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Abstract. We propose a method based on finite mixture models for classifying a set of observa-
tions into number of different categories. In order to demonstrate the method, we show how the
component densities for the mixture model can be derived by using the maximum entropy method
in conjunction with conservation of Pythagorean means. Several examples of distributions belong-
ing to the Pythagorean family are derived. A discussion on estimation of model parameters and the
number of categories is also given.
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INTRODUCTION

One of the goals of any scientific study is to identify regularities in observations and clas-

sify them into possibly separate and simpler structures or categories. These categories

can in turn be used to make inferences on the objects of interest. The major advantage of

this approach is that one breaks down a complicated reality into a collection of simpler

structures. In a similar way, in pattern recognition one is concern with discovery of regu-

larities in data but through use of computer algorithms which can be used to classify the

data into different categories [1]. Independent of ones point of view, any such analysis

must start with definition of the categories. If one has sufficient information about the

categories and their members, it is an easy task to establish a precise definition. How-

ever, for most real life situations this is not the case and the notion of category cannot be

precisely defined. Under such conditions a fruitful approach is to consider a category as

collection of objects which are likely to share the same properties. That is, in cases for

which the information available is insufficient to reach certainty, we ought to quantify

the degree to which we believe an object belongs to a given category. This degree of

belief is described by probability distribution over the space of objects of interest, or

sample space to be more precis.

The major bulk of the literature on the subject is dedicated to numerical aspect of the

problem. While acknowledging that the numerical challenges can seriously compromise

the applicability of a method, we believe that the fundamental problem of modelling

categories under partial knowledge condition is just as important. In the following we

will look at a class of problems in pattern recognition for which one is in possession of

empirical distribution (histogram) over the objects of interests and a prior knowledge



on the number of categories involved. We propose an approach to modelling of the

empirical distributions based on the finite mixture models which relies on identifying

the relevant intensive properties of each category. In order to demonstrate this method,

we will show how conservation of Pythagorean means, the most encountered class of

intensive properties, in conjunction with maximum entropy method can be used to derive

the functional form of the mixture model. We will also briefly discuss the extension

to other conserved quantities and also give a short overview on numerical challenges

related to the inference problem. In this article we restrict ourselves to positive univariate

continuous quantities.

MIXTURE MODEL

In the situations where categories cannot be defined precisely, the probabilistic descrip-

tion might be the only possible option. In the probabilistic framework, we can only talk

about the likelihood of an object belonging to a category. To this end, let us assume that

by some experiment the observation X is made but it is not by itself sufficient to uniquely

determine which category it belongs to. For example, the observations can be the height

of people in certain region/country for which underlying categories are the age groups

that each individual might belong to. In such cases one considers X as a random variable

and tries to model its probability density function p. One approach to model p is based

on the so called finite mixture models [2]. The underlying assumption in this approach

is that p is a convex combination of k densities in which each density represents a single

category. That is

p(x|ψ) =
k

∑
j=1

π j

(
θ j

)
f j

(
x|θ j

)
, x ∈X (1)

where
k

∑
j=1

π j

(
θ j

)
= 1, π j ≥ 0 (2)

and ∫
X

f j

(
x|θ j

)
dx= 1, f j

(
x|θ j

)
≥ 0 (3)

and

ψ =(π,θ) = ({π1, . . . ,πk} ,{θ 1, . . . ,θ k}) . (4)

In such cases, one says that X has a finite mixture distribution and that p is a finite

mixture density function. The parameters π j are called mixing weights and f j the

component densities of the mixture. In the context of pattern recognition, k is the number

of categories and f j is the density function describing the distribution of the members

of the category j. It should be emphasis that the component densities do not necessarily

belong to the same family of densities. Each component density represents our best guess

about the structure of its respective category for which its existence is independent of

the other categories.

In order to be able to adopt the mixture model to a specific problem, given that a priori

one knows the number of categories, requires that one tackles two different problems.



The first problem is to determine how to achieve a quantitative description of state of

partial knowledge, i.e. determining the functional form of the component densities. The

second problem is to determine ψ based on the available evidence, i.e. the empirical

density.

DETERMINATION OF COMPONENT DENSITIES

In general, objects in the same category are more similar to each other than to those

in other categories. This similarity invokes the notion that there are properties at the

coarser level which distinguishes the categories from each other. In fact, if we consider a

category as a homogeneous1 group in which the members are recognizably similar, then

it is reasonable to assume that the properties that distinguish it from other categories

should be intrinsic and independent of the coarse graining within the category itself.

This coarse graining property is the key concept in finding the component distributions.

In general, coarse graining is achieved by first grouping the elements of the category

into blocks, each having the same volume. Then following a predetermined rule, each

block is replaced with a single element representing the elements of that block. This pro-

cedure is iterated ad infinitum. We call a property that is invariant under coarse graining

as intensive. In this context, a category can be characterized and distinguished from

others by its intensive properties. Identifying the relevant intensive properties are often

challenging. Usually a less challenging approach is to first determine the so-called exten-

sive properties of the category. An extensive property is a property that is additive under

coarse graining. That is, under coarse graining, the elements that replace the blocks at

each step, also inherit the sum of each of extensive properties of their respective block

elements. Moreover, at each coarse graining step, due to similarity and homogeneity

conditions which exist among the members of a category, the extensive properties scale

independent of the choice of specific block. This, in general, results in greatly reducing

the complexity of the analysis. However, it is conceivable that one might discover many

extensive properties which might not be relevant to the classification problem at hand.

In this respect, the choice of relevant properties are often problem dependent. Neverthe-

less, identifying and describing an extensive property means that one is able to find a

function, up to a scaling factor, which captures the essential features of that property. It

can be shown that the expectation of such a function is invariant with respect to coarse

graining and hence it is intensive. For example, particle mass is an extensive property of

a system consisting of a collection of particles. Whilst, the expected mass of a particle

is intensive. In the following, we shall call the intensive properties that are expressed in

the form of expectations as the conservation laws2.

1 Homogeneous in the sense that there is continuity between various members of the group.
2 We adopt the view held by Steiner [3] that laws of conservation are simply not causal laws. They provide
constraints on what is allowed to happen.



Conservation of Pythagorean means

Let g(x) denote a function representing an extensive property of a category. Up to a

scaling factor, some of the most encountered forms of g are

g(x) = x, g(x) = x−1, g(x) = lnx. (5)

The expected values of these functions constitute the so-called Pythagorean means. The

Pythagorean means are the arithmetic, geometric and harmonic mean. More precisely,

for a positive univariate continuous variable with density f , the Pythagorean means are

defined as

µ =
∫

∞

0
x f (x)dx (6a)

lnγ =
∫

∞

0
lnx f (x)dx (6b)

η
−1 =

∫
∞

0
x−1 f (x)dx (6c)

where µ, γ and η are the arithmetic, geometric and harmonic means, respectively. In

this regard, one can talk about two categories being similar with respect to some of the

Pythagorean means.

Maximum entropy

Although the conserved quantities restrict the possible distribution of elements in a

category, nonetheless, still there might be up to infinitely many distributions that satisfy

the constraints. We are interested in the distribution that conserves the quantities of the

interest while allowing maximum degree of freedom on the non-conserved quantities.

It can be shown that among all the distributions that fulfill the constraints, the most

uncommitted distribution is the one with largest relative entropy S

S [ f ,q] =−
∫

f (x) ln
f (x)

q(x)
dx (7)

where f is the unknown distribution and q, also known as the prior, defines what we

mean by the uniform distribution in the sample space X [4, 5]. This method of finding

a distribution is known as maximum entropy or in short MaxEnt.

Theorem 1 Let all the three Pythagorean means be conserved. Then the MaxEnt distri-

bution is

f (x;λ 1,λ 2,λ 3) =
q(x)

Zq (λ 1,λ 2,λ 3)
xλ 3−1 exp

(
−λ 1x−λ 2x−1

)
(8)

where

Zq (λ 1,λ 2,λ 3) = eλ 0 =
∫
X

q(x)xλ 3−1 exp
(
−λ 1x−λ 2x−1

)
dx (9)



is the partition function, which acts as normalization factor.

Proof. This is equivalent to finding the maximum of the Lagrangian L with respect to f

L [ f ] =−
∫
X

f (x) ln
f (x)

q(x)
dx− (λ 0−1)

(∫
X

f (x)dx−1

)
(10)

−λ 1

(∫
X

x f (x)dx−µ

)
−λ 2

(∫
X

x−1 f (x)dx−η
−1

)
− (1−λ 3)

(∫
X

lnx f (x)dx− lnγ

)
where λ 0 . . .λ 3 are the four Lagrange multipliers corresponding to the four constraints3.

It can be shown that maximizing the functional L is equivalent to solving the correspond-

ing Euler-Lagrange equation of the calculus of variations [6] which results in statement

of the theorem.

We shall say a distribution that share the same functional form as (8) belongs to

Pythagorean family of distributions. Note that q can be even improper with non-compact

support as long as the distribution in (8) is normalizable. If we know, up to a normaliza-

tion constant, the functional form of the prior q and the values of the Pythagorean means

then f can be uniquely determined. Moreover, note that if q is very narrow then f ≈ q,
whilst if q is very broad then its influence is negligible and can be considered to be the

uniform distribution. The following corollary is a direct consequence of Eq. (8).

Corollary 2 Let q be the improper uniform distribution on the positive real line. Then

for all x ∈ R+

f (x;α,β ,λ ) =
1

2αKλ (β )

(
x

α

)λ−1

exp

{
−β

2

(
x

α
+

α

x

)}
,λ ∈ R,α > 0,β > 0 (11)

where Kλ is the modified Bessel function of the second kind and

λ = λ 3,α =

√
λ 2

λ 1

,β = 2
√

λ 1λ 2. (12)

In literature the distribution (11) is known as generalized inverse Gaussian (GIG)

distribution [7]. Some of its well-known sub-classes are the inverse Gaussian (IG)

(λ = −1/2), the reciprocal inverse Gaussian (RIG) (λ = −1/2) and the hyperbolic

(H) (λ = 0 ) distributions (see Fig.1). Other familiar distributions arise when only some

of the Pythagorean means are conserved. For example, if one drops the constraint on

arithmetic mean, that is λ 1 = 0 in (10), the distribution is known as inverse gamma

distribution. If the constraint on the harmonic mean is dropped, that is λ 2 = 0 in (10),

the distribution is the gamma distribution. The list is longer than this but the above

examples demonstrate the abundance of different variety of distributions belonging to

Pythagorean family.

3 Note that λ 0−1 and 1−λ 3 are used instead of λ 0 and λ 3 as a matter of convenience.



FIGURE 1. Three of the known sub-classes of the generlized inverse Gaussian distribution (GIG).

Other conservation laws

For the sake of clarity we narrowed the discussions to the conservation of Pythagorean

means. But other conservation laws are possible and are even at use. The MaxEnt method

can handle other conserved quantities as well. Nonetheless, it is recommended that one

should always conduct an assessment on conservation of Pythagorean means at the start

of the analysis. The outcome can be used as prior q in (7) along with other conserved

quantities to derive the functional form of the component densities.

BAYESIAN INFERENCE

We have not touched the numerical aspect of this problem. It is often case dependent

and difficult to discuss without getting into the specifics. However, the statement of the

most important problems using the rules of probability is quite simple.

Determination of model parameters ψ

Let I summarize the information about the functional form of the component densities

and their number. Technically, once I is known, determining ψ in (1) becomes a standard

problem in statistical inference. To this end, assume that the observations are randomly

generated from p(x|ψ, I). Then the normalized histogram of the data, say h(x), can be

considered as the empirical estimate for p(x|ψ, I). Consequently, the unknown ψ can

be estimated from h by using the Bayesian methods. Indeed, it follows from Bayes rule

that

p(ψ|h, I) ∝ p(ψ| I) p(h|ψ,I) (13)



FIGURE 2. The dots represent the histogram of 50000 numbers, simulated from the mixture of three

GIG-variates. The dashed curves are the component densities of the variates times their respective mixing

weights. The sum of the three dashed curves is the mixture model in red.

where p(ψ| I) is the prior for ψ . Usually we just have some rough knowledge about the

domain of ψ and therefore it is common to assume that p(ψ| I) is uniformly distributed

over that domain. The likelihood function p(h|ψ,I) depends on our assessment of the

sources that contribute to deviation between the model and data and, in general, is prob-

lem specific [8, 9]. The most likely estimate for ψ is the one which coincides with the

global maximum of p(ψ|h, I) which is called maximum a posteriori probability (MAP)

estimate. Usually, due to intractability of analytical form of the posterior distribution the

methods for estimating MAP are Monte Carlo based [10]. For illustration purpose, in

Fig. 2, we have plotted an example of a mixture model and its three component densities

versus their joint simulated histogram.

Determination of number of categories k

In the above discussions, we assumed that the number of categories are known.

However, often we do not know this number and we need to estimate it. In the Bayesian

framework this is known as model selection problem. Indeed, in order to estimate the

number of categories we need to evaluate the posterior distribution for k conditional on

h. By the Bayes rule we have

p
(

k|h, I′
)

∝ p
(

k| I′
)

p
(

h|k,I′
)

(14)

where I′ summarize the information about the functional form of the component densi-

ties. Note that I = (k, I′). Now, by marginalization and product rule we have

p
(

h|k,I′
)
=
∫

Ψ

p
(

h,ψ|k,I′
)

dψ =
∫

Ψ

p(ψ| I) p(h|ψ,I)dψ (15)

and hence

p
(

k|h, I′
)

∝ p
(

k| I′
)∫

Ψ

p(ψ| I) p(h|ψ,I)dψ. (16)



The integral on the right hand side of (16) is known as evidence and is equal to nor-

malization factor on the right hand side of (13). If one assumes p(k| I′) to be uniform

then the most probable value of k is the one which corresponds to the model with largest

evidence. It is often quite challenging to get a good estimate of evidence. Most methods

are Monte Carlo based and have their own pros and cons. Therefore, the choice of the

method is very much application dependent. It is not uncommon that one uses several

different methods in order to find a good estimate. For an overview over the most used

methods the reader is referred to [11].

CONCLUSION

In situations where we have partial knowledge about the categories, the probabilistic de-

scription based on the finite mixture model is a possible approach. In order to determine

the component densities of the model one can start with finding the relevant extensive

properties of each category under coarse graining. Taking the expectation of these exten-

sive properties will lead to the right conservation laws and in conjunction with MaxEnt

to component densities. Then the model parameters can be estimated from the empirical

density data using the standard Bayesian methods.
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