On learning statistical mixtures maximizing the
complete likelihood

Frank Nielsen

Ecole Polytechnique, France
Sony Computer Science Laboratories, Japan

Abstract. Statistical mixtures are semi-parametric models ubiqugiyp met in data science since
they can universally model smooth densities arbitrarihsely. Finite mixtures are usually inferred
from data using the celebrated Expectation-Maximizatramiework that locally iteratively max-
imizes the incomplete likelihood by assigning softly dadantixture components. In this paper,
we present a novel methodology to infer mixtures by tramsfog the learning problem into a se-
guence of geometric center-based hard clustering prolilehprovably maximizes monotonically
the complete likelihood. Our versatile method is fast aresugw memory footprint: The core inner
steps can be implemented using various generakzadans type heuristics. Thus we can leverage
recent results on clustering to mixture learning. In pattg, for mixtures of singly-parametric dis-
tributions including for example the Rayleigh, Weibull, Boisson distributions, we show how to
use dynamic programming to solve exactly the inner geomelistering problems. We discuss on
several extensions of the methodology.
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INTRODUCTION

Consider a finite statistical mixture withk € N components of density
m(x|A,W) = TK  wip(x|Aj) with W € A the positive weight vector belonging to
the openk-dimensional probability simpleRy, and A = {A1,..., A} the respectivek
parameters of the mixture components. Mixtures are uravesnsity estimators: For
example, Gaussian mixtures are defined on the sup@or: RY and find countless
applications in imagingg.g, Kernel Density Estimators based on isotropic Gaussian
kernels, KDEs) while Gamma mixtures are useful for modetlisjances o2 = R™.
Mixtures are conceptually used to probabilistically modeb-populationsvithin an
overall population: To illustrate this point, consider éstample modeling the height of
a country population: it is reasonable to assume that itsilolision follows a density
that is a mixture ok = 2 sub-populations: a Gaussian component for modeling men
heights and another Gaussian component for modeling worights.

To sample a variat& € .2" from a mixturem(x|/A,W): First, choose a component
| according to the weight distributiows, ..., wi (multinomial), and then draw a vari-
atex according top(x|A;). Conversely, the most common method to infer a mixture
model from a set of Independently and Identically DistrdalilID.) set of observations
X1, ..., Xn (Without the labeld; called hidden/missing/latent variables) is the Expeatati
Maximization [1] (1977) algorithm. The EM algorithm monaoioally maximizes the



likelihood function
n
(Xe, .. %) = [ MOGIAW).
M

EM can be trapped into a local maximum and further needs gitgEriterion or loop
forever, otherwise. From a technical viewpoint, handlieghsparametric mixtures is
different from regular parametric models since often th&tune density exhibits the
problems of identifiability and Fisher information irreguty among others, see [2].

Recently, several approaches of Theoretical Computen8ei€l CS) have been pro-
posed [3, 4] to study thiearnability complexityof mixtures: A mixturemis saide-close
to a mixtureni(both withk components) when:

< Vi€ {17---7k}7 |Wi _Wrr(|)| <§&,
€ {1, K}, KL(POIA) : p(Am) < &

where 71(-) denotes a permutation and Kb : m') = fxe%m(x)log%dx is the
Kullback-Leibler information divergence (commonly calleelative entropy). It has
been reported that for a-learnable Gaussian mixturen that satisfies the following

conditions:
e mink_,w > g,
KL(p(X|Ai) : p(X[A})) > €, Vi # ],
there existpolynomial-time algorithm$3, 4] in n and% that e-closely estimatesn.

Furthermore, core-set techniques [5] have been desigmetbéding with massive data
sets when learning mixtures.

LEARNING MIXTURESBY SOLVING SEQUENCESOF
GEOMETRIC CLUSTERING PROBLEMS

The EM algorithm monotonically maximizes the incompletéadikelihood (or equiva-
lently incomplete log-likelihoodt). This is usually intractable to solve exactly in closed-
form because of the log-sum terms:

i(X1, .5 X Zlog<zwjp>q|91>

Consider the complete likelihood by introducing the intcavariablesz ; with
zj=1Iiff. lj =] (i.e, observationx; emanated from componehf), andz j =0
otherwise:

n k

le(X1, ..., Xn) = Iog_rU_L(ij x.|9J ZZ z.jlog(wjp(xi|6;))-
i=1]=



The k-MLE methodology: Maximizing the complete likelihood
The complete log-likelihood optimization can be rewriteenfollows:

n
k
maxic(W.A) - = maX.Zm:axlog(Wj p(%[6)),

k
m|n Zimln —logp(xi|8;) —logw;),

= m|n ZlmlnD

where thegj = (wj, 6))’s denote theluster prototypeand theD;(x) = —logp(xi|6;) —
logw; are thepotential distance-like functiondhus maximizing the complete likeli-
hood amounts to geometric hard clusterings, 7] for fixed w’s: miny 5;min; Dj(x;).
Note that the distancd3;(-)’s depend on the cluster prototypgss. This viewpoint is
related to the classification EM [8] (CEM, or hard EM/trurethEM) that can be used
to initialize an EM.

We describe the generieMLE approach:

1. Initialize weightw in the open probability simplexV € Ay

2. Solve min, ¥imin; D (%) (center-based clustering, weightsfixed)
3. Solve migy 3;min; Dj(x;) (parameters\ fixed)

4. Test for convergence and go to step 2) otherwise.

The k-MLE method can be interpreted as a group coordinate desgeimization
strategy. Consider the uniform weigitt = (%,...,%) and isotropic Gaussian compo-
nents. Then step 2 amounts to solve fde-means clusteringroblem [9]. In general,
k-means is NP-hard (non-convex optimization) wkler 1 andk > 1 and solved exactly
using dynamic programming [10] i®(n?k) whend = 1. Various heuristics have been
proposed fok-means:

+ Global: Kanungo et al. [11] swap method that yield®a ¢)-approximation,

» Seeding techniques: random seed (Forgy [12neans++ [13], globak-means
initialization [14],

« Local refinements: Lloyd’s batched update [9], MacQuedeative update [15],
Hartigan single-point swap update [16], etc.

Similar tok-means, data are assigned to their closest cluster witkecegpthe poten-
tial functionsDj(x;) = —log p(xi|6j) —logw;. Let %3, ..., ¢k denote the cluster partition.
Note that if we consider & = 2 mixture, we cannot classify exactly the observations
from the corresponding sub-populations because we lackiteging labels: In classi-
fication, the minimum error is called Bayes’ error [17] anch ¢ee upper bounded us-
ing Chernoff information [17]. For solving the geometricstering problems for fixed
weight vectordV, we can characterize the optin@lister assignmentsinggeneralized
Voronoi diagrams



Furthest Maximum Likelihood Voronoi diagrams

The geometric clustering problem consists in finding theqiypes (cluster centers)
cj's that minimizes the objective function: mify; min; D;(x;). It partitions the data into
k clusters and fits the MLE inside each cluster. We assign datlusters according to
the Furthest Maximum Likelihood (FML) Voronoi diagram:

VoremL (G = (Wi, 8)) = {xe Z :wip(XAi) >w;p(X|Aj), Vi # j}, (1)
Vor(c)) = {xe Z :Di(x) <Dj(x), Vi#j}. (2)

This amounts to aadditively weighted Voronoi diagramith anchored distancB; (-)
at each cluste®i: Dy (x) = —logp(x|A;) — logw.

Updating the mixture component weights

In step 3 ofk-MLE, we have to solve the optimization problem: iif; min; D (x;).
This amounts to solve for:

n.
arg min—n; logw; = arg min—— logw;
Gnen —niiogw e o9

wheren; = #{x; € Vor(c;j)} = |¥j| denotes the cardinality of clustéf. Thus, we seek
for:

min H* (N : W),

Wely
whereN = (%, v %) is thecluster point proportion vectoe A. Since thecross-entropy
H*(N : W) is minimized wherH* (N : W) = H(N), we deduce thatV = N. In other
words, at step 3, we update the component weigitef the mixture by taking the
proportion of points falling into th& clusters.

Case study: Mixtures of exponential families

An exponential family mixture has component densities theate canonicallyas
PE(x|0) = exp(t(x) "8 — F(8) +k(x)) with:

- t(x): the sufficient statistic ifR® whereD denotes the family order,

« k(x): an auxiliary carrier term with respect to the Lebesgue antiog measures,

+ F(0): the log-normalizer also called cumulant function or lagtjsion function.

Exponential families have log-concave densities, meatfiag) the potential distance
functionsDj(x)’s are convex. Thus the geometric clustering problem&kameans type
clustering problems with respect to convex “distancesinghe duality between expo-
nential families and Bregman divergences [18], we get therg@l distance functions:



Dwe(X) = —logp(x 8) —logw = F(8)—t(x)"8 —k(x) —logw,
Br+(t(x) : ) +F*(t(x)) +k(x) — logw,

whereF*(n) = max(6'n —F(8)) is the Legendre-Fenchel convex conjugate. Thus
the ML farthest Voronoi diagram turns out to be equivalenatcadditively-weighted
Bregman Voronoi diagrarfi9] (affine diagrams).

The k-MLE method for mixtures of exponential familiek;MLEEF, is therefore
rewritten as follows:

1. Initialize weightW € A

2. Solve additive Bregmahk-means: mig y;min; Dj(x) with Dj(x) = Br:(t(X) :
n;j) —logw;

3. Update weight vectdl as cluster point proportion

4. Test for convergence and go to step 2) otherwise

Step 2 is solved using axtended version of Bregman k-meé#érsnvergence proofs
for Lloyd’s batched heuristic is reported in [20] and for Hgan’s single swap heuristic
in [25]). Given a ML farthest Voronoi partition, we computeetMLEs8;’s inside each
cluster as follows: )

0j = argmax Pr(Xi; 0).
60 xie\|/:!(cj)
The MLE is found by solving the moment equation:

~ ~ 1 — A
R =n@) = 5 t)=t=n
X eVor(cj)

The MLE for exponential families igonsistent efficientwith asymptotic normal
distribution

éj ~ Nor <9j,1|1(9j)) ,
n;
where the Fisher information matrix is:
1(6)) = varlt(X)] = O?F (6)) = (O%F*(n;)) .

The MLE may be biased(g, normal distributions) and is guaranteed to exist and be
unique [21, 22] when:

1 t]_(X]_) tD(X]_)
T(Xq,.o0sXn) = | ¢ Pl ]

1 ty(x) .. to(xn)

of dimensionn x (D + 1) hasrank D+ 1 [21]. For example, there are problems for
undefined MLEs of multivariate normals (MVNSs) with< d observations (unbounded
likelihood is ). The maximal likelihood id (x1,...,%n) = F*(7) 4+ YL, k(X), where

A

il = OF(6).



The generalized k-MLE method

Weibull distributions or generalized Gaussiansaeametric families of exponential
families[23]: They arenot exponential families when considering all free parameters
but can be interpreted as parametric famik€g) of exponential families when consid-
ering some fixed parameteys Reducing the number of free parameters of high-order
exponential families is also useful to obtain one free patamwith convex conjugate
F* approximatecefficientlyby line search€.g, Gamma distributions [24] or general-
ized Gaussians [23]). (Indeed, fixing some of their pararsgtieldsnested familiesf
exponential families [24].) To extendMLE to those kind of distributions, we further
attach to each cluster prototypgthe family F; of distributions {.e., ¢; = (wj, 6;,Fj))
and we seDy, g, F;(X) = —log pr;(X; 6j) — logw;. The standar&-MLE considers all
families identicalfj; = F. We describe th&-GMLE methodology:

1. Initialize weightW € Ay and family type(F, ..., F) for each cluster

2. Solve min, 3;min; Dj(x) (center-based clustering far fixed) with potential func-
tions:Dj(x) = —log pr; (X |6;) — logw;

3. Solve family types maximizing the MLE in each clusté[ by choosing the
parametric family of distributiond; = F(y;) that yields the best likelihood:
MINE—F (... A=F ()<F (v) 2i MiNj Du; 0, 7, (%5).

4. UpdateW as the cluster point proportion

5. Test for convergence and go to step 2) otherwise.

Theorem 1 The k-GMLE algorithm learns a mixture from a set of n 1ID. atve¢ions
by solving a sequence of geometric hard clustering prohléine k-GMLE algorithm
guarantees the monotonous convergence of the completidi@ into a (possibly
local) optimum.

In [25], we build upon recent results dameans to propose keMLE algorithm
that learns automatically the numblerof mixture components, and present several
probabilistically guaranteed initializations fefMLE (Step 1). Thek-MLE algorithm
is fast and uses only linear memory: This contrasts with EM tequires to stor@(nk)
soft weights, the soft membership weighats € (0, 1). Furthermore, cluster assignment
in k-MLE can be accelerated over the naive brute force searclsing uree search
structures like the vantage point trees [26] or the ballst{@&].

k-MLE for learning univariate mixtures of singly-parametric
distributions

Cauchy, Rayleigh or Poisson families of distributions arevariate indexed by a sin-
gle parameter. For exponential families (say, Rayleighas$dn, but not Cauchy), the
geometric clustering problem amounts to a dual 1D weightegdjBan clustering [18]
on 1D scalarg; =t(x;) (wheret denotes the sufficient statistic). The farthest ML Voronoi
diagram hasconnected cellsmeaning that an optimal clustering has necessarily the
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FIGURE 1. Learning a mixture of singly-parametric distributionsngsdynamic programming.

structure ofnon-overlapping intervalsin 1D, k-means (with additive weights) can be
solved exactly usingynamic programming O(n?k) time [10].

Consider the mixture weight vect@ given, thek-MLE cost is:z'lelc(%j) where
¢ are point clusters. The optimality equation of dynamic pangming is illustrated in
Figure 1:

MLE (X1, ..., Xn) = TZ%X(MLEk—l(%Lj—l) +MLE1(Zjn)),

whereZ| r = {X, X 41, .., Xr—1,% }.

We build the dynamic programming table frdm- 1 tol = k columns, and from the
m= 1tom= nrows. We then retrieve the clusteg$'s from the table by backtracking
on the argmay See [10] for implementation details oDk-MLE.

Theorem 2 Learning a finite mixture of singly-parametric distributi®with prescribed
component weights can be done optimally with respect to eheptete likelihood us-
ing dynamic programming provided that the Maximum Likedithd&/oronoi diagram of
distributions has connected cells.

CONCLUSION AND DISCUSSION

We described a generic methodology, dublkelLE (and its extensiork-GMLE),

to learn finite statistical mixtures by solving iterativedgquences of geometric hard
clusteringproblems [7].k-MLE optimizes the complete likelihood while Expectation-
Maximization locally optimizes the incomplete likelihodd particular, for exponential
families, k-MLE geometric problems are solved biyal additively-weighted Bregman
hard clusteringoroblems. It is therefore different from the soft Bregmaustéring pro-
posed in [18] that was shown to be the EM algorithm in disgi¢e showed how to ex-
tend the basi&-MLE method to handle independently for each cluster thelfaof dis-
tributions that can be used for the mixture component. Faglgiparametric family, we
presented a simple dynamic programming method for solViagéquence of geometric
interval clustering problems. Experimental results aporied in [23, 24, 25, 10]. One
drawback of th&k-GMLE method is that it produces biased models due to donsaip-(
port) truncations by Voronoi cells: THeGMLE does not yield statistical consistency. A
forthcoming paper quantifies this consistency gap usingiitieinformation [28] and
presents a Stochastic EKMGMLE extension.
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