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Abstract. In this paper we propose generalized inequalities to quantify the uncertainty principle.
We deal with two observables with finite discrete spectra described by positive operator-valued mea-
sures (POVM) and with systems in mixed states. Denoting by p(A;p) and p(B;p) the probability
vectors associated with observables A and B when the system is in the state p, we focus on relations
of the form Uq(p(A;p)) +Ug(p(B;p)) > PBop(A,B) where Uy is a measure of uncertainty and
A is a non-trivial state-independent bound for the uncertainty sum. We propose here:

(i) an extension of the usual Landau—Pollak inequality for uncertainty measures of the form
Ur(p(A;p)) = f(max; pi(A;p)) issued from well suited metrics; our generalization comes out as a
consequence of the triangle inequality. The original Landau—Pollak inequality initially proved for
nondegenerate observables and pure states, appears to be the most restrictive one in terms of the
maximal probabilities;

(i) an entropic formulation for which the uncertainty measure is based on generalized entropies

of Rényi or Havrda—Charvat-Tsallis type: Uy, o (p(4;p)) = %’W. Our approach is based on

Schur-concavity considerations and on previously derived Landau—Pollak type inequalities.
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INTRODUCTION

The uncertainty principle establishes in quantum mechanics that one cannot predict with
certainty and simultaneously the outcomes of two incompatible measurements. First
quantitative formulations of this principle made use of variances as uncertainty mea-
sures, exhibiting thus the existence of a lower bound for the product of the variances [1].
However, those formulations have some drawbacks. For instance, when dealing with
discrete-spectrum observables, the so-called Heisenberg—Robertson—Schrodinger in-
equalities are state-dependent and the state-independent lower bound appears to be triv-
1al. Thus, many authors attempt to propose alternative formulations, using more gen-
eral measures of uncertainty rather than the variance. Among them one finds relations
issued from geometrical concepts giving rise to generalizations of the Landau—Pollak
inequality [2], or formulations making use of information-theoretic measures, typically
entropies [3-9].

We provide here two formulations of the uncertainty principle valid in the general
context of observables described by positive operator-valued measures (POVM) and for



systems described by density operators. One of the formulations is a generalization of
the Landau—Pollak inequality, whereas the other one is based on entropies. The former
is not only an uncertainty formulation in itself, but also an ingredient for the proof of the
latter approach. The entropic formulation that we derive is based on one-parameter gen-
eralized entropies including the well-known cases of Rényi and Tsallis ones. In both for-
mulations, geometrical considerations (metrics and convexity arguments, respectively)
are used to derive our inequalities.

PRELIMINARIES

We deal with two observables described by the POVM A = {Ai}IIVA and B={B j}llvB,
respectively, i.e., A and B are sets of self-adjoint positive semi-definite operators acting
on an N-dimensional Hilbert space .77, that satisfy the completeness relation Zé\glA,- =
I= leyi | Bj, where I is the identity operator on .7, and Ny and Np are not necessarily
equal one to the other, nor equal to N. Operators Oy (O = A or B) represent the possible
outcomes of observable O. Besides, we consider a system whose state is described by
a density operator p acting on 5¢°, where p is self-adjoint, positive semi-definite, with
unit trace Trp = 1. The quantity

p(0;p) =[p1(0;p) -+ pNy(O;p)]  with  pi(O;p) =Tr(Oxp)

is a probability vector where pi(O;p) represents the probability of measuring the kth
outcome of observable O when the system is in the state p [10]. In the context of
observables with nondegenerate spectra, the operators write Oy = |oy) (0x| and are rank-
one projectors where {|ox)}Y is eigenbasis of observable O. In this case, important
parameters are the transformation matrix 7" and the so-called overlap c,

1
T,j=(bjla;)  and c:n}f}x‘(bj]aiﬂ € [ﬁ’l] :

the latter measuring the degree of incompatibility of the nondegenerate observables
(e.g., c = 1 when they have a common eigenvector, and is minimal when they are
complementary). Finally, a pure state is an element |¥) of .7 with unit norm, and the
associated density operator writes p = |¥)(W|; any mixed state p can be written as a
convex combination of (at most) N pure states [10].

In this general context of POVM description for quantum observables and systems in
mixed states, the goal is then to quantify the simultaneous unpredictability on the pair
of observables, through an inequality of the type

Ua(p(A:p)) + U5 (p(B:p)) > By s(A,B)

where %), is an uncertainty measure, parametrized by quantities or functions A, and the
bound #,, (A, B) is state-independent and non trivial.

The basic features that we impose on the uncertainty measure % are that (i) it is
invariant under any permutation of the components of p, (ii) it is Schur-concave, and
(i) 2, ([1 0 --- 0])=0. Thus, %, (p) >0since p<[1 0 --- 0]and is zero



(minimal) when the probability distribution is py = & for certain i, that is, the ith
outcome appears with certainty so that the ignorance is zero. At the opposite, from the
Schur-concavity, % is maximal when p is uniform since [1%, %\,} < p, ie., all
outcomes appear with equal probability, so that the uncertainty is maximal.

EXTENDED LANDAU-POLLAK INEQUALITIES

We focus now on a particular measure of uncertainty that allows us for a generalization
of Landau—Pollak inequality. We concentrate on the maximal probabilities

Pprp = mlax pi(A;p) and Pp.p = m]ax pi(B;p) (1)

The uncertainty principle manifests through these quantities by the fact that not all pairs
(Pa;p, Pp,p) are allowed. As an example, certainty in both observables (Py.p,Ppp) =
(1,1) is in general not possible. The restrictions can either be described by Landau—
Pollak type inequalities, or by the allowed domain for (Py.p,Pg.p), which is precisely
the goal of the present section.

Let us consider continuous decreasing functions f : [0; 1] — R4, with f(1) =0, and
such that

2
F(I(219)P) = dy (). @)
defines a metric for any two pure states |¥) and |®). Some well-known cases are [10, 14]

f(x) = arccos/x leading to Wootters metric, f(x) = /2 (1 —+/x) leading to Bures
metric, f(x) = /1 — x related to the root-infidelity metric. Then, the quantity

U (p(0:p)) = f(Poyp) )

gives an uncertainty measure for the POVM O when the system is in state p. Indeed, %
satisfies all requirements we imposed on an uncertainty measure.

The main results of this section are given by the following propositions that give,
respectively, 1) lower bounds for % (p(A;p)) + % (p(B;p)). 2) the most restricting
function f for the family of uncertainty relations we derived, and 3) the most restrictive
domain, corresponding to the generalized Landau—Pollak inequality.

Proposition 1 Let A = {Ai}IIVA and B={B j}IIVB be two POVM sets describing observ-
ables A and B respectively, and acting on an N-dimensional Hilbert space ¢ . Then for
an arbitrary density operator p acting on F€, the following relation holds:

f (Pap) + f (Paip) = max {f (i) + £ (cg) . f (cas) } (3)

where the triplet of overlaps ¢ = (ca,cp,ca ) is given by
ea=max||Vall,  ep=max|[V/Bj| and  cap=max|[VAVB]| 4

In the case of nondegenerate observables, the triplet of overlaps is ¢ = (1, 1,¢).



To prove the proposition, we proceed in four steps.
(i) For any observable and pure state pi(O;|¥)(¥|) = (P|Ok|¥) < [||[F)] ||Ox|F)]| <
I |17 |Okll = |/ O||* < ¢ . This inequality remains valid for mixed states (just write
a mixed state as a convex combination of pure-states density matrices). Taking the
maximum over k gives Po,, < c5: from the decreasing property of f, f(c3)+ f(c%)
lower bounds the uncertainty sum.

(ii) In the context where A; and B; are projectors, consider a pure state |¥) and for any

operator Oy, defines pure states as |yC) = %. Thus, [(¥|¥?)[*> = pr(Ox, W) (¥])

and in this context of projectors, the lower bound f (ci ) 1s a direct consequence of the
triangle inequality satisfied by metric d; applied on the triplet |y?), I//f) and |y) (for
any i and j), followed by the use of the Cauchy—Schwartz inequality and the decreasing
property of f.

(iii) Bound f (CEL ) remains valid for any POVM, which is proved via an extension of
the Hilbert space as a direct sum JZ @ " @ 77", pure states |®) = |¥) & |0) & |0)
and projectors

/ A; Ai(I-A;) O / B; 0 \/Bj(I—Bj)
A= Ai(l—Ai) I—A; 01, Bj = 0 0 0
0 0 0 Bj(I—Bj) 0 I—B;

(iv) Finally bound f (C,%x p) remains again valid dealing with mixed states, which is
proved via a purification (or Schmidt decomposition), |®) =YV | /pi|l) ® |I**) € H# ®
A% of the mixed states written under its diagonal form p = YN, p;|1) (1], together with
extended operators Oy ® I.

A way to look at inequalities (3) is that they restrict the domain allowed for the pair of
maximal probabilities (PA;p , PB;p). More precisely, notice first that if Py,p <c A2 - then
f(Pap) > f(cip) and thus if and only if the pair (Py.p, Ps,p) is within (¢ p; 1]* bound
f (ci ) can restrict the uncertainty that writes down as

Pp < f 1 (f(chp—f(Payp)) for  Pup € (cip: 1] (5)

(and similarly exchanging A and B). The question is then to determine which function f
leads to the most restrictive inequality (5). The answer is given by

Proposition 2 Within the whole family of uncertainty inequalities given by Proposi-
tion 1, the strongest restriction for the pair of maximal probabilities (PA;p,PB; p), rewrit-
ten as inequality (5), corresponds to Wootters case f(x) = w(c) = arccos/x.

To prove this proposition, let us fix Py,p = cos? 0 and let us introduce y = arccosc.
Assume then that there is a metric (function) f such that f~'(f(c) — f(cos?0)) <
w™(w(c) — w(cos? 0)) = cos®(y — 6), which rewrites f(cos?0) + f(cos*(y—0)) <
f(cos?7y). We can check that for two orthogonal states |y;) and |¥), the triplet |¢) =
cos O|y) +sinO|¥), |ya) = cosy|yp) +siny|¥) and |y) violate the triangle inequality
applied to dy, proving that f~!(f(c) — f(cos?8)) < w™!(w(c) — w(cos®8)) is not
possible.



Propositions 1 and 2 lead directly to the following one, describing the restricted
allowed domain for the couple of maximal probabilities (Py.p,Pp;p ).

Proposition 3 In the context of Proposition 1, the pair of maximal probabilities
(Pa,p, PBp) is constrained to the domain

Drp(e)= {(PA,PB) € {NL ; CA2:| X {Ni ; ch] :Pp < cosz(yAJg — arccos 4 /PA;p)} (6)
A B

with Ya = arccosca, Y =arccoscp, Ya,p = arccoscap (7)

If YA+ YB > Ya.B, the allowed domain becomes [NLA ; cAz} X |:NLB ; ch].

GENERALIZED ENTROPIC UNCERTAINTY RELATIONS

We consider now as measure of uncertainty generalized (g,A)-entropies:

g(Zk p} )
U2 (p) = Gy(p) = i (8)

where A > 0 is called entropic index and function g does not depend on A, is continuous,
differentiable and strictly increasing on R with g(1) =0 and g’(1) = 1. From these
conditions, the limiting case A — 1 is well defined and gives Shannon entropy [11],
namely G| (p) = H(p) = — Yx prIn pr. Then, G, generalizes Shannon entropy, the index
A playing the role of a “magnifying glass”: when A < 1 the contribution of the tails of
the distribution are stressed and, conversely, when A > 1 the leading probabilities are
stressed.

In particular, we employ here two families of measures. For f(x) = Inx and f(x) =
x — 1, entropy G, is respectively Rényi entropy R; [12] or Havrda—Charvat-Tsallis
entropy S [13]:

In (X p}t -y, ph
R;L<p>:<lf,f> md  8(p) = 2 PE ©)

One can easily check that G, satisfies the required properties, and also that G, (p) is a
decreasing function vs A when p is fixed.

The study of entropic formulations to quantify the uncertainty principle is not new
and has been addressed in various contexts [3]. However, the problem of finding optimal
bounds still remains open in many cases. Moreover, many available results correspond to
conjugated indices (in the sense of Holder: % + ﬁ = 1) as they are based on the Riesz—

~ 2a-1
the so-called conjugacy curve. Then, ¢ denotes the domain of positive indices “below”
this curve, while 4" denotes the domain of positive indices “above” this curve. For the

Thorin theorem. To fix notation, we define by ¢ = {(Oz, B) € (% —|—00)2 ' B o



Shannon entropy (a,f) = (1, 1), nondegenerate observables and pure states, Deutsch
obtained a first bound [4], improved by Maassen and Uffink [5] to ZMY(c) = —2Inc
and later on by de Vicente and Sanchez-Ruiz [6]. For the Rényi entropy, (¢, f3) € €,
bound MY (c) remains valid and was extended by Rastegin to the case of mixed states
and POVM [7]. For (a,8) € €, the bound MY (c) remains valid due to the decreasing
property of Rényi entropy with the index. Finally, for B = o, Puchata, Rudnicki and
Zyczkowski (PRZ) in Ref. [8] derived recently a series of N — 1 bounds depending on
the transformation matrix 7' by using majorization technique. We denote by %’gﬁf(T)
the greatest of those bounds. Moreover, a refined bound depending also on the second
larger element of 7" was proposed recently by Coles and Piani [9].
Here, we extend these results in the following way:

Proposition 4 In the conditions of Proposition 1, for generalized entropies of the
form (8), with any pair of entropic indices (a,3) € R3, the following uncertainty re-
lation holds:

Ga(p(A7P))+Gﬁ (P(va)> > Bo.pg(c) (10)

with ¢ = (cA,cB,cAJ;) & (}/A, Ys, }/A7B)) Egs. (4)-(7), and the lower bound expresses as

Dasg(1a) + gﬁ;g(yB) if Yap<Yat7s

%’a’ﬁ;g(c) = (11)

min D0 (0) + Dg. — 0)) otherwise
QG[YA#A.B—YB]( ag(0) ﬁ,g(YA,B ))

A
where  9).,(0) = ; —llf({coslz GJ (cos? 9))L + (1 — LoleGJ cos? 9) ) (12)

To prove this proposition we proceed in two steps: (i) minimization G yi(P) =
min, G, (p) subject to P = max;p; leading to Gu(p(A;p)) + Gg(p(B;p)) >
Go min (PA;p) + G min (PB;p); (i1) minimization of the left-hand side subject to the
Landau-Pollak inequality.

For the first step, one can checked that vector p=[P ---P 1-MP 0 --- 0]
with M = |1/P] majorizes all probability vectors satisfying the constraints, and thus
gives the minimal entropy from the Schur-concavity property. For the second step, from
the Schur-concavity one can show that Gj i (P) is a decreasing function of P, the
result coming from studying what happens in the Landau-Pollak domain (6) (fixing
alternatively Py.p and Pp.p).

SOME ILLUSTRATIONS

Here, we present some illustrations of the uncertainty relations derived. To this end, we
draw randomly POVM pairs A and B (nondegenerate and degenerated cases). For any
given pair of POVM, we draw randomly states p, and we calculate the uncertainty sums
and the corresponding bounds given in proposition 1 and in proposition 4. Moreover, to
illustrate proposition 3, we also draw the cloud of points (PA;p , PB;p) for fixed POVM
pairs, together with their allowed domain Dy p(c).
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FIGURE 1. Extended Landau—Pollak formulations. (a) Uncertainty sum f(Py.p )+ f(Pg;p) (points), and
the bound f (cz) (solid line) in the nondegenerate case with N = 3; (b)-(d) Domain Dy p that corresponds
to Wootters metric (solid line), the Bures metric (dashed-dotted line) and the root-infidelity metric (dashed
line); the points represent the pairs (Py p,Ppp) with (A,B) fixed. Nondegenerate case (b) with ¢ = .75;
degenerate case (N4 =4 and Ng = 5) (c) with ¢ = (0.92,0.95, 0.60) and (d) with ¢ = (0.84,0.86, 0.84).
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FIGURE 2. Entropic formulations. Our bound % (given by Proposition 4), Maassen-Uffink bound
MU Pychata et al. bound BPRZ and Coles and Piani bound B vs the overlap ¢ for the case of
nondegenerate observables with N = 3.

Figures 1-(a) represents the Landau—Pollak type uncertainties sum f(Pa.p) + f(Ps;p)

in the nondegenerate context, versus the overlap ¢, compared to the lower bound f(c?).
Only the Wootters metric is considered (f(x) = w(x) = arccos+/x). Figures 1-(b) to
(d) represent the allowed domain for (PA;p , PB;p) for fixed POVM pairs, (b) in the
nondegenerate context (in this case the Bures metric and the root-infidelity metric
are also represented), (c) and (d) for degenerated cases. These curves illustrate both
proposition and let also suggest that 7 p is optimal in the sense that given a triplet of
overlaps ¢, there is a POVM pair so that the cloud of points issued from the ensemble
outcomes seems to full the domain. This assertion remains however to be proved.

Figures 2-(a) to (d) represent the Rényi entropies sum Ry (p(A;p)) + Ra(p(B;p))
in the nondegenerate context, versus the overlap ¢, compared to the lower bound
By, a:in(c). Our bound is compared to the most well known bound, due to Maassen—
Uffink, and to more recent bounds depending on the whole transformation 7', namely
the bounds due to Puchata et al. and that due to Coles and Piani. Although not repre-
sented here, similar results are obtained with the Tsallis entropy. The figures illustrate
that in many cases, our bound improves that of the literature, even that which depend on
the whole transformation 7'. The optimality of the proposed bound (in the sense of fixed
¢ and/or fixed POVM pair) remain to be further investigated.



CONCLUSIONS

We derive a family of uncertainty relations in the most general context of observables
described by POVM sets and for mixed quantum states. In a first part, the obtained
relations extend and generalize the well-known Landau—Pollak inequality. The key point
in our treatment is that the measures of uncertainty are given in terms of a metric, which
satisfies the triangle inequality. Moreover, within the family of metrics considered, it
comes out that Wootters metric, leading to the usual Landau—Pollak inequality (its
extension to mixed states and POVM descriptions) is the most restrictive among the
family of inequalities we obtain. From these propositions, we determine the allowed
domain for the pair of maximal probabilities corresponding to two observables.

A direct consequence of our results is that a previous work [6] dealing with gen-
eralized entropies of probability vectors extends very easily in the most general case
of POVM representations of observables. This extension, given in the second part, is
obtained by minimizing the entropy sum for a fixed maximal probability, and thus mini-
mizing this minimal entropies subject to the obtained Landau—Pollak inequality. The first
part is solved using Schur-convexity properties of the generalized entropy we employed.

Finally, both formulations are illustrated via simulations. As a perspective, the tight-
ness of the bounds/domains remain to be fully solved, and the geometrical structure of
the most restrictive domain (overlap or POVMs fixed) remain to be studied.
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