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Abstract. This paper discusses a possible generalization for the maximum entropy principle. A
class of generalized entropy is introduced by that of generator functions, in which the maximum
generalized distribution model is explicitly derived includiggGaussian distributions, Wigner
semicircle distributions and Pareto distributions. We define a totally geodesic subspace in the total
space of all probability density functions in a framework of information geometry. The model of
maximum generalized entropy distributions is shown to be totally geodesic. The duality of the
model and the estimation in the maximum generalized principle is elucidated to give intrinsic
understandings from the point of information geometry.
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INTRODUCTION

The maximum entropy method consists of a statistical modeling and estimation based
on the Boltzmann-Gibbs-Shannon entropy

Heas(f) = [ F(910g 1 ()dA(X),

for a probability density functionf(x) with respect to a carrier measure Let
(X1,---,Xn) be a random sample from(x) andt(x) be a feature vector. Then we
consider a mean equal spacetfoX) as

Ff)={f e 7 E:{t(X)} =t},

where .7 is the space of all probability density functions aings the sample mean
vector,f = S ;t(X)/n. The statistical model of maximum entropy distributions under

A

the constrainf (t) is characterized by an exponential model
fexp(X, 8) = exp{6 "t(x) —k(6)},

wherek (8) = log [ exp{6 "t(x) }dA(x). Thus the estimatdd for 6 is given by the mean
matching

Eq .0 t00} =1,



which is equal to the likelihood equation, so titats nothing but the maximum like-
lihood estimator. The class of model includes Gaussian distributions, Poisson distribu-
tions and Gibbs distributions. The maximum entropy method has been widely employed
in fields such as natural language processing [4], ecological analysis [23] and so forth.

On the other hand, there is another type of entropy measure such as the Hill diversity
index, the Gini-Simpson index, the Tsallis entropy and so on, cf. [26, 15, 27] from
different fields. We introduced the class of generalized entropy measures to include all
the entropy measures mentioned above. We discuss the maximum generalized entropy
principle in this extension of the Boltzmann-Gibbs-Shannon entropy. The model of
generalized maximum entropy distributions includeSaussian distributions, Wigner
distributions and Pareto distributions. The estimation is given by minimum divergence
method in which the divergence is led from the generalized entropy.

GENERALIZED ENTROPY

We introduce a class of generalized entropy that is constructed by a generator function
U, see [8]. The class of generator functions is defined by

% ={U:R—R, :U'(s)>0U"(s) >0,U"(s) > 0}. (1)
Then we consider the conjugate convex function definel pof U in % as

U™(t) = max{st-U(s)}, (2)

and hencéJ*(t) = tu=1(t) —U (u=%(t)), whereu(s) = U’(s). Note that there exists the
inverse function ofi(t) in (2) sinceU is assumed to be i¥. We define a generalized
entropy

Hu(f) == [U*(fdn, ©

which is calledJ-diagonal entropy. Similarly, the -cross entropy is given by

Cu(f,9) = [{U(u(g) ~ fuX(g)}dn,
and henceHy (f) = Cy (f, f). The information divergence

DU(fag):CU(fag)_HU(f)v (4)

calledU-divergence. We note from the assumptiotdof % that theDy (f,g) > O with
equality if and only ifg = f in A-everywhere.

The most typical example &f is Up(s) = exp(s), which leads tdJ;(t) = tlogt —t.
Thus Up-divergence andJg-entropy equal the Kullback-Leibler divergence and the
Boltzmann-Gibbs-Shanon entropy, respectively. As a further example consider the func-
tion
1+B

Up(s) = == (1+Bs) 7 ()



wheref3 < 1is a scalar. Then the generator functldg associates with thg-diagonal
power entropy

1

R RS

/f(x)ﬁ“d/\(x) + 1,
B
the B-power cross entropy

Cal1,9) = [ {70007 - 51 (0{a0” ~ 1} }eA

and theB-power divergence

Dp(f,g) = [ {10075~ (B+ 1)F00g(0P + g7 }dN(x.

1
BB+1)
We observe that thB-power entropy reduces to the Boltzmann-Gibbs-Shannon en-
tropy in the limit of 8 to 0 and similarly thg3-power divergence reduces to the Kullback-
Leibler divergence. If we take a limit @8 to —1, thenDg(f,g) becomes the Itakura-
Saito divergence

fFOx) | f(x)
Dis(f.0) = [ { ~log g+ o — LA,
which is widely applied in signal processing and speech recognition, cf. [25, 5].

The B-power entropyHp is essentially equal to the Tsallisentropy with a relation
g=p+1,cf. [27, 19, 28]. Tsallis entropy has essential understandings for phenomena
of spin glass relaxation, dissipative optical lattices and so on beyond the classical
statistical physics associated with the Boltzmann-Shannon entigfy). See also
[26, 15] for the power entropy in the field of ecology. The statistical property for the
minimum B divergence method in the presence of outliers departing from a supposed
model is discussed to show a robustness performance by appropriate selegfipaffor
[17, 12, 13] and a property of spontaneous learning to apply to clustering analysis is
focused beyond robustness perspective as in [21].

MAXIMUM GENERALIZED ENTROPY MODEL

We discuss the principle of maximum generalized entropy. In generdl thatropy
is an unbounded functional o unless.# is of finite discrete case. For this we
introduce a moment constraint as follows. LEX) be ak-dimensional statistic vector.
Henceforth we consider the mean equal space as in Introduction assuming that
E¢{|[t(X)||?} < o for all f of .Z.

Theorem 1. Let f,* =argmaX{Hy (f): f € (1)}, whereHy (f) isU-diagonal entropy
defined in(3). Then the maximuitd -entropy distribution is given by

fr" () = u(6 't(x) — ku (8)), (6)



whereky () is the normalizing factor and is a parameter vector determined by the
moment constraint

/ t()u(8Tt(X) — ku (8))dA(X) = T.
Proof. For anyf;(x) in (1) we observe that

Er {u ™ (f (X))} =B {u (£ (X))}
Therefore we can confirm thély (f;*) > Hy (f;) for any f; € (1) since
Hu (f:") —Hu(fr) = Du(fr, f7),
which is nonnegative by the definition Bf-divergence. The proof is complete.

Here we give a definition of the model of maximudrentropy distributions as
follows.

Definition 1. We define &-dimensional model
My = {fu(x,8) == u(8't(x) —ku(6)): 6 € 6}, (7)

which is calledJ-model, where® = {6 € R*: ky (8) < oo}.

The Naudts’ deformed exponential family discussed from a statistical physical view-
point as in [19] is closely related withd-model. We discuss a typical example by the
power entropyHg(f), see [18, 19] from a viewpoint of statistical physics. Consider a
mean equal space of univariate distributiongRon

M(u,0%) ={f :E¢(X)=u,Vi(X) =02}

The maximum entropy distribution witHg is given by

Y

fﬁ(X,H,02)=%<1—%<X;“)>i

which is nothing but Pareto distribution. We next consider a case of multivariate dis-
tributions, where the moment constraints are supposed that for agixétiensional
vectoru and matriXV of sizepx p

F(p,V)={f €7 Et(X)=p,Vi(X)=V}.

Let fg(-, u,V) =argmax r,v)Hp(f). If we consider a limit case ¢ to O, thenHg ()
reduces tdHggs( f) and the maximum entropy distribution igpadimensional Gaussian
distribution with the density function

80 1V) = {det2nv)} P 2exp] () v x— ) )



In general we deduce that B > —2/(p+2), then the maximunB-power entropy
distribution uniquely exists such that the density function is given by

B B
2+pB+2B

(=) VHx—p) |

C =
fg(X,u,V) = £ {1 i,

det2nv)2

wherecg is the normalizing factor, see [9, 10] for the detailed expression and [22] for the
group invariance perspective.ff> 0, then the maximun@-power entropy distribution

has a compact support, in which the typical casg is 2 called the Wigner semicircle
distribution. On the other hand, #2/(p+2) < B < 0, the maximumpB-power entropy
distribution has a full support d&P, and equals g@-variate t-distribution with a degree

of freedom depending of.

MINIMUM DIVERGENCE METHOD

We consider a general situation where the underlying density funttions sufficiently
approximated by a statistical moddl = {f(x,0) : 6 € ©}. TheU-loss function for a
given data sefX; :i =1,---,n} is introduced by

1 n
Ly(8)=—-=S u(f(X,0))+by(0),
0(®) =5 3 u(f(X.60)) +u(6)
whereby (6) = [U (u2(f(x,8)))dA(x). We call§, = argminyg Ly (8) U-estimator
for the parametef. By definitionE¢{Ly(6)} = Cy(f, f(-,0)) for all 8 in ©, which
implies thatLy (6) almost surely converges @, (f, f(-,0)) asn goes tow. Let us
define a statistical functional as

6y (f) = argminCy (f, (-, 6)).
CISC]

Then@, (f) is model-consistent, d&, (f(-,0)) = 6 for any 6 € © because
Cu(f(-,0),1(-,6") <Hu(f(,0))

with equality if and only if6’ = 6. HenceU -estimatorf is asymptotically consistent.
There is a natural question which situation happens if we considdd tbstimation
under thdJ-model?

Let My be aU-model defined in (7). Then thé-loss function under thg -model for
a given data sefXy,--- ,Xn} is defined by

Ly(8)=—-8"f+ky(8)+by(8), (8)

wheref = 5 t(X)/nandby (8) = [U(u"1(8t(x) — kuy(8))dA(X). The estimating
equation is given by

;—QLU(Q) = —{+E¢(,{t(X)}.



Hence, if we consider the-estimator for a parametey by the transformation 0@
defined by¢ (6) = E¢(. ¢{t(X)}, then theU-estimatory is nothing but the sample
meant. Here we observe that the transformatipf6) is one-to-one. Consequently the
estimatord for 9 is given by —1(f). We summarize theses results as follows.

Theorem 2. LetMy be aU-model with a canonical statisti¢X) as defined i{7). Then
theU -estimator for the expectation parametgioft(X) is always the sample meén

We remark that the empirical Pythagorean theorem holds as in
Lu(6) = Lu(8u)+Du 8y, 0),
since we observe that
Lu(8) —Lu(Bu) = (B — 6) "f+ku(8) +bu(8) —ku(Bu) +bu (b)),

which gives another proof for which, is ¢ (). The statistid is a sufficient statistic
in the sense that tHé-loss functionlLy (0) is a function off as in (8). Accordingly the
U-estimator undet-model is a function only of from the observationXy,--- , Xn.
This is an extension that the MLE is a functionfafinder the exponential model with
the canonical statistig X).

Let us look at the case of thg-power divergence. Under thgpower model given

by
1
Mg = {fg(x,0) := {Kz(6)+BO't(X)}7 : 6 € O},
the B-loss function is written by
Lp(6) = —BO t+Kp(0) +bs(H),
where

by (6) = B—_]i-_l/{KB(Q) +BOTLX))F dAX).

The B-power estimator for the expectation parameter(Xf) is exactly given by.

DUALITY

We discuss duality in a maximum generalized entropy model. For this we introduce a
path geometry in the spacg of all density functions, see the framework of information
geometry, cf. [1, 2]. In particular the nonparametric formulation is discussed in [24, 29,
3, 11]. Letf andg be in.# and @ be a strictly-increasing and convex function defined

in R.. Then we call

CP={f{? = p((1-t)p () +te  (g) —k(f,g) :0<t <1} ©)



@-geodesic connecting with with g, wherek;(f,g) is a normalizing factor to satisfy

i ft(‘p)d/\ = 1. Note from the convexity assumption ferthat the Nagumo-Kolmogorov
average satisfies

e(1-t)e H(f)+te H(g)) < (1-t)f +tg

for all t, 0 <t < 1. This guarantees the existence iof( f,g). This definition is an
extension of mixture geodesic cur@™ = (1—t)f +tg, which is a special choice
of o =id.

LetM be a submanifold of#. We sayM is totally ¢-geodesic if thep-geodesic curve
defined in (9) is embedded M for any f andg in M. By definition the mean equal
spacd (1) is totally mixture geodesic, that is, ffandg are inl'(1), then(1—t)f +tg
is also inl" (1) for anyt € (0,1). We have a geometric understanding for thenodel
similar to the exponential model.

Theorem 3. Let My be a statistical model defined {i7), whereU is in % defined in
(1). ThenMy is totally ¢-geodesic, where = u.

Proof. For arbitrarily fixed6, and6, in ©, we observe that
£{? = o((1-)u™(fu (-, 6) +tu= (fu (-, 62)) — ki(64, 62))

with a normalizing factor; (64, 82). Hence we conclude that, § = u, then ft(q’) =
fu(-, &), where6 = (1—t)6; +t6,. We see from the convexity @ that6 € © for all
t,0 <t <1, whereO is defined in Definition 1. This completes the proof.

Hence the total spac# is decomposed intb(1) andMy, where the intersection of
(1) andMy is a singlton offy (-, 0) satisfying

Ety(.0{tX)} =T.
The decomposition of# forms a foliation

F = J r(r),

feMy

wheret; = E¢{t(X)}. In the foliationl (1) is totally mixture geodesidvly is totally u-
geodesic. From a differential geometry associatetUttadvergence the dual connections
are formulated in [6, 7, 11]. In fact the two connections leads to mixture geodesic and
u-geodesic. We can say that the mixture geodesicuagelodesic are dual in the sense
that the average of two connections is the Levi-Civita connection with respect to the
Riemannian metric associated with thedivergence.

REFERENCES

1. Amari, S.Differential-geometrical methods in statistidsecture Notes in Statist., 28, Springer, New
York, 1985.



2. Amari, S. and Nagaoka, HMethods of Information Geometr®xford University Press, Oxford, UK,
2000.

3. Amari, S-I. Information Geometry of Positive Measures and Positive-Definite Matrices: Decompos-
able Dually Flat StructureEntropy 2014,16, 2131-2145.

4. Berger, A. L., Pietra, V. J. D., and Pietra, S. A. D. A maximum entropy approach to natural language
processingComputational linguistic4996,22, 39-71.

5. Cichocki, A. and Amari, S. I. Families of alpha-beta-and gamma-divergences: Flexible and robust
measures of similaritie€ntropy2010,12, 1532-1568.

6. Eguchi, S. Second order efficiency of minimum contrast estimators in a curved exponential family.
Annals of Statistics1983,11, 793-803.

7. Eguchi, S. Geometry of minimum contraktiroshima Math. J1992,22, 631-647.

8. Eguchi, S. Information divergence geometry and the application to statistical machine learning.
In Information Theory and Statistical Learnin09-332. Eds. F. Emmert-Streib and M. Dehmer,
Springer US, 2008.

9. Eguchi, S. and Kato, S. Entropy and divergence associated with power function and the statistical
application Entropy2010,12, 262-274.

10. Eguchi, S., Komori, O. and Kato, S.; Projective Power Entropy and Maximum Tsallis Entropy
Distributions.Entropy 2011,131746-1764.

11. Eguchi, S., Komori, O. and Ohara, A.; Duality of maximum entropy and minimum divergence.
Entropy(2014) 16, 7, 3552-3572. .

12. Fujisawa, H. and Eguchi, S. Robust estimation in the normal mixture maddstatist. Plan. Infer.
2006,136, 3989-4011. .

13. Fujisawa, H. and Eguchi, S. Robust parameter estimation with a small bias against heavy contamina-
tion. J. Multivariate Anal. 2008,99, 2053-2081.

14. Grunwald, P. D., and Dawid, A. P. Game theory, maximum entropy, minimum discrepancy and robust
Bayesian decision theonAnnals of Statistic2004,325 1367-1433.

15. Hill, M. O. Diversity and evenness: a unifying notation and its consequeriteslogy 54 1973,
427-432.

16. Jaynes, E. T. Information Theory and Statistical MechanicStatistical PhysicsK. Ford (ed.),
Benjamin, New York, 1963.

17. Minami, M. and S. Eguchi. Robust blind source separation by beta divergdaaeal computation
2002,14, 1859-1886.

18. Naudts, J. The-exponential family in statistical Physic€Central European Journal of Physics
2009,7, 405-413.

19. Naudts, JGeneralized thermostatisticSpringer, 2011.

20. Ohara, A.; Eguchi, S. Geometry on positive definite matrices deformed by V-potentials and Its
submanifold structureieometric Theory of InformatidR Nielsereds, Chapter 2 pp.31-55, Springer
2014.

21. A. Notsu, O. Komori and S. Eguchi. Spontaneous clustering via minimum gamma-divenyenca.
Computatior014,26, 421-448.

22. Ohara, A. and Eguchi, S. Group invariance of information geometry on g-Gaussian distributions
induced by beta-divergencEntropy2013,15, 4732-4747.

23. Phillips, S. J., and Dudik, M. Modeling of species distributions with Maxent: new extensions and a
comprehensive evaluatioicography2008,31, 161-175.

24. Pistone, G. and Sempi, C. An infinite-dimensional geometric structure on the space of all the
probability measures equivalent to a given oAanals of Statisticd995,, 1543-1561.

25. Scharf, L. L.Statistical signal processind/ol. 98. Reading, MA: Addison-Wesley, 1991.

26. Simpson, E. H. Measurement of diverditgture 163 1949, 688.

27. Tsallis, C. Possible generalization of Boltzmann-Gibbs statisfic§tatistical Physics1988,52,
479-487.

28. Tsallis, C.Introduction to Nonextensive Statistical MechaniSpringer, New York NY, USA, 2009.

29. Zhang, J. Nonparametric information geometry: From divergence function to referential-
representational biduality on Statistical Manifol@ntropy2013,15, 5384-5418.



