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Abstract. This paper discusses a possible generalization for the maximum entropy principle. A
class of generalized entropy is introduced by that of generator functions, in which the maximum
generalized distribution model is explicitly derived includingq-Gaussian distributions, Wigner
semicircle distributions and Pareto distributions. We define a totally geodesic subspace in the total
space of all probability density functions in a framework of information geometry. The model of
maximum generalized entropy distributions is shown to be totally geodesic. The duality of the
model and the estimation in the maximum generalized principle is elucidated to give intrinsic
understandings from the point of information geometry.
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INTRODUCTION

The maximum entropy method consists of a statistical modeling and estimation based
on the Boltzmann-Gibbs-Shannon entropy

HBGS( f ) =−
∫

f (x) log f (x)dΛ(x),

for a probability density functionf (x) with respect to a carrier measureΛ. Let
(X1, · · · ,Xn) be a random sample fromf (x) and t(x) be a feature vector. Then we
consider a mean equal space fort(X) as

Γ(t̂) = { f ∈ F : E f {t(X)}= t̂},

whereF is the space of all probability density functions andt̂ is the sample mean
vector,t̂ = ∑n

i=1 t(Xi)/n. The statistical model of maximum entropy distributions under
the constraintΓ(t̂) is characterized by an exponential model

fexp(x,θ) = exp{θ⊤t(x)−κ(θ)},

whereκ(θ) = log
∫

exp{θ⊤t(x)}dΛ(x). Thus the estimator̂θ for θ is given by the mean
matching

E fexp(·,θ̂){t(X)}= t̂,



which is equal to the likelihood equation, so thatθ̂ is nothing but the maximum like-
lihood estimator. The class of model includes Gaussian distributions, Poisson distribu-
tions and Gibbs distributions. The maximum entropy method has been widely employed
in fields such as natural language processing [4], ecological analysis [23] and so forth.

On the other hand, there is another type of entropy measure such as the Hill diversity
index, the Gini-Simpson index, the Tsallis entropy and so on, cf. [26, 15, 27] from
different fields. We introduced the class of generalized entropy measures to include all
the entropy measures mentioned above. We discuss the maximum generalized entropy
principle in this extension of the Boltzmann-Gibbs-Shannon entropy. The model of
generalized maximum entropy distributions includesq-Gaussian distributions, Wigner
distributions and Pareto distributions. The estimation is given by minimum divergence
method in which the divergence is led from the generalized entropy.

GENERALIZED ENTROPY

We introduce a class of generalized entropy that is constructed by a generator function
U , see [8]. The class of generator functions is defined by

U = {U : R→ R+ : U ′(s)≥ 0,U ′′(s)≥ 0,U ′′′(s)≥ 0}. (1)

Then we consider the conjugate convex function defined onR+ of U in U as

U∗(t) = max
s∈R

{st−U(s)}, (2)

and henceU∗(t) = tu−1(t)−U(u−1(t)), whereu(s) =U ′(s). Note that there exists the
inverse function ofu(t) in (2) sinceU is assumed to be inU . We define a generalized
entropy

HU( f ) =−
∫

U∗( f )dΛ, (3)

which is calledU-diagonal entropy. Similarly, theU-cross entropy is given by

CU( f ,g) =
∫
{U(u−1(g))− f u−1(g)}dΛ,

and henceHU( f ) =CU( f , f ). The information divergence

DU( f ,g) =CU( f ,g)−HU( f ), (4)

calledU-divergence. We note from the assumption ofU ∈U that theDU( f ,g)≥ 0 with
equality if and only ifg= f in Λ-everywhere.

The most typical example ofU is U0(s) = exp(s), which leads toU∗
0 (t) = t logt − t.

Thus U0-divergence andU0-entropy equal the Kullback-Leibler divergence and the
Boltzmann-Gibbs-Shanon entropy, respectively. As a further example consider the func-
tion

Uβ (s) =
1

β +1
(1+βs)

1+β
β (5)



whereβ < 1 is a scalar. Then the generator functionUβ associates with theβ -diagonal
power entropy

Hβ ( f ) =− 1
β (β +1)

∫
f (x)β+1dΛ(x)+

1
β
,

theβ -power cross entropy

Cβ ( f ,g) =
∫ { 1

β +1
g(x)β+1− 1

β
f (x){g(x)β −1}

}
dΛ(x)

and theβ -power divergence

Dβ ( f ,g) =
1

β (β +1)

∫ {
f (x)β+1− (β +1) f (x)g(x)β +βg(x)β+1

}
dΛ(x).

We observe that theβ -power entropy reduces to the Boltzmann-Gibbs-Shannon en-
tropy in the limit ofβ to 0 and similarly theβ -power divergence reduces to the Kullback-
Leibler divergence. If we take a limit ofβ to −1, thenDβ ( f ,g) becomes the Itakura-
Saito divergence

DIS( f ,g) =
∫ {

− log
f (x)
g(x)

+
f (x)
g(x)

−1
}

dΛ(x),

which is widely applied in signal processing and speech recognition, cf. [25, 5].
Theβ -power entropyHβ is essentially equal to the Tsallisq-entropy with a relation

q= β +1, cf. [27, 19, 28]. Tsallis entropy has essential understandings for phenomena
of spin glass relaxation, dissipative optical lattices and so on beyond the classical
statistical physics associated with the Boltzmann-Shannon entropyH0(p). See also
[26, 15] for the power entropy in the field of ecology. The statistical property for the
minimum β divergence method in the presence of outliers departing from a supposed
model is discussed to show a robustness performance by appropriate selection forβ , cf.
[17, 12, 13] and a property of spontaneous learning to apply to clustering analysis is
focused beyond robustness perspective as in [21].

MAXIMUM GENERALIZED ENTROPY MODEL

We discuss the principle of maximum generalized entropy. In general theU-entropy
is an unbounded functional onF unlessF is of finite discrete case. For this we
introduce a moment constraint as follows. Lett(X) be ak-dimensional statistic vector.
Henceforth we consider the mean equal spaceΓ(τ) as in Introduction assuming that
E f {∥t(X)∥2}< ∞ for all f of F .

Theorem 1. Let f ∗
τ = argmax{HU( f ) : f ∈ Γ(τ)}, whereHU( f ) isU-diagonal entropy

defined in(3). Then the maximumU-entropy distribution is given by

f ∗
τ (x) = u(θ⊤t(x)−κU(θ)), (6)



whereκU(θ) is the normalizing factor andθ is a parameter vector determined by the
moment constraint ∫

t(x)u(θ⊤t(x)−κU(θ))dΛ(x) = τ.

Proof. For any fτ(x) in Γ(τ) we observe that

E fτ{u−1( f ∗
τ (X))}= E f ∗

τ {u−1( f ∗
τ (X))}

Therefore we can confirm thatHU( f ∗
τ )≥ HU( fτ) for any fτ ∈ Γ(τ) since

HU( f ∗
τ )−HU( fτ) = DU( fτ , f ∗

τ ),

which is nonnegative by the definition ofU-divergence. The proof is complete.

Here we give a definition of the model of maximumU-entropy distributions as
follows.

Definition 1. We define ak-dimensional model

MU = { fU(x,θ) := u(θ⊤t(x)−κU(θ)) : θ ∈ Θ}, (7)

which is calledU-model, whereΘ = {θ ∈ Rk : κU(θ)< ∞}.

The Naudts’ deformed exponential family discussed from a statistical physical view-
point as in [19] is closely related withU-model. We discuss a typical example by the
power entropyHβ ( f ), see [18, 19] from a viewpoint of statistical physics. Consider a
mean equal space of univariate distributions onR+

Γ(µ,σ2) = { f : E f (X) = µ,V f (X) = σ2}.

The maximum entropy distribution withHβ is given by

fβ (x,µ,σ2) =
1
σ

(
1− β

1+β
(x−µ)

σ

) 1
β

+
,

which is nothing but Pareto distribution. We next consider a case of multivariate dis-
tributions, where the moment constraints are supposed that for a fixedp-dimensional
vectorµ and matrixV of sizep× p

Γ(µ,V) = { f ∈ F : E f (X) = µ,V f (X) =V}.

Let fβ (·,µ,V)= argmaxf∈Γ(µ,V)Hβ ( f ). If we consider a limit case ofβ to 0, thenHβ ( f )
reduces toHBGS( f ) and the maximum entropy distribution is ap-dimensional Gaussian
distribution with the density function

ϕ(x,µ,V) = {det(2πV)}−p/2exp
{
− 1

2
(x−µ)⊤V−1(x−µ)

}
.



In general we deduce that ifβ > −2/(p+2), then the maximumβ -power entropy
distribution uniquely exists such that the density function is given by

fβ (x,µ,V) =
cβ

det(2πV)
1
2

{
1− β

2+ pβ +2β
(x−µ)⊤V−1(x−µ)

} 1
β

+
,

wherecβ is the normalizing factor, see [9, 10] for the detailed expression and [22] for the
group invariance perspective. Ifβ > 0, then the maximumβ -power entropy distribution
has a compact support, in which the typical case isβ = 2 called the Wigner semicircle
distribution. On the other hand, if−2/(p+2)< β < 0, the maximumβ -power entropy
distribution has a full support ofRp, and equals ap-variate t-distribution with a degree
of freedom depending onβ .

MINIMUM DIVERGENCE METHOD

We consider a general situation where the underlying density functionf (x) is sufficiently
approximated by a statistical modelM = { f (x,θ) : θ ∈ Θ}. TheU-loss function for a
given data set{Xi : i = 1, · · · ,n} is introduced by

LU(θ) =−1
n

n

∑
i=1

u−1( f (Xi ,θ)
)
+bU(θ),

wherebU(θ) =
∫

U
(
u−1

(
f (x,θ)

))
dΛ(x). We call θ̂U = argminθ∈Θ LU(θ) U-estimator

for the parameterθ . By definitionE f {LU(θ)} = CU( f , f (·,θ)) for all θ in Θ, which
implies thatLU(θ) almost surely converges toCU( f , f (·,θ)) as n goes to∞. Let us
define a statistical functional as

θU( f ) = argmin
θ∈Θ

CU( f , f (·,θ)).

ThenθU( f ) is model-consistent, orθU( f (·,θ)) = θ for anyθ ∈ Θ because

CU( f (·,θ), f (·,θ ′))≤ HU( f (·,θ))

with equality if and only ifθ ′ = θ . HenceU-estimatorθ̂U is asymptotically consistent.
There is a natural question which situation happens if we consider theU-estimation
under theU-model?

Let MU be aU-model defined in (7). Then theU-loss function under theU-model for
a given data set{X1, · · · ,Xn} is defined by

LU(θ) =−θ⊤t̂ +κU(θ)+bU(θ), (8)

wheret̂ = ∑n
i=1 t(Xi)/n andbU(θ) =

∫
U(u−1(θ⊤t(x)− κU(θ))dΛ(x). The estimating

equation is given by

∂
∂θ

LU(θ) =−t̂ +E f (·,θ){t(X)}.



Hence, if we consider theU-estimator for a parameterη by the transformation ofθ
defined byϕ(θ) = E f (·,θ){t(X)}, then theU-estimatorη̂U is nothing but the sample
meant̂. Here we observe that the transformationϕ(θ) is one-to-one. Consequently the
estimatorθ̂U for θ is given byϕ−1(t̂). We summarize theses results as follows.

Theorem 2. LetMU be aU-model with a canonical statistict(X) as defined in(7). Then
theU-estimator for the expectation parameterη of t(X) is always the sample meant̂.

We remark that the empirical Pythagorean theorem holds as in

LU(θ) = LU(θ̂U)+DU(θ̂U ,θ),

since we observe that

LU(θ)−LU(θ̂U) = (θ̂U −θ)⊤t̂ +κU(θ)+bU(θ)−κU(θ̂U)+bU(θ̂U),

which gives another proof for whicĥθU is ϕ−1(t̂). The statistiĉt is a sufficient statistic
in the sense that theU-loss functionLU(θ) is a function oft̂ as in (8). Accordingly the
U-estimator underU-model is a function only of̂t from the observationsX1, · · · ,Xn.
This is an extension that the MLE is a function oft̂ under the exponential model with
the canonical statistict(X).

Let us look at the case of theβ -power divergence. Under theβ -power model given
by

Mβ = { fβ (x,θ) := {κβ (θ)+βθ⊤t(x)}
1
β : θ ∈ Θ},

theβ -loss function is written by

Lβ (θ) =−βθ⊤t̂ +κβ (θ)+bβ (θ),

where

bβ (θ) =
1

β +1

∫
{κβ (θ)+βθ⊤t(x)}

1+β
β dΛ(x).

Theβ -power estimator for the expectation parameter oft(X) is exactly given bŷt.

DUALITY

We discuss duality in a maximum generalized entropy model. For this we introduce a
path geometry in the spaceF of all density functions, see the framework of information
geometry, cf. [1, 2]. In particular the nonparametric formulation is discussed in [24, 29,
3, 11]. Let f andg be inF andφ be a strictly-increasing and convex function defined
in R+. Then we call

C φ = { f (φ)
t := φ

(
(1− t)φ−1( f )+ tφ−1(g)−κt( f ,g)

)
: 0≤ t ≤ 1} (9)



φ -geodesic connecting withf with g, whereκt( f ,g) is a normalizing factor to satisfy∫
f (φ)

t dΛ = 1. Note from the convexity assumption forφ that the Nagumo-Kolmogorov
average satisfies

φ((1− t)φ−1( f )+ tφ−1(g))≤ (1− t) f + tg

for all t, 0 ≤ t ≤ 1. This guarantees the existence ofκ t( f ,g). This definition is an
extension of mixture geodesic curveC (m) = (1− t) f + tg, which is a special choice
of φ = id.

Let M be a submanifold ofF . We sayM is totallyφ -geodesic if theφ -geodesic curve
defined in (9) is embedded inM for any f andg in M. By definition the mean equal
spaceΓ(τ) is totally mixture geodesic, that is, iff andg are inΓ(τ), then(1− t) f + tg
is also inΓ(τ) for any t ∈ (0,1). We have a geometric understanding for theU-model
similar to the exponential model.

Theorem 3. Let MU be a statistical model defined in(7), whereU is in U defined in
(1). ThenMU is totally φ -geodesic, whereφ = u.

Proof. For arbitrarily fixedθ1 andθ2 in Θ, we observe that

f (φ)
t = φ

(
(1− t)u−1( fU(·,θ1))+ tu−1( fU(·,θ2))−κt(θ1,θ2)

)
with a normalizing factorκt(θ1,θ2). Hence we conclude that, ifφ = u, then f (φ)

t =
fU(·,θt), whereθt = (1− t)θ1+ tθ2. We see from the convexity ofΘ thatθt ∈ Θ for all
t,0≤ t ≤ 1, whereΘ is defined in Definition 1. This completes the proof.

Hence the total spaceF is decomposed intoΓ(τ) andMU , where the intersection of
Γ(τ) andMU is a singlton offU(·,θ) satisfying

E fU (·,θ){t(X)}= τ.

The decomposition ofF forms a foliation

F =
∪

f∈MU

Γ(τ f ),

whereτ f = E f {t(X)}. In the foliationΓ(τ f ) is totally mixture geodesic;MU is totallyu-
geodesic. From a differential geometry associated theU-divergence the dual connections
are formulated in [6, 7, 11]. In fact the two connections leads to mixture geodesic and
u-geodesic. We can say that the mixture geodesic andu-geodesic are dual in the sense
that the average of two connections is the Levi-Civita connection with respect to the
Riemannian metric associated with theU-divergence.
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