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Abstract. Recovering the particle size distribution (PSD) from dymaitight scattering (DLS)
measurements is known to be a highly ill-posed inverse prabln a former study, we proposed a
new Bayesian inference method applied directly to the mgdfie DLS measurements to improve
the estimation of multimodal PSDs. Thesterior probability density of interest is sampled using a
MCMC Metropolis-within-Gibbs algorithm. In this work, wexperimentally examined the conver-
gence of the used MCMC strategy using the simulation metaoently proposed by Chauveau and
Vandekerkhove (2013). This method is based on the evolititime (iterations) of the Kullback-
Leibler divergence between the targesterior density and the successive densities of the algorithm
of interest. The convergence of the used MCMC algorithm wasnined when processing simu-
lated and experimental data.
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INTRODUCTION

Particle size distribution (PSD) is an important physidemacteristic of several particu-
late systems such as dry powders, colloidal suspensiorasas and emulsions. These
systems are prevalent in many fields in industry and acaddévaay physical parame-
ters of particulate systems are highly size-dependengxdample, stability of emulsions
and suspensions, abrasiveness of dry powders, color astl thicolloidal paints and
paper coatings are all size-dependent [1].

Dynamic Light Scattering (DLS) is one of the most populahteques used for mea-
suring the PSD of a sample composed of particles disperselitjnid. The particle sizes
can range from a few nanometers to several micrometers [Bjpigal DLS experiment
consists in illuminating particles dispersed in a liquidusyng a narrow monochromatic
laser beam. At a given scattering an@lethe intensity of scattered light is measured by
a photon detector. The scattered intensity fluctuates ie tioe to the random Brownian
motion of the dispersed particles. Analysis of these fluaina yields information about
the particle size. The analysis is done by using the timecautelation function (ACF)
of the measured intensity signal. This time ACF is computealgua digital correlator.



The PSD is retrieved by inverting the normalized electritdfigme ACF, g(el)(r).
g(el)(r) is related to the measured normalized intensity time Aggﬁ(r), by [2]

g (1) = 1+ Blay’ (1), (1)

wherert is the time delay an@#(< 1) is an instrumental factor.
For a polydisperse sample i.e. particles with differenesjzhe electric field time

ACF, gél)(T), is related to the number-weighted PSIID), by [1]

w r
00’1 = - [ 1(D)ci(6.D) exp— Lo r)a, @

wherelg is a proportionality constant ensurirgl)(O) = 1. C(8,D) represents the
fraction of light intensity scattered & by a particle of hydrodynamic diametér.

Ci(6,D) is calculated through the Mie theory [3]o g = 16"”22;22(2/2)"5T with kg, T
andAg are the Boltzmann constant, the absolute temperature aomhumength of laser
light in vacuum, respectively is the medium refractive index amglis the viscosity.

Retrieving the PSD from DLS measurements (time ACF) involweernsion of the
integral equation 2. This problem is known to be an ill-poseerse problem, since
the solution may not be the one that provides the best fit tal#t@ Moreover a small
amount of noise present in data can lead to large variatiotigei estimated PSD.

Several analysis methods have been proposed to retrie®Shesuch as the method
of cumulants [4], non-negative least squares [5], regugarnon-negative least squares
[6] (CONTIN is the most widely used routine), maximum entrd@y and truncated
singular value decomposition [8] as well as stochasticnoigtion methods (neural
network [9], particle swarm optimization [10]). In genertddese methods work well for
monomodal PSDs. However, they are very noise sensitivetaneproducibility of the
results is not ensured. Their main drawback is the poor égp@cdiscriminate peaks
of multimodal PSDs. The best results are obtained for pojums with comparable
intensity contributions and spaced at least by a factor Zamdter. Multiangle DLS
(MDLS), which consists in processing the whole DLS data &eglat different angles,
is a promising method to overcome these problems. Formdiestinave demonstrated
that MDLS provides more robust, reproducible and accur&t@ Bstimate than single-
angle DLS, particularly for polydisperse and/or multimbsimples [11, 12, 13].

Methods based on Bayesian inference have been investigaféd,il5, 16, 17] to
solve the DLS inverse problem. In [17], we have proposed a Bayesian inference
method applied directly to the MDLS measurements to impnowdtimodal PSDs
estimation. The derivedosterior probability density function (pdf) is simulated using
an MCMC Metropolis-within-Gibbs algorithm. The results shan improvement in the
estimation of multimodal PSDs compared to the method preghos[16].

Since the used MCMC algorithm is associated with unknownaBtenvergence, the
aim of the present work is to assess the convergence of the M&M@gy used in [17].
To this end, we propose to use the simulation method recprafyosed by the authors of
[18] and which helps to assess the MCMC algorithms efficiefiois simulation method
is based on the evolution in time (iterations) of the Kullbaivergence between the




targetposterior density and the algorithm successive densities. The Kekldarergence
estimation requires an estimate of the entropy of the algorsuccessive densities.

The paper is organized as follow. Section 2 recalls the siwwarmethod proposed in
[17]. In section 3, we give a brief description of the usedwgation method to assess
the MCMC algorithm convergence. Results obtained from sitadland experimental
data are presented in section 4. Finally, conclusions awrdin section 5.

PROPOSED BAYESIAN INVERSION METHOD

In [17], a multiangle DLS analysis method is proposed toneste the PSD from the
measured intensity ACFs. MDLS data are acquired at diffexegles{6;, r =1,...,R}.
For each anglé;, the intensity ACF is measured for different values of theetuelay,
{tm, m=1,...,M,} with M, is the total number of points &. An additive noise model

is proposed to model the measured intensity A@%f%(rm), as follow

g(e?<rm) :g(ei)(rm)—FWl(]), m= 17 7Ml ’

@g)(rm):gg)(rm)err(j), m=1---.M > (3)

84 (tm) = 93 (Tm) +WR(j), M=1,--- Mg »
where gﬁf) (Tm) is the noise-free intensity ACF &t. The white noise/ (m) are assumed

to be independent, normally distributed with zero-mean &artancess? at the angle
6.

The PSD is estimated for a discrete set of diamefBxsi = 1,...,N} from a fixed
size range, associated wifh (D;),i = 1,...,N}. After digitizing (2) inserted into (1),

the noise-free intensity ACFgﬁ(rm) is related to the PSBf(D;),i =1,...,N} by

N r ?
9 (tm) = 1+ B (%i;f(Di)Cl (6r, Di)eXp(_ =t Tm) ADi) (4)

) T
Let us consider the vectgf? = [gff,...,ggq whereg? = g5 (12)..... 8% (tw,)]" for

&
r=1,...,R Letus also define the vectbe= [f(D1),..., f(Dn)]".

A Bayesian inference method is proposed to estimate the fH8in the measured
intensity ACFs(2. By assuming the independence between the angular measuseme
and taking into account the assumption of independent vidtessian noise, the joint
posterior pdf of variables andg? can be written using the Bayes theorem as follow

R
p(f) 1 P (8711, 0) p(o?)
r=1
p(§) ’

p(f,af,...,oém(z)) = (5)



wherep(f) is theprior pdf that expressegrior information about the PSDp(g?) is
the prior pdf of the noise variance & and p <Q(2)) is a normalizing constant. The

likelihood function at the anglé;, p (QEZ) f, crr2>, is given by

(21 2 1 X (f)
PG If, o = w X
( r ’ r) (27T)20r 20-2

); (6)

with x; (f) = z (ger (Tm) — gér)( m))%.

The usecbrlor pdfs are the non-negativity and smoothngssr for the PSD accord-
ing to the physical nature of the problem and the Jeffrpyter for the noise variances.
After marginalization, we get the followingpsterior pdf of interest

p(f‘g(Z)) 0 {exp<—sz| ) [Xr(f)] 2. iff>0 -

0, otherwise,

where the square matrlx, represents the discrete operator of the second derivative.

The derivedposterior pdf (7) is highly multivariate and known up to a multiplioai
constant. A random walk Markov chain Monte Carlo (MCMC) Metrlgpavithin-
Gibbs algorithm [19] is used in order to sample thasterior pdf. The used proposal
distribution for each element dfis selected as a Gaussian distribution with zero mean
and standard deviation tuned to have an acceptance ra&etol68% [20].

To make inference about the PSD from the generated Markdn ¢h&2), - - (L)},
the Minimum Mean Square Error (MMSE) estimator is used. Té@raated PSD is
given by

f 1 S f() (8)
L-—Lo+1 |_z|_0 ’

whereLg is the burn-in period and is the length of the generated chain.

Some issues not discussed in [17] are: does the statiorsrijpdtion of the generated
Markov chain converge to the targposterior distribution?, and how to choose the
parameterd o andL?. In the next section we give a brief description of a simoiat
method that helps to assess MCMC algorithms efficiency. Teitad id only based on
Monte Carlo simulations.

SIMULATION METHOD FOR MCMC EVALUATION

The simulation-based method to estimate MCMC efficiency psed in [18] is
grounded on the evolution of the Kullback-Leiber divergemetween the targgos-
terior pdf ,p(f|§'?), and the marginal density of the MCMC algorithig, at time
(iteration)t. The choice of this criterion is justified by the fact that Kudlback distance
is a natural measure of the algorithm quality and has strongections with ergodicity



of Markov chains and rates of convergence. The Kullbackrdemce is defined by

k(P p(118?)) = #(p) ~ [ plog (p(rlg?)) ©)

where#’(p') = Ey [logp'] is the entropy of the MCMC marginal density, at timet.
The estimation of the Kullback divergence requires an eggnof the entropy of the
algorithm successive densities. In this method, the eptesimation is based on the
simulation ofK parallel (iid) Markov chaingf?, - - - ft ~p,---)fork=1,... K, started
from a diffuse initial distributiorp®. At timet, (f},---,fl) forms aK-samples iid~ pt.

Based on the sampld},--- ,fl ), they used the nearest neighbor entropy estimate [18]
defined by

19 log(K — 1) +1 L 0.577 10

K Z ) +log( ) +log FN2+1) +0.5772 (10)

where px = min{d(f},f}),| € {1,--- K}, # k} is the Euclidean distance from the
kth point to its nearest neighbor in the samgfg,--- ,fi - fi.). N is the problem
dimension (total number of the PSD points).

An estimation of/ p'log (p(f|§(2))> is given by a Monte Carlo integration

Eﬁk[log< (F|g@ ) =%§ ( ) (11)

For a converging MCMC algorithm, the sequence of margipateeoretically satis-
fiesk (p', p(f|§@)) — 0 ast — oo. However, since thposterior pdf of interest is known
up to a multiplicative constanp(f|§®) = Cst¢(f|§®), where

Mr

~ exp( —||Lof )72, iff>0

oirig®) - (- A12) 11 ()] 12)
0, otherwise,

the only quantity that can be estimatedkigp', ¢(f|§\?)). For a converging MCMC,
R (', @(F|§@)) — log(Cst) + biasg (p!,N) ast — o wherebiasg (p',N) is the bias of
the entropy estimation. Thus, without knowing the nornalan constant and even if
the Kullback divergence stabilizes in time no conclusioawlihe convergence can be
drawn. To handle this problem, the authors of [18] suggestdaipulate the difference
of the Kullback divergences of the studied MCMC algorithm artsenchmark MCMC
with marginals known to converge. The difference of the djeaces stabilizes near 0
if the studied MCMC converges. In the absence of the benchMa&kIC, we propose
to take into account the divergence stabilization criteand the accuracy of the PSD
estimation to judge the MCMC convergence.



RESULTSON SIMULATED AND EXPERIMENTAL MDL S DATA

In this section, we present some obtained results of the RSation and the evolution
in time of the Kullback divergenc (pt, ¢(f|§?)) for simulated and experimental data.
The studied samples are spherical latex particles witlacgfe index 1.59, dispersed in
pure water (refractive index 1.33 and viscogity= 0.89 mPas). We used a vertically-
polarized laser of wavelengthy = 638 nm. The temperature was stabilized at.298
K. For each example presented in this section, 500 iid Madk@ins are generated for
the estimation of the Kullback divergence.

The inversion method [17] is first tested on a simulated exampmonomodal PSD
(example 1). The studied PSD is Gaussian with a mean diarméted0 nm and a

standard deviation of 10 nm. The noise-free time AC?s(gn) were simulated from the
corresponding PSD using (4AD = 1 nm) for the scattering angles6®0°, 120° and

150°. The noisy time ACF@g)(Tm) were simulated by adding a white Gaussian noise
(3) with oy = 0.001 for all the scattering angles. For the estimation procgda set of
discrete diameters is fixed in the intery400 600 nm with a regular step adiD = 10

nm (N = 21). The true PSD compared to the estimated one by the Bayasitdnod [17]
are presented on the Figure 1(a). The estimated PSD is vesg td the true PSD. The
result of the estimation of the Kullback divergengg(p', ¢(f|§?)), is shown in Figure
1(b). The Kullback divergence stabilizes quickly aftet 1000 iterations.
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FIGURE 1. Simulated monomodal PSD (example 1). (a) The true PSD cadgarthe estimated one
by the inversion method [17]. (b) Evolution of the Kullbacketgenceky (p!, @(f|§?)). N = 21 and
K = 500.

The inversion method is also tested on a simulated exampteutiifmodal PSD (ex-
ample 2). The simulated PSD is a bimodal distribution sunwof dJohnson’s functions
of equal quotients and expressed as follow

2 0.50; D — Dmin
f(D) = exp(—0.5[u; + gjlog( ————
() i; v/ 2T(Dymax — Dimin) X [ Hlog( Drax—D

with u; = 3.4, 01 = 2.1, up=-2.4, 0> = 2.0, Dprjn = 200 nm an@Dpax = 900 nm. The

noisy time ACFsgg)(rm) were simulated for the scattering angles$ ,600°, 80°, 907,

100, 120 and 140 following the same procedure as the previous example. Hueate

%), (13)



diameters are fixed in the selected raftf@) 1009 nm with a regular step aiD = 10
nm (N = 91). The true PSD compared to the estimated one by the proposthod in
[17] are shown in Figure 2(a). The proposed Bayesian methocessfully estimated
the full PSD with separation of the two peaks of the distidout Figure 2(b) shows the
estimation results of the Kullback divergende(p', ¢(f|§?)). As it can be noticed, the
Kullback divergence stabilizes after 5000 iterations.
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FIGURE 2. Simulated bimodal PSD (example 2). (a) The true PSD compardke estimated one
by the inversion method [17]. (b) Evolution of the Kullbacketgenceky (p!, @(f|§?)). N = 91 and
K = 500.

The experimental MDLS data were acquired using the Nano Dffpetent from
CILAS. The studied sample was a trimodal mixture of polysterlatex spheres repre-
sented by a combination of 3 distributions with nominal deéens (standard deviations)
are 400 (7) nm, 600 (10) nm and 1020 (10) nm respectively. mtemnsity ACFs were
acquired at 13 angles betweerf@hd 120, with a step of 8. The estimated PSD is
shown on Figure 3(a). The result shows that the three papuntaare well recovered and
the peaks of the estimated PSD seem to be close to the exmeeedThe result of the
estimation of the Kullback divergencgy (p', ¢(f|§'?)), is shown in Figure 3(b). The
Kullback divergence stabilizes very quickly aftes 1000 iterations.
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FIGURE 3. Experimental trimodal PSD. (a) Estimated PSD by the ineergiethod [17]. (b) Evolution
of the Kullback divergencé (p', ¢(f|§?)). N = 101 andK = 500.



CONCLUSION

The convergence of the MCMC algorithm used in [17] for the P8&ieision from
multiangle DLS data is examined. The used criterion is thbikzation of the Kullback
divergence, between the targesterior density and the MCMC algorithm successive
densities, supported by the accuracy of the PSD estimatieording to the good PSD
estimation results obtained for simulated and experintelata, and the fast stabilization
of the Kullback divergence, we can experimentally concltitgt the used MCMC
algorithm is converging.
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