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Abstract. Recovering the particle size distribution (PSD) from dynamic light scattering (DLS)
measurements is known to be a highly ill-posed inverse problem. In a former study, we proposed a
new Bayesian inference method applied directly to the multiangle DLS measurements to improve
the estimation of multimodal PSDs. Theposterior probability density of interest is sampled using a
MCMC Metropolis-within-Gibbs algorithm. In this work, we experimentally examined the conver-
gence of the used MCMC strategy using the simulation method recently proposed by Chauveau and
Vandekerkhove (2013). This method is based on the evolutionin time (iterations) of the Kullback-
Leibler divergence between the targetposterior density and the successive densities of the algorithm
of interest. The convergence of the used MCMC algorithm was examined when processing simu-
lated and experimental data.
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INTRODUCTION

Particle size distribution (PSD) is an important physical characteristic of several particu-
late systems such as dry powders, colloidal suspensions, aerosols and emulsions. These
systems are prevalent in many fields in industry and academia. Many physical parame-
ters of particulate systems are highly size-dependent, forexample, stability of emulsions
and suspensions, abrasiveness of dry powders, color and finish of colloidal paints and
paper coatings are all size-dependent [1].

Dynamic Light Scattering (DLS) is one of the most popular techniques used for mea-
suring the PSD of a sample composed of particles dispersed ina liquid. The particle sizes
can range from a few nanometers to several micrometers [2]. Atypical DLS experiment
consists in illuminating particles dispersed in a liquid byusing a narrow monochromatic
laser beam. At a given scattering angleθ , the intensity of scattered light is measured by
a photon detector. The scattered intensity fluctuates in time due to the random Brownian
motion of the dispersed particles. Analysis of these fluctuations yields information about
the particle size. The analysis is done by using the time autocorrelation function (ACF)
of the measured intensity signal. This time ACF is computed using a digital correlator.



The PSD is retrieved by inverting the normalized electric field time ACF, g(1)θ (τ).
g(1)θ (τ) is related to the measured normalized intensity time ACF,g(2)θ (τ), by [2]

g(2)θ (τ) = 1+β |g(1)θ (τ)|2, (1)

whereτ is the time delay andβ (< 1) is an instrumental factor.
For a polydisperse sample i.e. particles with different sizes, the electric field time

ACF, g(1)θ (τ), is related to the number-weighted PSD,f (D), by [1]

g(1)θ (τ) =
1
Iθ

∫ ∞

0
f (D)CI(θ ,D)exp(−Γ0,θ

D
τ)dD, (2)

where Iθ is a proportionality constant ensuringg(1)θ (0) = 1. CI(θ ,D) represents the
fraction of light intensity scattered atθ by a particle of hydrodynamic diameterD.

CI(θ ,D) is calculated through the Mie theory [3].Γ0,θ = 16πn2sin2(θ/2)kBT
3λ 2

0 η with kB, T

andλ0 are the Boltzmann constant, the absolute temperature and thewavelength of laser
light in vacuum, respectively.n is the medium refractive index andη is the viscosity.

Retrieving the PSD from DLS measurements (time ACF) involves inversion of the
integral equation 2. This problem is known to be an ill-posedinverse problem, since
the solution may not be the one that provides the best fit to thedata. Moreover a small
amount of noise present in data can lead to large variations in the estimated PSD.

Several analysis methods have been proposed to retrieve thePSD such as the method
of cumulants [4], non-negative least squares [5], regularized non-negative least squares
[6] (CONTIN is the most widely used routine), maximum entropy[7] and truncated
singular value decomposition [8] as well as stochastic optimization methods (neural
network [9], particle swarm optimization [10]). In general, these methods work well for
monomodal PSDs. However, they are very noise sensitive and the reproducibility of the
results is not ensured. Their main drawback is the poor capacity to discriminate peaks
of multimodal PSDs. The best results are obtained for populations with comparable
intensity contributions and spaced at least by a factor 2 in diameter. Multiangle DLS
(MDLS), which consists in processing the whole DLS data acquired at different angles,
is a promising method to overcome these problems. Former studies have demonstrated
that MDLS provides more robust, reproducible and accurate PSD estimate than single-
angle DLS, particularly for polydisperse and/or multimodal samples [11, 12, 13].

Methods based on Bayesian inference have been investigated in [14, 15, 16, 17] to
solve the DLS inverse problem. In [17], we have proposed a newBayesian inference
method applied directly to the MDLS measurements to improvemultimodal PSDs
estimation. The derivedposterior probability density function (pdf) is simulated using
an MCMC Metropolis-within-Gibbs algorithm. The results show an improvement in the
estimation of multimodal PSDs compared to the method proposed in [16].

Since the used MCMC algorithm is associated with unknown rateof convergence, the
aim of the present work is to assess the convergence of the MCMCstrategy used in [17].
To this end, we propose to use the simulation method recentlyproposed by the authors of
[18] and which helps to assess the MCMC algorithms efficiency.This simulation method
is based on the evolution in time (iterations) of the Kullback divergence between the



targetposterior density and the algorithm successive densities. The Kullback divergence
estimation requires an estimate of the entropy of the algorithm successive densities.

The paper is organized as follow. Section 2 recalls the inversion method proposed in
[17]. In section 3, we give a brief description of the used simulation method to assess
the MCMC algorithm convergence. Results obtained from simulated and experimental
data are presented in section 4. Finally, conclusions are drawn in section 5.

PROPOSED BAYESIAN INVERSION METHOD

In [17], a multiangle DLS analysis method is proposed to estimate the PSD from the
measured intensity ACFs. MDLS data are acquired at differentangles{θr, r = 1, . . . ,R}.
For each angleθr, the intensity ACF is measured for different values of the time delay,
{τm, m = 1, . . . ,Mr} with Mr is the total number of points atθr. An additive noise model

is proposed to model the measured intensity ACFs,g̃(2)θr
(τm), as follow

g̃(2)θ1
(τm) = g(2)θ1

(τm)+w1( j), m = 1, · · · ,M1 ,
...

g̃(2)θr
(τm) = g(2)θr

(τm)+wr( j), m = 1, · · · ,Mr ,
...

g̃(2)θR
(τm) = g(2)θR

(τm)+wR( j), m = 1, · · · ,MR ,

(3)

where g(2)θr
(τm) is the noise-free intensity ACF atθr. The white noiseswr(m) are assumed

to be independent, normally distributed with zero-mean andvariancesσ2
r at the angle

θr.
The PSD is estimated for a discrete set of diameters{Di, i = 1, . . . ,N} from a fixed

size range, associated with{ f (Di), i = 1, . . . ,N}. After digitizing (2) inserted into (1),

the noise-free intensity ACF g(2)θr
(τm) is related to the PSD{ f (Di), i = 1, . . . ,N} by

g(2)θr
(τm) = 1+βr

(

1
Iθr

N

∑
i=1

f (Di)CI(θr,Di)exp

(

−Γ0,θr

D
τm

)

∆Di

)2

(4)

Let us consider the vectorg̃(2) =
[

g̃(2)
T

1 , . . . , g̃(2)
T

R

]T
whereg̃(2)r = [g̃(2)θr

(τ1), . . . , g̃
(2)
θr
(τMr)]

T for

r = 1, . . . ,R. Let us also define the vectorf = [ f (D1), . . . , f (DN)]
T .

A Bayesian inference method is proposed to estimate the PSDf from the measured
intensity ACFsg̃(2). By assuming the independence between the angular measurements
and taking into account the assumption of independent whiteGaussian noise, the joint
posterior pdf of variablesf andσ2

r can be written using the Bayes theorem as follow

p
(

f,σ2
1 , . . . ,σ

2
R|g̃(2)

)

=

p(f)
R
∏

r=1
p
(

g̃(2)r |f,σ2
r

)

p(σ2
r )

p
(

g̃(2)
) , (5)



where p(f) is theprior pdf that expressesprior information about the PSD,p(σ2
r ) is

the prior pdf of the noise variance atθr and p
(

g̃(2)
)

is a normalizing constant. The

likelihood function at the angleθr, p
(

g̃(2)r |f,σ2
r

)

, is given by

p(g̃(2)r |f,σ2
r ) =

1

(2π)
Mr
2 σMr

r

exp(−χr(f)
2σ2

r
), (6)

with χr(f) =
Mr

∑
m=1

(g̃(2)θr
(τm)−g(2)θr,f

(τm))
2.

The usedprior pdfs are the non-negativity and smoothnessprior for the PSD accord-
ing to the physical nature of the problem and the Jeffrey’sprior for the noise variances.
After marginalization, we get the followingposterior pdf of interest

p(f|g̃(2)) ∝







exp
(

−‖L2f‖2
2

) R
∏

r=1
[χr(f)]

−Mr
2 , if f ≥ 0

0, otherwise,
(7)

where the square matrixL2 represents the discrete operator of the second derivative.
The derivedposterior pdf (7) is highly multivariate and known up to a multiplicative

constant. A random walk Markov chain Monte Carlo (MCMC) Metropolis-within-
Gibbs algorithm [19] is used in order to sample thisposterior pdf. The used proposal
distribution for each element off is selected as a Gaussian distribution with zero mean
and standard deviation tuned to have an acceptance rate close to 50% [20].

To make inference about the PSD from the generated Markov chain { f(L0), · · · , f(L)},
the Minimum Mean Square Error (MMSE) estimator is used. The estimated PSD is
given by

f̂ =
1

L−L0+1

L

∑
l=L0

f(l), (8)

whereL0 is the burn-in period andL is the length of the generated chain.
Some issues not discussed in [17] are: does the stationary distribution of the generated

Markov chain converge to the targetposterior distribution?, and how to choose the
parametersL0 andL?. In the next section we give a brief description of a simulation
method that helps to assess MCMC algorithms efficiency. This method id only based on
Monte Carlo simulations.

SIMULATION METHOD FOR MCMC EVALUATION

The simulation-based method to estimate MCMC efficiency proposed in [18] is
grounded on the evolution of the Kullback-Leiber divergence between the targetpos-
terior pdf ,p(f|g̃(2)), and the marginal density of the MCMC algorithm,pt , at time
(iteration)t. The choice of this criterion is justified by the fact that theKullback distance
is a natural measure of the algorithm quality and has strong connections with ergodicity



of Markov chains and rates of convergence. The Kullback divergence is defined by

κ(pt , p(f|g̃(2))) = H (pt)−
∫

pt log
(

p(f|g̃(2))
)

, (9)

whereH (pt) = Ept [logpt ] is the entropy of the MCMC marginal density,pt , at timet.
The estimation of the Kullback divergence requires an estimate of the entropy of the

algorithm successive densities. In this method, the entropy estimation is based on the
simulation ofK parallel (iid) Markov chains(f0

k , · · · , ft
k ∼ pt , · · ·) for k = 1, . . . ,K, started

from a diffuse initial distributionp0. At time t, (ft
1, · · · , ft

K) forms aK-samples iid∼ pt .
Based on the sample(ft

1, · · · , ft
K), they used the nearest neighbor entropy estimate [18]

defined by

ĤK(pt) =
1
K

K

∑
k=1

log(ρN
k )+ log(K −1)+ log

(

πN/2

Γ(N/2+1)

)

+0.5772, (10)

where ρk = min{d(ft
k, f

t
l), l ∈ {1, · · · ,K}, l 6= k} is the Euclidean distance from the

kth point to its nearest neighbor in the sample(ft
1, · · · , ft

k, · · · , ft
K). N is the problem

dimension (total number of the PSD points).

An estimation of
∫

pt log
(

p(f|g̃(2))
)

is given by a Monte Carlo integration

E p̂t
K
[log

(

p(f|g̃(2))
)

] =
1
K

K

∑
k=1

log
(

p(ft
k|g̃(2))

)

. (11)

For a converging MCMC algorithm, the sequence of marginalspt theoretically satis-
fiesκ(pt , p(f|g̃(2)))→ 0 ast → ∞. However, since theposterior pdf of interest is known
up to a multiplicative constant,p(f|g̃(2)) =Cstφ(f|g̃(2)), where

φ(f|g̃(2)) =







exp
(

−‖L2f‖2
2

) R
∏

r=1
[χr(f)]

−Mr
2 , if f ≥ 0

0, otherwise,
(12)

the only quantity that can be estimated isκ(pt ,φ(f|g̃(2))). For a converging MCMC,
κ̂K(pt ,φ(f|g̃(2)))→ log(Cst)+ biasK(pt ,N) ast → ∞ wherebiasK(pt ,N) is the bias of
the entropy estimation. Thus, without knowing the normalization constant and even if
the Kullback divergence stabilizes in time no conclusion about the convergence can be
drawn. To handle this problem, the authors of [18] suggest tomanipulate the difference
of the Kullback divergences of the studied MCMC algorithm anda benchmark MCMC
with marginals known to converge. The difference of the divergences stabilizes near 0
if the studied MCMC converges. In the absence of the benchmarkMCMC, we propose
to take into account the divergence stabilization criterion and the accuracy of the PSD
estimation to judge the MCMC convergence.



RESULTS ON SIMULATED AND EXPERIMENTAL MDLS DATA

In this section, we present some obtained results of the PSD estimation and the evolution
in time of the Kullback divergencêκK(pt ,φ(f|g̃(2))) for simulated and experimental data.
The studied samples are spherical latex particles with refractive index 1.59, dispersed in
pure water (refractive index 1.33 and viscosityη = 0.89 mPa.s). We used a vertically-
polarized laser of wavelengthλ0 = 638 nm. The temperature was stabilized at 298.15
K. For each example presented in this section, 500 iid Markovchains are generated for
the estimation of the Kullback divergence.

The inversion method [17] is first tested on a simulated example of monomodal PSD
(example 1). The studied PSD is Gaussian with a mean diameterof 500 nm and a
standard deviation of 10 nm. The noise-free time ACFs g(2)

θr
(τm) were simulated from the

corresponding PSD using (4) (∆D = 1 nm) for the scattering angles 60◦, 90◦, 120◦ and
150◦. The noisy time ACFs̃g(2)θr

(τm) were simulated by adding a white Gaussian noise
(3) with σr = 0.001 for all the scattering angles. For the estimation procedure, a set of
discrete diameters is fixed in the interval[400,600] nm with a regular step of∆D = 10
nm (N = 21). The true PSD compared to the estimated one by the Bayesianmethod [17]
are presented on the Figure 1(a). The estimated PSD is very close to the true PSD. The
result of the estimation of the Kullback divergence,κ̂K(pt ,φ(f|g̃(2))), is shown in Figure
1(b). The Kullback divergence stabilizes quickly aftert = 1000 iterations.
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FIGURE 1. Simulated monomodal PSD (example 1). (a) The true PSD compared to the estimated one
by the inversion method [17]. (b) Evolution of the Kullback divergenceκ̂K(pt ,φ(f|g̃(2))). N = 21 and
K = 500.

The inversion method is also tested on a simulated example ofmultimodal PSD (ex-
ample 2). The simulated PSD is a bimodal distribution sum of two Johnson’s functions
of equal quotients and expressed as follow

f (D) =
2

∑
i=1

0.5σi√
2π(Dmax −Dmin)

exp(−0.5[ui +σi log(
D−Dmin

Dmax −D
)]2), (13)

with u1 = 3.4, σ1 = 2.1, u2=-2.4,σ2 = 2.0, Dmin = 200 nm andDmax = 900 nm. The
noisy time ACFsg̃(2)θr

(τm) were simulated for the scattering angles 60◦, 70◦, 80◦, 90◦,
100◦, 120◦ and 140◦ following the same procedure as the previous example. The discrete



diameters are fixed in the selected range[100,1000] nm with a regular step of∆D = 10
nm (N = 91). The true PSD compared to the estimated one by the proposed method in
[17] are shown in Figure 2(a). The proposed Bayesian method successfully estimated
the full PSD with separation of the two peaks of the distribution. Figure 2(b) shows the
estimation results of the Kullback divergenceκ̂K(pt ,φ(f|g̃(2))). As it can be noticed, the
Kullback divergence stabilizes aftert = 5000 iterations.
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FIGURE 2. Simulated bimodal PSD (example 2). (a) The true PSD comparedto the estimated one
by the inversion method [17]. (b) Evolution of the Kullback divergenceκ̂K(pt ,φ(f|g̃(2))). N = 91 and
K = 500.

The experimental MDLS data were acquired using the Nano DS equipment from
CILAS. The studied sample was a trimodal mixture of polysterene latex spheres repre-
sented by a combination of 3 distributions with nominal diameters (standard deviations)
are 400 (7) nm, 600 (10) nm and 1020 (10) nm respectively. The intensity ACFs were
acquired at 13 angles between 60◦ and 120◦, with a step of 5◦. The estimated PSD is
shown on Figure 3(a). The result shows that the three populations are well recovered and
the peaks of the estimated PSD seem to be close to the expectedones. The result of the
estimation of the Kullback divergence,κ̂K(pt ,φ(f|g̃(2))), is shown in Figure 3(b). The
Kullback divergence stabilizes very quickly aftert = 1000 iterations.
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FIGURE 3. Experimental trimodal PSD. (a) Estimated PSD by the inversion method [17]. (b) Evolution
of the Kullback divergencêκK(pt ,φ(f|g̃(2))). N = 101 andK = 500.



CONCLUSION

The convergence of the MCMC algorithm used in [17] for the PSD inversion from
multiangle DLS data is examined. The used criterion is the stabilization of the Kullback
divergence, between the targetposterior density and the MCMC algorithm successive
densities, supported by the accuracy of the PSD estimation.According to the good PSD
estimation results obtained for simulated and experimental data, and the fast stabilization
of the Kullback divergence, we can experimentally concludethat the used MCMC
algorithm is converging.
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