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Abstract. This article introduces a joined Bayesian estimation of gas samples issued from a gas
chromatography column (GC) coupled with a NEMS sensor based on Giddings Eyring microscopic
molecular stochastic model. The posterior distribution is sampled using a Monte Carlo Markov
Chain and Gibbs sampling. Parameters are estimated using the posterior mean. This estimation
scheme is finally applied on simulated and real datasets using this molecular stochastic forward
model.
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INTRODUCTION

Gas study or gas separation is nowadays possible on nanoscopic systems. Working at this
scale increases the sensitivity to analyze low concentration gas samples. Currently, Nano
columns of Gas Chromatography (Nano-GC) have been developed and new sensors
called Nano Electro Mechanical Systems (NEMS) have been designed. In this paper,
a Nano-GC coupled with NEMS sensors has been used for gas mixture separation. This
allows working with traces of gas. In this communication, we propose to estimate the
concentration of each constituent of gas mixture. In the next section, we describe the
GC-NEMS system. Then we introduce an inversion scheme to retrieve the concentration
of each component of the mixture from this kind of NEMS signal. We are assuming
that we know the number of constituents and the nature of each constituent. We are
proposing to use an innovative stochastic forward model based on the random molecular
walk as described by Giddings and Eyring [1]. We are presenting a Bayesian parameters
estimation scheme. [2]

DESCRIPTION OF THE GC-NEMS

A gas chromatography column is used to separate the components of a gas mixture. This
system is composed of an injector, a chromatography column and a sensor to acquire
a signal. As illustrated on Figure 1, the injector pushes a gas mixture with carrier gas



into the column. The internal surface of the column is coated with a layer of SiOC

FIGURE 1. Principle of the gas chromatography-NEMS

(the stationary phase) where molecules of organic compounds adsorb for a random
time. The mobile phase must have no interaction with the stationary phase. That is why
helium is generally used as carrier gas. So during its route, a molecule will adsorb and
desorb many times depending on its own nature. The more the molecule is adsorbed on
the stationary phase, the more the molecule spends time in the column. The total time
spent by a molecule in the column before elution is called the retention time and will be
noted tR. The adjusted retention time, noted tR′ , defined as the total adsorbed time spent
by a molecule, is also used. The affinity rate of the molecules with the stationary phase
contributes to the separation power of the column.

At the exit of the column, a sensor converts this molecular flow into a digital signal.
There are mainly three kinds of sensors used in output of chromatographic column [3,
p.104]: the Flame Ionized Detector (FID), the Thermo Conductive Detector (TCD) and
the Nano ElectroMechanical System (NEMS). This study is focused on the use of NEMS
which is a gravimetric device. It is composed of vibrating cantilevers and coated with a
SIOC chemical layer for molecular adsorption as shown on a microscopic view of one
of those sensors in Figure 2.
The beam is a mechanical resonator of second order that has a resonance frequency [4].
The sensor contains an actuator which puts the beam in resonance. In order to measure
the beam oscillations frequency, two gauges are linked to an electronic system that
enslaves the actuator. It adjusts the frequency such that the shift phase between the
actuator and the oscillations gauge remains equal to π/2. This phase tracking is called
a Phase Locked Loop control. The most important property of NEMS sensors is that
an adsorption of a molecule on the beam causes a shift of its resonance frequency. The

frequency f of a second order resonator is indeed
√

k
M where k is the spring constant

and M is the vibrating mass. The frequency variation due to a mass variation dm on the
beam is [5]:

∆ f =− f
2M

dm. (1)



In the following, we note β = f
2M the gain of the system. Then, we rewrite the equa-

tion (1):
∆ f =−β dm. (2)

An example of a signal delivered by a NEMS is shown on Figure 2. It corresponds to an
injection of a mixture of Toluene and Xylene.

FIGURE 2. Microscopic view of a NEMS sensor (left picture), and an example of a chromatographic
NEMS signal on a mixture of Toluene and Xylene (right picture).

The positive peak corresponds to the arrival of the mobile phase on the sensor. This
frequency shift is due to a pressure shift. Each negative peak corresponds to the arrival
of one chemical entity. The first one is the Toluene and the second one is the Xylene.

MODELING

Chemical equilibrium in the column

Considering one chemical entity S in the column with concentrations [Sm] in the
mobile phase and [Ss] in the stationary phase ([S] = [Sm] + [Ss]), let’s ka and kd be
respectively the adsorption and desorption rates [6]. k = ka

kd
defines the kinetic constant of

the equilibrium in the column also called retention factor. This equilibrium is described
by the relationship:

Sm
ka


kd

Ss

Molecular transport in the chromatography column based on a
stochastic model

From equation (2), the output NEMS signal is written as:

y(t) = y0(t)−βm(t)+ ε(t), (3)



where m(t) is the mass adsorbed on the NEMS at time t and ε(t) the noise of the system
at time t.

In order to estimate this mass, we propose an approach based on a stochastic mi-
croscopic model. In this point of view, each molecule elutes with a random adjusted
retention time tR′ which probability density function is [1]:

ptR′ (t,η j) =

√
4ka, jkd, jt0t

2t
I1(
√

4ka, jkd, jt0t)e−kd, jt−ka, jt0, (4)

where I1 is the modified Bessel function of the first kind and first order, η j = (ka, j,kd, j)
the adsorption/desorption parameters vector and t0 the time for carrier gas to elute
without adsorption (dead time).
Assuming µ j = t0

ka, j
kd, j

, σ2
j = 2t0

ka, j

k2
d, j

and θ j = (µ j,σ
2
j ), equation (4) becomes:

ptR′ (t,θ j) = 2
µ j
√

µ jt
σ2

j t
I1

(
µ j
√

µ jt
σ2

j

)
e
−2

µ j
σ2

j
(t+µ j)

, (5)

As described in [6], this model is more relevant than the classical Gaussian one for
many physical reasons. The first is that tR′ is defined on R+. The accuracy of this model
is highlighted in the Results section.

The number n j(t) of molecules of the entity j adsorbed on the beam at instant t is
expressed as:

n j(t) = κC j ptR′ (t,θ j),

where κ is the total number of molecules in the sample and C j the concentration of
entity j.

The mass m on the beam at time t is:

m(t) = κ

Ne

∑
j=1

mm jC jn j(t) = κN j

Ne

∑
j=1

mm jC j ptR′ (t,θ j), (6)

where mm j is the molecular mass of constituent j, Ne the number of chemical entities
in the sample. We denote α = κβ .

Finally, combining (3) and (6), the final expression of the output signal is:

y(t) = y0(t)−α

Ne

∑
j=1

C j ptR′ (t,θ j)+ ε(t), (7)

where ε(t) is a zero mean gaussian noise. In the following, the ouput signal y(t) is noted
Y .

The peak shape density ptR′ in equation (4) is the forward model used for chro-
matographic peak. Its approximation is a Gaussian peak shape: ptR′ (t; µ j,σ j) =

1√
2πσ2

j

e−(t−µ j)
2/2σ2

j .



Bayesian inversion

After having defined the forward model in a nano-system context, this section is
focused on the Bayesian inversion of this model to simultaneously estimate the con-
centration C j and the adsorption parameter θ j of each molecule j, the gain α and the
inverse variance of the noise γ of the system. In the following, we note Θ= [C,θ j,α,γ]T .

Using Bayes’ rule, we have p(Θ|Y ) ∝ p(Θ)p(Y |Θ). An estimator Θ̂ of Θ is the mean
of this density, known as the posterior mean estimator:

Θ̂ =
∫

Ω

Θp(Θ|Y )dΘ, (8)

where Ω is the domain of the possible values for the vector.

As computing this integral is impossible in an analytical way, a method of stochastic
sampling of Θ is applied for estimating it. Having K samples of Θ

(k), this previous mean
is easily computed with the following average sum:

Θ̂ =
1
K

K0+K

∑
k=K0+1

Θ
(k), (9)

where K0 is the number of warming iterations.

Multidimensional sampling of Θ is quite difficult because its distribution is not stan-
dard. That is why a Gibbs sampler is used to generate K samples of Θ as described in
Algorithm 1.

Algorithm 1 Gibbs sampling of the parameters.

Initialize C(1),α(1),γ(1),θ
(1)
j

for i = 1 to K +K0 do
Sample γ(k+1) ∼ p

(
γ|Y,C(k),α(k),θ

(k)
j

)
Sample α(k+1) ∼ p

(
α|Y,C(k),γ(k+1),θ

(k)
j

)
Sample C(k+1) ∼ p

(
C|Y,α(k+1),γ(k+1),θ

(k)
j

)
Sample θ

(k+1)
j ∼ p

(
θ j|Y,C(k+1),α(k+1),γ(k+1)

)
, j = 1 : Ne

end for

The likelihood of the data corresponds to our Gaussian assumption for modelling the
noise which is normally distributed:

p(Y |Θ) = N (Y ;g(t)−g0− ε(t),γ).

These parameters and hyper-parameters are hierarchically ordered as shown in Fig-
ure 3. According to [7], their prior information is translated with the following distribu-



tions, where G ,N ,U are respectively gamma, normal and uniform distributions:

p(γ) = G
(

γ;aprior
γ ,bprior

γ

)
p(α) = N

(
α;mprior

α ,Γprior
α

)
p(C) = N

(
C;mprior

C ,Γprior
C

)
p(θ j) = N

(
θ j;mprior

θ j
,Γprior

θ j

)
or U

(
θ j;θ m

j ,θ
M
j

)
The Bayes’ rule gives then the posterior distributions from which the parameters are

sampled:

p(γ|Y,C(k),α(k),θ (k)) = G (γ;α
post
γ ,bpost

γ )

p(α|Y,C(k),γ(k+1),θ (k)) = N (α;mpost
α ,Γpost

α )

p(C|Y,α(k+1),γ(k+1),θ (k)) = N (C;mpost
C ,Γpost

C )

p(θ j|Y,C(k+1),α(k+1),γ(k+1)) ∝ p(θ (k)
j ) · p(Y |C(k+1),α(k+1),θ

(k)
j ,γ(k+1))

FIGURE 3. Hierarchical ordering of our model

The first three distributions are standard and easily generated with the following
hyper-parameters deduced from the likelihood and the prior distributions:

α
post
γ = N/2

β
post
γ = 2/‖ε(t)‖2

m(k+1)post
α = (Γ

(k+1)post
α )−1(Γprior

α mprior
α + γ(k+1)〈g(t)−g0|∑ j C

(k)
j ptR′ (t,θ

(k)
j )〉2t )

Γ
(k+1)post
α = Γ

prior
α + γ(k+1)‖∑C(k)

j ptR′ (t,θ
(k)
j )‖2

t,2

m(k+1)post
C = (Γ

(k+1)post
C )−1(Γprior

α mprior
α + γ(k+1)α(k+1)2〈ptR′ (t,θ

(k)
i )|g(t)〉t)

Γ
(k+1)post
C = Γ

prior
C + γ(k+1)α(k+1)2〈ptR′ (t,θ

(k)
i )|ptR′ (t,θ

(k)
j )〉i, j

At last, a Metropolis Hastings algorithm with a two-steps acceptance-rejection
method is used to sample the non-standard a posteriori distribution p(θ j|Y,C,α,γ).

RESULTS

This section is focused on some applications of this Bayesian inversion on simulated
and real datasets. All implementations have been written in Matlab.



TABLE 1. Parameters for simulated signal presented on figure 4, and
estimated values

C1 C2 C3 σ2
1 σ2

2 σ2
3 µ1 µ2 µ3

Prior 1 1 1 0.25 0.45 0.6 5 9.5 13.5
Truth 0.17 0.33 0.5 0.5 0.9 1.2 5 9.5 13.5
Estimated 0.17 0.45 0.38 1 3 1 5 10 14

A simulated dataset has been generated as a weighted mixture of three different dis-
tributions according to eq.(7) with true parameters Ne = 3, α = 50, µ = [5;9.5;13.5]T ,
σ = [0.5;0.9;1.2]T and C = [1/6,1/3,1/2]T . This simulated signal is shown on Fig-
ure 4. From initial prior values which are given in Table 1, parameters are drawn from
Algorithm 1.

Figure 4 shows the evolution of the relative error with the index. The final estimation
of parameters are computed from samples generated beyond iteration #150 where the
Gibbs sampler has converged. The final estimated signal is shown in Figure 4 and after
1000 iterations. The sum of relative errors on the concentrations is less than 9.5%. The
final estimated values are also in Table 1.

Some preliminary results are presented here for some NEMS signals recorded from a
mixture of two gases. As these signals are quite new, we present here only some quali-
tative results to highlight the potential of future Bayesian inversion. The estimations are
presented after warming iteration K0 = 150. Some signal pre-processing has been com-
puted to remove the baseline and reduce the noise. Noise filtering has been performed
by averaging the signal on a sliding window on five samples in order to obtain a signal to
noise ratio lower than 7. The baseline corresponding to g0 in the equation (7) is removed
by the algorithm developed by Vincent Mazet [8].

FIGURE 4. Convergence of the algorithm on simulated data. Fit of estimated signal to simulated signal
(left) and relative errors of 3 amplitude parameters versus the iteration index in the MCMC chains (right)



FIGURE 5. Convergence of the algorithm on real data

CONCLUSION

To sum up we have presented a Gas chromatography system coupled with a NEMS
sensor that separates gas of a mixture. We have proposed a forward model taking into
account the physic of the column and the sensor. We have introduced a new molecular
and stochastic model developed by Giddings and Eyring to estimate the concentrations
of constituents. After implementing a Bayesian inversion method, we have analyzed the
convergence of this model. We have observed that it is converging rapidly.
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