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Abstract. Statistical mixtures are semi-parametric models ubiquitously met in data science since
they can universally model smooth densities arbitrarily closely. Finite mixtures are usually inferred
from data using the celebrated Expectation-Maximization framework that locally iteratively max-
imizes the incomplete likelihood by assigning softly data to mixture components. In this paper,
we present a novel methodology to infer mixtures by transforming the learning problem into a se-
quence of geometric center-based hard clustering problemsthat provably maximizes monotonically
the complete likelihood. Our versatile method is fast and uses low memory footprint: The core inner
steps can be implemented using various generalizedk-means type heuristics. Thus we can leverage
recent results on clustering to mixture learning. In particular, for mixtures of singly-parametric dis-
tributions including for example the Rayleigh, Weibull, orPoisson distributions, we show how to
use dynamic programming to solve exactly the inner geometric clustering problems. We discuss on
several extensions of the methodology.
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INTRODUCTION

Consider a finite statistical mixture withk ∈ N components of density
m(x|Λ,W) = ∑k

i=1wi p(x|λi) with W ∈ ∆k the positive weight vector belonging to
the openk-dimensional probability simplex∆k and Λ = {λ1, ...,λk} the respectivek
parameters of the mixture components. Mixtures are universal density estimators: For
example, Gaussian mixtures are defined on the supportX = Rd and find countless
applications in imaging (e.g., Kernel Density Estimators based on isotropic Gaussian
kernels, KDEs) while Gamma mixtures are useful for modelingdistances onX = R+.
Mixtures are conceptually used to probabilistically modelsub-populationswithin an
overall population: To illustrate this point, consider forexample modeling the height of
a country population: it is reasonable to assume that its distribution follows a density
that is a mixture ofk = 2 sub-populations: a Gaussian component for modeling men
heights and another Gaussian component for modeling woman heights.

To sample a variatex ∈ X from a mixturem(x|Λ,W): First, choose a component
l according to the weight distributionw1, ...,wk (multinomial), and then draw a vari-
ate x according top(x|λl). Conversely, the most common method to infer a mixture
model from a set of Independently and Identically Distributed (IID.) set of observations
x1, ...,xn (without the labelsl i called hidden/missing/latent variables) is the Expectation-
Maximization [1] (1977) algorithm. The EM algorithm monotonically maximizes the



likelihood function:

l(x1, ...,xn) =
n

∏
i=1

m(xi |Λ,W).

EM can be trapped into a local maximum and further needs a stopping criterion or loop
forever, otherwise. From a technical viewpoint, handling semi-parametric mixtures is
different from regular parametric models since often the mixture density exhibits the
problems of identifiability and Fisher information irregularity among others, see [2].

Recently, several approaches of Theoretical Computer Science (TCS) have been pro-
posed [3, 4] to study thelearnability complexityof mixtures: A mixturem is saidε-close
to a mixturem̃ (both withk components) when:

• ∀i ∈ {1, ...,k}, |wi − ŵπ(i)| ≤ ε,

• ∀i ∈ {1, ...,k}, KL(p(x|λi) : p(x|λ̂π(i)))≤ ε,

where π(·) denotes a permutation and KL(m : m′) =
∫

x∈X
m(x) log m(x)

m′(x)dx is the
Kullback-Leibler information divergence (commonly called relative entropy). It has
been reported that for aε-learnableGaussian mixturem that satisfies the following
conditions:

• mink
i=1wi ≥ ε,

• KL(p(x|λi) : p(x|λ j))≥ ε, ∀i 6= j,

there existpolynomial-time algorithms[3, 4] in n and 1
ε that ε-closely estimatesm.

Furthermore, core-set techniques [5] have been designed for dealing with massive data
sets when learning mixtures.

LEARNING MIXTURES BY SOLVING SEQUENCES OF
GEOMETRIC CLUSTERING PROBLEMS

The EM algorithm monotonically maximizes the incomplete data likelihood (or equiva-
lently incomplete log-likelihoodl i). This is usually intractable to solve exactly in closed-
form because of the log-sum terms:

l i(x1, ...,xn) =
n

∑
i=1

log

(

k

∑
j=1

w j p(xi |θ j)

)

.

Consider the complete likelihood by introducing the indicator variableszi, j with
zi, j = 1 iff. l i = j (i.e., observationxi emanated from componentl j), and zi, j = 0
otherwise:

lc(x1, ...,xn) = log
n

∏
i=1

k

∏
j=1

(

w j p(xi |θ j)
)zi, j =

n

∑
i=1

k

∑
j=1

zi, j log(w j p(xi |θ j)).



The k-MLE methodology: Maximizing the complete likelihood

The complete log-likelihood optimization can be rewrittenas follows:

max
W,Λ

lc(W,Λ) = max
Λ

n

∑
i=1

k
max
j=1

log(w j p(xi |θ j)),

≡ min
W,Λ

n

∑
i=1

k
min
j=1

(− logp(xi |θ j)− logw j),

= min
W,Λ

n

∑
i=1

k
min
j=1

D j(xi),

where thec j = (w j ,θ j)’s denote thecluster prototypesand theD j(xi) =− logp(xi |θ j)−
logw j are thepotential distance-like functions. Thus maximizing the complete likeli-
hood amounts to ageometric hard clustering[6, 7] for fixed wj ’s: minΛ ∑i minj D j(xi).
Note that the distancesD j(·)’s depend on the cluster prototypesc j ’s. This viewpoint is
related to the classification EM [8] (CEM, or hard EM/truncated EM) that can be used
to initialize an EM.

We describe the generick-MLE approach:

1. Initialize weightW in the open probability simplex:W ∈ ∆k

2. Solve minΛ ∑i minj D j(xi) (center-based clustering, weightsW fixed)
3. Solve minW ∑i minj D j(xi) (parametersΛ fixed)
4. Test for convergence and go to step 2) otherwise.

The k-MLE method can be interpreted as a group coordinate descentoptimization
strategy. Consider the uniform weightW = (1

k , ...,
1
k) and isotropic Gaussian compo-

nents. Then step 2 amounts to solve for ak-means clusteringproblem [9]. In general,
k-means is NP-hard (non-convex optimization) whend> 1 andk> 1 and solved exactly
using dynamic programming [10] inO(n2k) whend = 1. Various heuristics have been
proposed fork-means:

• Global: Kanungo et al. [11] swap method that yields a(9+ ε)-approximation,
• Seeding techniques: random seed (Forgy [12]),k-means++ [13], globalk-means

initialization [14],
• Local refinements: Lloyd’s batched update [9], MacQueen’s iterative update [15],

Hartigan single-point swap update [16], etc.

Similar tok-means, data are assigned to their closest cluster with respect to the poten-
tial functionsD j(xi) =− logp(xi |θ j)− logw j . LetC1, ...,Ck denote the cluster partition.
Note that if we consider ak = 2 mixture, we cannot classify exactly the observations
from the corresponding sub-populations because we lack themissing labels: In classi-
fication, the minimum error is called Bayes’ error [17] and can be upper bounded us-
ing Chernoff information [17]. For solving the geometric clustering problems for fixed
weight vectorsW, we can characterize the optimalcluster assignmentusinggeneralized
Voronoi diagrams.



Furthest Maximum Likelihood Voronoi diagrams

The geometric clustering problem consists in finding the prototypes (cluster centers)
c j ’s that minimizes the objective function: minΛ ∑i minj D j(xi). It partitions the data into
k clusters and fits the MLE inside each cluster. We assign data to clusters according to
the Furthest Maximum Likelihood (FML) Voronoi diagram:

VorFML(ci = (wi ,θi)) = {x∈ X : wi p(x|λi)≥ w j p(x|λ j), ∀i 6= j}, (1)
Vor(ci) = {x∈ X : Di(x)≤ D j(x), ∀i 6= j}. (2)

This amounts to anadditively weighted Voronoi diagramwith anchored distanceDl (·)
at each clusterCl : Dl (x) =− logp(x|λl )− logwl .

Updating the mixture component weights

In step 3 ofk-MLE, we have to solve the optimization problem: minW ∑i minj D j(xi).
This amounts to solve for:

arg min
W∈∆k

−n j logw j = arg min
W∈∆k

−
n j

n
logw j ,

wheren j = #{xi ∈ Vor(c j)}= |C j | denotes the cardinality of clusterC j . Thus, we seek
for:

min
W∈∆k

H×(N : W),

whereN=(n1
n , ...,

nk
n ) is thecluster point proportion vector∈∆k. Since thecross-entropy

H×(N : W) is minimized whenH×(N : W) = H(N), we deduce thatW = N. In other
words, at step 3, we update the component weightsW of the mixture by taking the
proportion of points falling into thek clusters.

Case study: Mixtures of exponential families

An exponential family mixture has component densities thatwrite canonicallyas
pF(x|θ) = exp(t(x)⊤θ −F(θ)+k(x)) with:

• t(x): the sufficient statistic inRD whereD denotes the family order,
• k(x): an auxiliary carrier term with respect to the Lebesgue or counting measures,
• F(θ): the log-normalizer also called cumulant function or log-partition function.

Exponential families have log-concave densities, meaningthat the potential distance
functionsD j(x)’s are convex. Thus the geometric clustering problems arek-means type
clustering problems with respect to convex “distances”. Using the duality between expo-
nential families and Bregman divergences [18], we get the potential distance functions:



Dw,θ (x) =− logp(x;θ)− logw = F(θ)− t(x)⊤θ −k(x)− logw,

= BF∗(t(x) : η)+F∗(t(x))+k(x)− logw,

whereF∗(η) = maxθ (θ⊤η −F(θ)) is the Legendre-Fenchel convex conjugate. Thus
the ML farthest Voronoi diagram turns out to be equivalent toan additively-weighted
Bregman Voronoi diagram[19] (affine diagrams).

The k-MLE method for mixtures of exponential families,k-MLEEF, is therefore
rewritten as follows:

1. Initialize weightW ∈ ∆k

2. Solve additive Bregmank-means: minΛ ∑i minj D j(x) with D j(x) = BF∗(t(x) :
η j)− logw j

3. Update weight vectorW as cluster point proportion
4. Test for convergence and go to step 2) otherwise

Step 2 is solved using anextended version of Bregman k-means(convergence proofs
for Lloyd’s batched heuristic is reported in [20] and for Hartigan’s single swap heuristic
in [25]). Given a ML farthest Voronoi partition, we compute the MLEsθ̂ j ’s inside each
cluster as follows:

θ̂ j = argmax
θ∈Θ ∏

xi∈Vor(c j )

pF(xi ;θ).

The MLE is found by solving the moment equation:

∇F(θ̂ j) = η(θ̂ j) =
1
n j

∑
xi∈Vor(c j )

t(xi) = t̄ = η̂.

The MLE for exponential families isconsistent, efficient with asymptotic normal
distribution:

θ̂ j ∼ Nor

(

θ j ,
1
n j

I−1(θ j)

)

,

where the Fisher information matrix is:

I(θ j) = var[t(X)] = ∇2F(θ j) = (∇2F∗(η j))
−1
.

The MLE may be biased (e.g., normal distributions) and is guaranteed to exist and be
unique [21, 22] when:

T(x1, ...,xn) =





1 t1(x1) ... tD(x1)
...

...
...

...
1 t1(xn) ... tD(xn)





of dimensionn× (D+ 1) has rank D+ 1 [21]. For example, there are problems for
undefined MLEs of multivariate normals (MVNs) withn< d observations (unbounded
likelihood is ∞). The maximal likelihood isl(x1, ...,xn) = F∗(η̂) +∑n

i=1k(xi), where
η̂ = ∇F(θ̂).



The generalized k-MLE method

Weibull distributions or generalized Gaussians areparametric families of exponential
families [23]: They arenot exponential families when considering all free parameters
but can be interpreted as parametric familiesF(γ) of exponential families when consid-
ering some fixed parametersγ. Reducing the number of free parameters of high-order
exponential families is also useful to obtain one free parameter with convex conjugate
F∗ approximatedefficientlyby line search (e.g., Gamma distributions [24] or general-
ized Gaussians [23]). (Indeed, fixing some of their parameters yieldsnested familiesof
exponential families [24].) To extendk-MLE to those kind of distributions, we further
attach to each cluster prototypec j the familyFj of distributions (i.e., c j = (w j ,θ j ,Fj))
and we setDw j ,θ j ,Fj(x) = − logpFj (x;θ j)− logw j . The standardk-MLE considers all
families identical:Fj = F. We describe thek-GMLE methodology:

1. Initialize weightW ∈ ∆k and family type(F1, ...,Fk) for each cluster
2. Solve minΛ ∑i minj D j(xi) (center-based clustering forW fixed) with potential func-

tions:D j(xi) =− logpFj (xi |θ j)− logw j

3. Solve family types maximizing the MLE in each clusterC j by choosing the
parametric family of distributionsFj = F(γ j) that yields the best likelihood:
minF1=F(γ1),...,Fk=F(γk)∈F(γ)∑i minj Dw j ,θ j ,Fj(xi).

4. UpdateW as the cluster point proportion
5. Test for convergence and go to step 2) otherwise.

Theorem 1 The k-GMLE algorithm learns a mixture from a set of n IID. observations
by solving a sequence of geometric hard clustering problems: The k-GMLE algorithm
guarantees the monotonous convergence of the complete likelihood into a (possibly
local) optimum.

In [25], we build upon recent results onk-means to propose ak-MLE algorithm
that learns automatically the numberk of mixture components, and present several
probabilistically guaranteed initializations fork-MLE (Step 1). Thek-MLE algorithm
is fast and uses only linear memory: This contrasts with EM that requires to storeO(nk)
soft weights, the soft membership weightszi, j ∈ (0,1). Furthermore, cluster assignment
in k-MLE can be accelerated over the naïve brute force search by using tree search
structures like the vantage point trees [26] or the ball trees [27].

k-MLE for learning univariate mixtures of singly-parametric
distributions

Cauchy, Rayleigh or Poisson families of distributions are univariate indexed by a sin-
gle parameter. For exponential families (say, Rayleigh or Poisson, but not Cauchy), the
geometric clustering problem amounts to a dual 1D weighted Bregman clustering [18]
on 1D scalarsyi = t(xi) (wheret denotes the sufficient statistic). The farthest ML Voronoi
diagram hasconnected cells, meaning that an optimal clustering has necessarily the
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FIGURE 1. Learning a mixture of singly-parametric distributions using dynamic programming.

structure ofnon-overlapping intervals. In 1D, k-means (with additive weights) can be
solved exactly usingdynamic programmingin O(n2k) time [10].

Consider the mixture weight vectorW given, thek-MLE cost is:∑k
j=1 lc(C j) where

C j are point clusters. The optimality equation of dynamic programming is illustrated in
Figure 1:

MLEk(x1, ...,xn) =
n

max
j=2

(

MLEk−1(X1, j−1)+MLE1(X j ,n)
)

,

whereXl ,r = {xl ,xl+1, ...,xr−1,xr}.
We build the dynamic programming table froml = 1 to l = k columns, and from the

m= 1 to m= n rows. We then retrieve the clustersC j ’s from the table by backtracking
on the argmaxj . See [10] for implementation details of 1D k-MLE.

Theorem 2 Learning a finite mixture of singly-parametric distributions with prescribed
component weights can be done optimally with respect to the complete likelihood us-
ing dynamic programming provided that the Maximum Likelihood Voronoi diagram of
distributions has connected cells.

CONCLUSION AND DISCUSSION

We described a generic methodology, dubbedk-MLE (and its extensionk-GMLE),
to learn finite statistical mixtures by solving iterativelysequences of geometric hard
clusteringproblems [7].k-MLE optimizes the complete likelihood while Expectation-
Maximization locally optimizes the incomplete likelihood. In particular, for exponential
families,k-MLE geometric problems are solved bydual additively-weighted Bregman
hard clusteringproblems. It is therefore different from the soft Bregman clustering pro-
posed in [18] that was shown to be the EM algorithm in disguise. We showed how to ex-
tend the basick-MLE method to handle independently for each cluster the family of dis-
tributions that can be used for the mixture component. For singly-parametric family, we
presented a simple dynamic programming method for solving the sequence of geometric
interval clustering problems. Experimental results are reported in [23, 24, 25, 10]. One
drawback of thek-GMLE method is that it produces biased models due to domain (sup-
port) truncations by Voronoi cells: Thek-GMLE does not yield statistical consistency. A
forthcoming paper quantifies this consistency gap using Chernoff information [28] and
presents a Stochastic EM/k-GMLE extension.
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