved exponential familyof S.



BAYESIAN STATISTICS OF CURVED EXPONENTIAL FAMILIES

In this section, we give a review of Bayesian statistics of curved exponential families.
For more details, see [4], [6] and [14]. Our notation follow those adopted in their papers.
From now on, we assume that subscripts and superscripts vary over the noted range
values otherwise stated.

a,b, . . . = 1,2, . . . ,m, i, j, . . . = 1,2, . . . ,n.

Let Sbe an exponential family (dimS= n) and letM be a curved exponential family
embedded inS(dimM = m). We assume thatp(x;u) = p(x;θ(u)) ∈ M is an underlying
distribution onM. Let ρ(u)du be a prior distribution onM. Theposterior distribution
for givenx with respect toρ(u)du is defined by

ρ ′(u|x)du=
p(x;u)ρ(u)∫

U p(x;u)ρ(u)du
du.

We recall that we regarded a statistical model as a manifold, and the integration of the
posterior distribution is carried out on a parameter space. Hence a prior distribution is
regarded as a volume element (n-th differential form) onM. (cf. [14] and [6])

Let xN = (x1, . . . ,xN) is N-observations generated fromp(x;u) ∈ M. We define the
Bayesian mixture distributionby

fρ [x
N](x) =

∫
U

p(x;u)ρ ′(u|xN)du.

The Bayesian mixture distributionfρ [xN](x) is not contained inM generally. We con-
sider the projection offρ [xN](x) to M with respect to the Kullback-Leibler divergence.

For two pointsp(x;θ) and p(x;θ ′) in S, we define theKullback-Leibler divergence
(or therelative entropy) by

D(p(x;θ)||p(x;θ ′)) =
∫

Ω
p(x;θ) log

p(x;θ)
p(x;θ ′)

dx.

NeverthelessD is not a distance, it measures a dissimilarity of two probability distribu-
tions. Hence theprojected Bayes estimator u( f̃ρ [xN]) with respect to a prior distribution
ρ(u)du is defined by

u( f̃ρ [x
N]) = argmin

u∈U
D( fρ [x

N]||p(xN;u)).

In this case, the estimated distribution is given byp(x;u( f̃ρ [xN])).
Denote by ˆu the maximum likelihood estimator fromxN. Then two estimators

u( f̃ρ [xN]) andû are related as follows:

uc( f̃ρ [x
N]) = ûc+

1
N

n

∑
a=1

(
∂

∂ua logρ(û)−
m

∑
b=1

Γ̂(1)b
ab

)
ĝac+o

(
1
N

)
, (1)

whereĝab is the inverse matrix of Fisher metric at the maximum likelihood estimation
û, andΓ̂(1)c

ab is the 1-connection coefficient at ˆu. (cf. [4] and [14])



STATISTICAL MANIFOLDS AND EQUIAFFINE STRUCTURES

For Bayesian statistics, volume elements on statistical models have important roles from
the viewpoint of differential geometry. In this section, we consider geometry of volume
elements.

Definition 1 Let (M,g) be a Riemannian manifold, and letT be a totally symmetric
(0,3)-tensor field onM. The triplet(M,g,T) is called astatistical manifold, and the
tensor fieldT is called acubic form(or askewness tensor field).

In this case, for a fixedα ∈ R, we can define a torsion-free affine connection by

g(∇(α)
X Y,Z) = g(∇(0)

X Y,Z)− α
2

T(X,Y,Z), (2)

where∇(0) is the Levi-Civita connection with respect tog. The connection∇(α) is called
anα-connection. Two affine connections∇(α) and∇(−α) is mutuallydual with respect
to g. The difference of two affine connections∇(α) and∇(β ) is given by

g(∇(α)
X Y−∇(β )

X Y,Z) =
β −α

2
T(X,Y,Z).

Next, let us define an equiaffine structure on a manifold. LetM be a manifold
(dimM = m), and∇ a torsion-free affine connection onM. Let ω be a volume element
onM. That is,ω is anm-th differential form which does not vanish everywhere onM.

Definition 2 A pair {∇,ω} is said to be a(locally) equiaffine structureon M if ω is
parallel with respect to∇, that is,∇ω = 0. In this case,∇ is called a(locally) equiaffine
connectionandω is called aparallel volume elementonM. (cf. [12] and [13])

Example 3 Let (M,g) be a Riemannian manifold. Denote by∇(0) the Levi-Civita con-
nection on M, and set an m-formω(0) by

ω(0) = (det|gab|)1/2du

= (det|gab|)1/2du1∧·· ·∧dum.

Then{∇(0),ω(0)} is an equiaffine structure on M. In particular, the normalized volume
element

ω(0) =
(det|gab|)1/2∫

U(det|gab|)1/2du
du (3)

is called theJeffreys prior distributionin Bayesian statistics.

For an equiaffine structure{∇,ω}, the following holds. (See Proposition 1 in [14].)

Lemma 4 Let ∇ be a torsion-free affine connection on M. Suppose that a volume
elementω on M is given byω

(
∂/∂u1, . . . ,∂/∂um

)
= ρ(u)du1∧·· ·∧dum. Then{∇,ω}

is equiaffine if and only if
∂

∂ua logρ(u) =
m

∑
b=1

Γb
ab,

whereΓc
ab is a connection coefficient of∇.



For a given statistical manifold(M,g,T), we define theTchebychev formby

τ(X) = traceg{(Y,Z) 7→ T(X,Y,Z)},

and its metric dual vector field is theTchebychev vector field, that is,#τ is defined by

g(#τ,X) = τ(X).

Denote by Ric(α) the Ricci tensor field of∇(α). That is, Ric(α)(X,Y) = trace{Z 7→
R(α)(Z,X)Y}, whereR(α) is the curvature tensor field of∇(α).

Proposition 5 Let (M,g,T) be a statistical manifold. Then the following conditions are
equivalent:

1. ∇(α) is equiaffine.

2. The Ricci tensor field is symmetric, i.e.,Ric(α)(X,Y) = Ric(α)(Y,X).
3. The Tchebychev form T is closed, i.e. dτ = 0.

In this case, there exists a functionφ on M such thatτ = dφ .

From Equation (3), a Levi-Civita connection is always equiaffine. On the other hand,
anα-connection∇(α) is equiaffine if and only if its Ricci tensor is symmetric.

Proposition 6 Let (M,g,T) be a statistical manifold. Suppose that∇(α) and∇(−α) are
mutually dual affine connections determined by g and T, andφ is a function on M
determined by the Tchebychev formτ, i.e., τ = dφ . Then{∇(α),ω(α)} is equiaffine if
and only if{∇(−α),ω(−α)}= {∇(−α),e−αφ ω(α)} is equiaffine.

We remark that the proposition above implies that the Tchebychev vector field is the
gradient vector field of logarithmic ratio of volume elements.

BAYESIAN STATISTICS OF α-PARALLEL PRIORS

As we have seen in the previous section, the Jeffreys prior is a parallel volume element of
the Levi-Civita connection with respect to the Fisher metric. From the viewpoint of this
geometric property, we generalize the Jeffreys prior to another equiaffine connection.

Suppose thatM is a curved exponential family which is embedded intoS, and∇(α) is
anα-connection onM whose Ricci tensor field is symmetric. Then we say that a prior
distributionω(α) is anα-parallel prior if ∇(α)ω(α) = 0.

For example, suppose that{u1, . . . ,um} is an affine coordinate of∇(α). That is,

the connection coefficientsΓ(α)c
ab vanish for alla,b,c. Then a uniform priorω(α) =

du1∧·· ·∧dum is anα-parallel prior onM.
From Equations 1, 2, and Lemma 4, the following Proposition holds:

Proposition 7 Letû be a maximum likelihood estimator, and let u( f̃ρ [xN]) by a projected
Bayes estimator with respect to anα-parallel prior distribution. Denote by#τ̂ the
Tchebychev vector at̂u. Then we obtain

uc( f̃ρ [x
N]) = ûc+

1−α
N

#τ̂c+o

(
1
N

)
.



GEOMETRY OF q-EXPONENTIAL FAMILIES

In this section, we review geometry ofq-exponential families. For more details of de-
formed exponential families, see [2], [7], [8] and [9]. The framework based on deformed
exponential families is called theanomalous statistics.

To begin with, we generalize the exponential and the logarithm functions.

Definition 8 Fix a positive real numberq. Theq-exponential functionis defined by

expqx =
(
1+(1−q)x

) 1
1−q , (q ̸= 1, and 1+(1−q)x> 0),

and theq-logarithm functionby

logqx =
x1−q−1

1−q
, (q ̸= 1, andx> 0).

By taking the limit q → 1, the standard exponential and the standard logarithm are
recovered, respectively. For further generalizations of exponential functions, see [11].

A statistical modelSq is said to be aq-exponential familyif

Sq =

{
p(x;θ)

∣∣∣∣∣p(x;θ) = expq

[
n

∑
i=i

θ iFi(x)−ψ(θ)

]
,θ ∈ Θ ⊂ Rn

}
,

whereF1, . . . ,Fn are functions onΩ, Θ is an open subset inRn, andψ is a function on
Θ. In the same manner as an exponential family,Sq is regarded as a manifold with local
coordinate system{Θ;θ 1, . . . ,θ n}. The normalization functionψ is convex, but it may
not be strictly convex. Hence we assume thatψ is strictly convex from now on.

For aq-exponential familySq, we define theq-Fisher metricand theq-cubic formby

gq
i j (θ) = ∂i∂ jψ(θ), Tq

i jk(θ) = ∂i∂ j∂kψ(θ),

respectively, where∂i = ∂/∂θ i . Sinceψ is strictly convex,gq is a Riemannian metric
onSq. For a fixed real numberα, set

gq
(

∇q(α)
X Y,Z

)
= gq

(
∇q(0)

X Y,Z
)
− α

2
Tq(X,Y,Z) ,

where∇q(0) is the Levi-Civita connection with respect togq. The affine connection∇q(α)

is torsion-free. In particular,∇q(e) := ∇q(1) and∇q(m) := ∇q(−1) are flat affine connec-
tions and mutually dual with respect togq. Hence the quadruplet(Sq,gq,∇q(e),∇q(m)) is
a dually flat space.

Next, we consider deformed expectations forq-exponential families.

Definition 9 We say thatPq(x) is theescort distributionof p(x) ∈ Sq if

Pq(x) =
1

Zq(p)
p(x)q, where Zq(p) =

∫
Ω

p(x)qdx.



Theq-expectationof a function f (x) is defined by

Eq,p[ f (x)] =
∫

Ω
f (x)Pq(x)dx =

1
Zq(p)

∫
Ω

f (x)p(x)qdx.

Underq-expectations, we have the following proposition. (cf. [7])

Proposition 10 Let Sq be a q-exponential family.
Setηi = Eq,p[Fi(x)]. Then{ηi} is a ∇q(m)-affine coordinate system such that

gq
(

∂
∂θ i ,

∂
∂η j

)
= δ j

i .

Setφ(η) = Eq,p[logq p(x;θ)]. Thenφ(η) is the potential of gq with respect to{ηi}.

We define theq-relative entropy(or thenormalized Tsallis relative entropy) by

DT
q (p(x), r(x)) = Eq,p[logq p(x)− logq r(x)] =

1−
∫

Ω p(x)qr(x)1−qdx
(1−q)Zq(p)

.

By taking the limitq→ 1, the Kullback-Leibler divergence is recovered. It is known that
a q-relative entropy on aq-exponential family coincides with the canonical divergence
on a dually flat space(Sq,gq,∇q(m),∇q(e)).

Let us generalize the maximum likelihood method for deformed exponential families.
Suppose that two random variablesX and Y follow probability distributionsp1(x)
and p2(y), respectively. We say thatX andY are independentif the joint probability
distributionp(x,y) is decomposed byp(x,y) = p1(x)p2(y). This formula is written by

p(x,y) = exp[logp1(x)+ logp2(y)].

Hence we can regard that the independence of random variables is attributed to the
duality of the exponential and the logarithm. By virtue of this duality, we can generalize
the notion of independence.

Suppose thatx> 0,y> 0 andx1−q+y1−q−1> 0 (q> 0). Theq-productof x andy
is defined by

x⊗q y :=
[
x1−q+y1−q−1

] 1
1−q = expq

[
logqx+ logqy

]
.

Let Sq = {p(x;θ)|θ ∈ Θ} be aq-exponential family. Suppose that{x1, . . . ,xN} are
N-observations fromp(x;θ) ∈ Sq. We define aq-likelihood function Lq(θ) by

Lq(θ) = p(x1;θ)⊗q p(x2;θ)⊗q · · ·⊗q p(xN;θ).

The parameter which maximizes theq-likelihood function is called theq-maximum
likelihood estimator, that is,

θ̂ = argmax
θ∈Θ

L(θ).



Theorem 11 (cf. [9]) Let Sq = {p(x;θ)|θ ∈ Θ} be a q-exponential family. Suppose that
{x1, . . . ,xN} are N-observations from p(x;θ) ∈ Sq. Then the q-likelihood attains the
maximum if and only if the normalized Tsallis relative entropy attains the minimum.

In particular, the maximum q-likelihood estimator forη-coordinates is given by

η̂i =
1
N

N

∑
i=1

Fi(x j).

CONCLUSIONS

In this paper, we summarized geometry of Bayesian statistics. The prior distribution is
regarded as a volume element on a statistical manifold, and the Tchebychev vector field
plays an important role. We also studied geometry of deformed exponential families.
A suitable weight on a parameter space is considered in Bayesian statistics, whereas a
suitable weight on a sample space is considered in anomalous statistics.
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