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Abstract. A survey of geometry of Bayesian statistics is given. From the viewpoint of differential
geometry, a prior distribution in Bayesian statistics is regarded as a volume element on a statistical
model. In this paper, properties of Bayesian estimators are studied by applying equiaffine structures
of statistical manifolds. In addition, geometry of anomalous statistics is also studied. Deformed
expectations and deformed independeces are important in anomalous statistics. After summarizing
geometry of such deformed structues, a generalization of maximum likelihood method is given. A
suitable weight on a parameter space is important in Bayesian statistics, whereas a suitable weight
on a sample space is important in anomalous statistics.
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INTRODUCTION

Information geometry is a differential geometric approach of statistical inferences. After
the formulation of dual affine connections on statistical models by Amari and Nagaoka
(cf. [1]), information geometry has been applied various fields of mathematical sciences
(e.g. [3] and [10]). In particular, a Riemannian manifold with mutually dually flat affine
connection is called a dually flat space. This geometric structure has close relations
among geometry of statistical inferences and relative entropies.

Information geometry of Bayesian statistics has been studied by Komaki [4], Takeuchi
and Amari [14], and Takeuchi, Amari and Matsuzoe [6], etc. In Bayesian statistics,
a prior distribution on a parameter space plays an important role. From a viewpoint
of differential geometry, a prior distribution is regarded as a volume element on a
manifold of statistical model since a parameter space is a local coordinate system of a
statistical model. For the arguments of projected Bayesian estimators and bias correction
of estimators, differential geometric gradient vector fields of volume elements, called the
Tchebychev vector fields, are important.

On the other hand, a method of statistical inference based on non-additive entropy
has been studied (cf. [2], [9], and [11]), which is called Tsallis statistics or anomalous
statistics. In this method, deformed probability distributions, called escort distributions,
play important roles. (See Definition 9 and Proposition 10.) Deformations of probability
measures on sample spaces are important in anomalous statistics while deformations of
measures on parameter spaces are important in Bayesian statistics. A dually flat structure
on a deformed exponential family is introduced from the escort distribution.

In this paper, we give a survey about information geometry of Bayesian statistics.
Then we consider relations between Bayesian statistics and anomalous statistics.



GEOMETRY OF STATISTICAL MODELS

We assume that all the objects are smooth throughout this paper. We also assume that
differentials and integrals are interchangeable, and a given manifold is an open domain.

Let Q be a sample space, and Etbe an open subset dR'. We say thatSis a
statistical mode(or aparametric modglon Q if Sis a set of probability densities with
parameteg € =, that is,

S= {p(x;f)‘/Q p(x;&)dx=1,p(x&) >0, c=C R”}.

Under suitable condition§can be regarded as a manifold with local coordinate system

(2,84, &M (cf. [1])
We define a symmetri®, 2)-tensor fieldg™ and a totally symmetri¢0, 3)-tensor field
TF onSby

g (&) = /Q(d%logp(x;é)) (a%logp(x;é)) p(x; & )dx
= Eplaleojlg],

@) = [ (satoaptc)) (55;10ap0c8)) (5cloapeed) ) poxe)dx
- Ep[&llfajlfdklf]v

whereg; = d/df‘,lg =logp(x; &) andEp[+] is the standard expectation with respect

to p(x; €). Under suitable conditiong™ is a Riemannian metric o8 We callg™ the
Fisher metricon S, andTF the cubic form(or theskewness tensor figldn S.
Fix a real numbeo € R. We define thex-connectioril(?) on Sby

o (0Y,2) = o (0. 2) - STF(X.Y.2),

where0© is the Levi-Civita connection o8with respect ta” . An a-connectiori)(@)
is torsion-free and satisfie(ﬂg(a)gF)(Y, Z) = (D\((a)gF)(X,Z). Two affine connections
0@ andO(-9) satisfy

Xd (v,2) = F (O, 2) + 67 (v, 0 V2).

We say thatl(®) andO(-%) are mutuallydual with respect tay.
A statistical modeBis said to be amxponential familyf

S= {p(x; 0)|p(x;8) = exp

Z(x>+§9i|:.(x)_¢(e)] ,0cOC R”},

whereF, ..., F,,Z are functions o2, © is an open subset iR", andy is a function
on ©. Without loss of generality, we can choose the dominating measufesuch that
Z(x) = 0. In this paper, we assume tl&x) = 0.

Suppose tha¥l is a submanifold o We callM acurved exponential familgf S.



BAYESIAN STATISTICS OF CURVED EXPONENTIAL FAMILIES

In this section, we give a review of Bayesian statistics of curved exponential families.
For more details, see [4], [6] and [14]. Our notation follow those adopted in their papers.
From now on, we assume that subscripts and superscripts vary over the noted range
values otherwise stated.

ab,... =212....m Lj,... =1,2,...,n

Let Sbe an exponential family (di®= n) and letM be a curved exponential family
embedded it (dimM = m). We assume thgi(x;u) = p(x; 8(u)) € M is an underlying
distribution onM. Let p(u)du be a prior distribution oM. The posterior distribution
for givenx with respect tgo(u)duis defined by

p(x U)p(u)
PUNdu = T Wy

We recall that we regarded a statistical model as a manifold, and the integration of the
posterior distribution is carried out on a parameter space. Hence a prior distribution is
regarded as a volume elementth differential form) onM. (cf. [14] and [6])

Let XN = (xq,...,xn) is N-observations generated fropix;u) € M. We define the
Bayesian mlxture distributiohby

o] (x) = /U p(xu)p’ (upM)du

The Bayesian mixture distributiofy [xN](x) is not contained irM generally. We con-
sider the projection of,[x](x) to M with respect to the Kullback-Leibler divergence.

For two pointsp(x; 8) and p(x; 8’) in S, we define theullback-Leibler divergence
(or therelative entropy by

D(px;8)[Ip0x8) = | px;6)log b dx

Nevertheles® is not a distance, it measures a dissimilarity of two probability distribu-

tions. Hence therojected Bayes estimatof ﬂb[x'\']) with respect to a prior distribution
p(u)duis defined by

~

u( X)) = argminD( f,[x"]||p(x"; ).
ueU
In this case, the estimated distribution is givenggy; u( f,[xN])).

Denote byu“the maximum likelihood estimator fromN. Then two estimators
u(f,[¥N]) anduare related as follows:

W (folx"]) = ° Nz<aualgp Z )@""°+0<%>, (1)

whereg?® is the inverse matrix of Fisher metric at the maximum likelihood estimation
q, andfgt)c is the 1-connection coefficient at (cf. [4] and [14])



STATISTICAL MANIFOLDS AND EQUIAFFINE STRUCTURES

For Bayesian statistics, volume elements on statistical models have important roles from
the viewpoint of differential geometry. In this section, we consider geometry of volume
elements.

Definition 1 Let (M,g) be a Riemannian manifold, and [Etbe a totally symmetric
(0,3)-tensor field onM. The triplet(M,g,T) is called astatistical manifold and the
tensor fieldT is called acubic form(or askewness tensor figld

In this case, for a fixed € R, we can define a torsion-free affine connection by
0 a
9(0KY.2) = g(0Y.2) — 5 T(X. Y. 2). @

whered© is the Levi-Civita connection with respectgoThe connectiofl(?) is called
an a-connection Two affine connectiong(@ andO(~%) is mutuallydual with respect
to g. The difference of two affine connectioi$®) and(®) is given by

g0y — oy, z) = B%GT(X,Y, 7).

Next, let us define an equiaffine structure on a manifold. Mebe a manifold
(dimM = m), and[d a torsion-free affine connection &h. Let w be a volume element
on M. That is,w is anmth differential form which does not vanish everywherehdn

Definition 2 A pair {0, w} is said to be glocally) equiaffine structuren M if w is
parallel with respect tal, that is,ldw = 0. In this casel] is called &locally) equiaffine
connectiomndw is called gparallel volume elemerdn M. (cf. [12] and [13])

Example 3 Let (M, g) be a Riemannian manifold. Denote BY® the Levi-Civita con-
nection on M, and set an m-form© by

@ = (det|gap|)"/?du
= (det|gap))Y2dUt A--- AdU™.

Then{0©, w(®} is an equiaffine structure on M. In particular, the normalized volume

element 12
w0 — _ (detGap|)

- Ju(detigap|)¥/2du
is called theJeffreys prior distribution Bayesian statistics.

3)

For an equiaffine structurg], w}, the following holds. (See Proposition 1 in [14].)
Lemma4 Let [J be a torsion-free affine connection on M. Suppose that a volume
elementw on M is given byw (9/dul,...,d/0u™) = p(u)dut A--- Adu™ Then{O, w}
is equiaffine if and only if

d m
EN: logp(u) = bzlrgb,

wherergb is a connection coefficient af.



For a given statistical manifolM, g, T), we define th& chebychev forrhy
1(X) = tracg{(Y,Z) = T(X,Y,Z)},
and its metric dual vector field is tiiechebychev vector figlthat is,*T is defined by
g(*1,X) = 7(X).

Denote by Ri€%) the Ricci tensor field of1(®). That is, Rié® (X,Y) = trace(Z —
R(@)(Z,X)Y}, whereR(@) is the curvature tensor field af(?).

Proposition 5 Let (M, g, T) be a statistical manifold. Then the following conditions are
equivalent:

1. 0@ is equiaffine.
2. The Ricci tensor field is symmetric, iRic!?) (X,Y) = Ric(®) (Y, X).
3. The Tchebychev form T is closed, i.e =l 0.

In this case, there exists a functigron M such thatr = dg.

From Equation (3), a Levi-Civita connection is always equiaffine. On the other hand,
ana-connectiori)(?) is equiaffine if and only if its Ricci tensor is symmetric.

Proposition 6 Let (M, g, T) be a statistical manifold. Suppose tha®) and0(-%) are
mutually dual affine connections determined by g and T, @nd a function on M
determined by the Tchebychev formi.e., T = dg. Then{O@ w(@} is equiaffine if
and only if {09 (-} = {09 e 2?,(@)} js equiaffine.

We remark that the proposition above implies that the Tchebychev vector field is the
gradient vector field of logarithmic ratio of volume elements.

BAYESIAN STATISTICS OF a-PARALLEL PRIORS

As we have seen in the previous section, the Jeffreys prior is a parallel volume element of
the Levi-Civita connection with respect to the Fisher metric. From the viewpoint of this
geometric property, we generalize the Jeffreys prior to another equiaffine connection.
Suppose tha¥! is a curved exponential family which is embedded i8tandd(@) is
an a-connection orM whose Ricci tensor field is symmetric. Then we say that a prior
distributionw(@) is ana-parallel prior if 0@ w(@) = 0.
For example, suppose théul,...,u™} is an affine coordinate ofl(@). That is,
the connection coefficientsS® vanish for alla,b,c. Then a uniform priora(®) =
dut A--- Adu™is ana-parallel prior onM.
From Equations 1, 2, and Lemma 4, the following Proposition holds:
Proposition 7 Letd be a maximum likelihood estimator, and Iéf,qx’\']) by a projected

Bayes estimator with respect to anparallel prior distribution. Denote by‘T the
Tchebychev vector &t Then we obtain

~ l1-a 1
C(f N1y — 1€ #2C ~ .
u“(fp[x']) =0+ N ¢ +0<N)



GEOMETRY OF g-EXPONENTIAL FAMILIES

In this section, we review geometry gfexponential families. For more details of de-
formed exponential families, see [2], [7], [8] and [9]. The framework based on deformed
exponential families is called trenomalous statistics

To begin with, we generalize the exponential and the logarithm functions.

Definition 8 Fix a positive real numbeg. Theg-exponential functiors defined by

expx = (1+(1-gX) ™, (41, and 1+ (1—g)x>0),

and theg-logarithm functiorby
x1-4-1
1-q’

By taking the limitq — 1, the standard exponential and the standard logarithm are
recovered, respectively. For further generalizations of exponential functions, see [11].
A statistical modek, is said to be a@j-exponential familyf

loggx = (g# 1, andx > 0).

n .
S = {p(x; 8) |p(x 6) = exp [Z 6'F(x) — L[J(Q)] ,0c0OC R”},

1=l
whereF,, ..., F, are functions o2, © is an open subset iR", andy is a function on
©. In the same manner as an exponential fangjyis regarded as a manifold with local
coordinate systeri®; 8%,...,8"}. The normalization functiony is convex, but it may

not be strictly convex. Hence we assume tiias strictly convex from now on.
For ag-exponential familys;, we define thej-Fisher metricand theg-cubic formby

g;j(6) =a0;y(6), T (6)=0a0;a(6),

respectively, wherd; = d/86'". Sincey is strictly convex,g® is a Riemannian metric
on §,. For a fixed real number, set

o (D?}"’Y, z) _ g (D?}"’Y, z) _ %Tq (X,Y,2),
where90) is the Levi-Civita connection with respectg®. The affine connection/%@)
is torsion-free. In particulaf]4® := 091 and 0™ := 09D are flat affine connec-
tions and mutually dual with respect@d. Hence the quadruplég,, g9, 09(®) 09 js

a dually flat space.
Next, we consider deformed expectationsdegxponential families.

Definition 9 We say tha®,(x) is theescort distributiorof p(x) € & if

Py(X) = 5——=p(x)9, where Zq(p):/Qp(x)qu



Theqg-expectatiorof a functionf (x) is defined by

Eqol 100] = [ F0R0I0x = 5 [ 100p0cfax

Underg-expectations, we have the following proposition. (cf. [7])

Proposition 10 Let §, be a g-exponential family.
Setn; = Eq p[Fi(X)]. Then{n;} is a0%M-affine coordinate system such that

J 9 |
a( 2 9 \_g
) (09"0'71) o

Setg(n) = Eq p[log, p(x; 8)]. Theng(n) is the potential of fwith respect to{n; }.

We define they-relative entropy(or thenormalized Tsallis relative entropypy

_ _ 1 Jo p(x)%r(x)*~9dx
D (P(x),r(X)) = Egpllogyp(x) —logyr(x)] = ?1—Q)Zq(p)

By taking the limitg — 1, the Kullback-Leibler divergence is recovered. It is known that
a g-relative entropy on @-exponential family coincides with the canonical divergence
on a dually flat spacéS;, g9, 09™ 09()).

Let us generalize the maximum likelihood method for deformed exponential families.
Suppose that two random variabl¥sand Y follow probability distributionsp;(X)
and py(y), respectively. We say that andY are independentf the joint probability
distributionp(x,y) is decomposed bg(X,y) = p1(X) p2(y). This formula is written by

p(x,y) = explog p1(x) +log p2(y)].

Hence we can regard that the independence of random variables is attributed to the
duality of the exponential and the logarithm. By virtue of this duality, we can generalize
the notion of independence.

Suppose that > 0,y > 0 andx}~9+y*~9 -1 > 0 (q > 0). Theg-productof x andy
is defined by

X®qY = [xl‘qntyl‘q—l}lflq = exp [logyx+logyy] -

Let Sy = {p(x;0)|6 € O} be ag-exponential family. Suppose thx,,...,xn} are
N-observations fronp(x; 8) € §;. We define aj-likelihood function k(8) by

Lq(6) = p(X1;0) ®q P(X2; 6) ®q- - @q P(XN; 6).

The parameter which maximizes tlgdikelihood function is called the-maximum
likelihood estimator, that is, .
0 = argmax (0).
6co



Theorem 11 (cf. [9]) Let §; = {p(x; 8)|6 € O} be a g-exponential family. Suppose that

{x1,...,xn} are N-observations from (g 8) € §. Then the g-likelihood attains the

maximum if and only if the normalized Tsallis relative entropy attains the minimum.
In particular, the maximum g-likelihood estimator figrcoordinates is given by

. 1N
ni= N.;FI(XJ')-

CONCLUSIONS

In this paper, we summarized geometry of Bayesian statistics. The prior distribution is
regarded as a volume element on a statistical manifold, and the Tchebychev vector field
plays an important role. We also studied geometry of deformed exponential families.
A suitable weight on a parameter space is considered in Bayesian statistics, whereas a
suitable weight on a sample space is considered in anomalous statistics.
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