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Abstract. We present a generalised MaxEnt method to infer the stationary state of a flow network,
subject to “observable” constraints on expectations of various parameters, as well as “physical”
constraints arising from frictional properties (resistance functions) and conservation laws (Kirchhoff
laws). The method invokes an entropy defined over all uncertainties in the system, in this case
the internal and external flow rates and potential differences. The proposed MaxEnt framework is
readily extendable to the analysis of networks with uncertainty in the network structure itself.
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1. INTRODUCTION

The concept of a “flow network” – a set of nodes connected by flow paths – unites many
different disciplines, including electrical, communications, pipe flow, fluid flow, trans-
portation, chemical reaction, ecological and human systems. Historically, the state of a
flow network has been analysed by conservation (Kirchhoff’s) laws and to some extent
by network mappings (e.g. Tellegen’s theorem), and more recently by numerous dynam-
ical simulation and optimisation methods. A less well explored approach, however, is the
use of Jaynes’ maximum entropy (MaxEnt) method [1, 2], in which an entropy – defined
over the total uncertainty in the network – is maximised subject to constraints, to give
the stationary state of the network. Several workers have applied MaxEnt methods to the
analysis of transportation [3] and hydraulic networks [4], but not always correctly, e.g.
in many cases without considering the frictional properties. MaxEnt methods have also
been applied directly to network structures (graph ensembles) subject to various config-
urational constraints (e.g. expected degree of each node, k-core structure, etc) [5, 6], but
without consideration of flows and potentials on the network.

This study examines the application of MaxEnt to the prediction of flows and potential
differences on a flow network. It builds upon previous MaxEnt analyses of the steady
state of flow and dissipative systems [7, 8, 9] and flow networks [10, 11].



2. THEORY

2.1. Network Specifications

We consider a generalised undirected graph network, with the following properties:
(1) N nodes;
(2) M edges each defined by an adjacency parameterAij ∈ {N∪0}, equal to the number

of connections from node i to node j, giving give the adjacency tensor A ∈ RN×N .
We here consider only simple graphs without self-loops or multiple connections,
whence Aii = 0,∀i, and Aij ∈ {0,1}.

(3) A set of M internal flow rates Qij ∈ R for each edge i, j ∈ {1, ...,N} of some
extensive quantity B along the ijth edge, measured in units of B s−1. These give
the internal flow rate tensor Q ∈ RN×N .

(4) A set of K external flow rates Θi ∈R for each node i ∈ {1, ...,N} of B to each node
i, defined positive for an inwards flow. In this study, we amalgamate all multiple
external flows to node i into the single flow rate Θi, hence 0 ≤K ≤ N . These give
the external flow rate vector Θ = [Θ1, ...,ΘN ]> ∈ RN .

(5) A set of N potentials Ei ∈ R at each node i ∈ {1, ...N}, measured in units of the
intensive variable conjugate to B, in this case B−1 s. These lead to a set of M
potential differences ∆→Eij =−∆Eij = Ei−Ej for i, j ∈ {1, ...,N}. These give the
potential vector E ∈ RN and potential difference tensor ∆→E ∈ RN×N .

(6) A set of M resistance functions Rij : R→ R, for each edge i, j ∈ {1, ...,N}. In
their simplest formulation, these convert each flow rate into an equivalent potential
difference, using a local functional form:

∆̃→Eij =Rij(Qij) (1)

For example, in electrical circuits or pipe flow networks, the resistance functions
may consist of linear or power law relations ∆̃→Eij =RijQij|Qij|a−1, whereRij is the
resistance of the ijth edge and a is a coefficient (e.g. Ohm’s law with a= 1; Blasius’
law with 1≤ a≤ 2). For road and air traffic networks, the resistance functions obey
an asymptotic rule such that ∆̃→Eij→∞ asQij approaches a carrying capacityQmax

ij .
The resistance functions are assembled into the tensor operator R ∈ (R→ R)N×N ,
here assumed known, such that

∆̃→E = R(Q) (2)

In the above vectors and tensors, any non-existent internal or external flow rate can
simply be assigned to zero, while the potential differences and resistance functions for
non-existent edges are left undefined.

The above variables are not independent. Firstly, for an undirected graph Qij =−Qji

and ∆→Eij = −∆→Eji, hence the flow rate and potential difference tensors must be
diagonally antisymmetric. For graphs without self-loops, the diagonal terms (and trace)
of Q, ∆→E and R must also be zero. Secondly – as will be examined – the resistance



functions create a dependence between the flow rates and potential differences. Thirdly,
the potential differences and potentials are connected by the relation:

∆→E =E1>−1E> (3)

where 1 is an N ×1 column vector of 1’s, and ab> = [aibj] is a vector product. For the
purpose of flow calculations, only the differences in potentials – not their absolute values
– are important, hence the information contained in ∆→E is fully conveyed by E−E0,
where E0 is an N -dimensional vector of a reference potential E0.

2.2. Probability Space and Entropy

We consider a flow network in which the graph structure based on M , N and A
is specified, but there is uncertainty in some (or all) of the flow rates Q and Θ and
the potential differences ∆→E . We therefore consider the joint probability over these
unknowns, subject to what is known, given by:

p(Q,Θ,∆→E|M,N,A, I)dQdΘd∆→E

= Prob

 Q ≤ ΥQ ≤ Q+dQ
Θ ≤ ΥΘ ≤ Θ+dΘ

∆→E ≤ Υ∆→E ≤ ∆→E +d∆→E

∣∣∣∣∣M,N,A, I

 (4)

where p(...) is a probability density function (pdf), ΥX is the random variable for the
vector or tensor X , dX =

∏
i dXi based on each element Xi ∈ X , and I contains

the background knowledge to the problem. This leads naturally to the relative entropy
function, which expresses the spread of uncertainties:

H =−
˙

Ω

dQdΘd∆→E p(Q,Θ,∆→E|M,N,A, I) ln
p(Q,Θ,∆→E|M,N,A, I)

q(Q,Θ,∆→E|M,N,A, I)
(5)

where q(...) is the joint prior pdf and Ω is the entire domain of all parameters.

2.3. The constraints

Firstly, p(...) is subject to the normalisation constraint:

1 =

˙

Ω

dQdΘd∆→E p(Q,Θ,∆→E|M,N,A, I) (6)

Secondly, the network may be constrained by global mean values of some of the internal
flow rate(s), external flow rate(s) and/or potential difference(s), respectively:

〈Qij〉spec =

˙

Ω

dQdΘd∆→E p(Q,Θ,∆→E|M,N,A, I)Qij (7)



〈Θi〉spec =

˙

Ω

dQdΘd∆→E p(Q,Θ,∆→E|M,N,A, I)Θi (8)

〈∆→Eij〉spec =

˙

Ω

dQdΘd∆→E p(Q,Θ,∆→E|M,N,A, I)∆→Eij (9)

The above sets can be assembled into the tensor or vector forms:

〈Q〉spec =

˙

Ω

dQdΘd∆→E p(Q,Θ,∆→E|M,N,A, I)Q (10)

〈Θ〉spec =

˙

Ω

dQdΘd∆→E p(Q,Θ,∆→E|M,N,A, I)Θ (11)

〈∆→E〉spec =

˙

Ω

dQdΘd∆→E p(Q,Θ,∆→E|M,N,A, I)∆→E (12)

in which those values which are not constrained can be left unspecified. Furthermore,
it is important that the constrained flow rates selected from 〈Q〉 and 〈Θ〉 not be in
contradiction, and also that any constrained potential differences 〈∆→E〉 be compatible
with the flow rates 〈Q〉 and 〈Θ〉.

Thirdly, the network is constrained by the resistance functions, which are applied in
the mean:

〈∆→Eij〉= 〈∆̃→Eij〉=Rij(〈Qij〉) (13)

using the moment shorthand

〈r〉=

˙

Ω

dQdΘd∆→E p(Q,Θ,∆→E|M,N,A, I) r (14)

This gives the integral tensor form:˙

Ω

dQdΘd∆→E p(Q,Θ,∆→E|M,N,A, I)∆→E = R(〈Q〉) (15)

Note (13) and (15) are based on functional operation on mean flow rates, a more general
formulation [10].

Fourthly, the network is constrained by conservation – in the mean – of quantity B at
each node (Kirchhoff’s first law). For each node i on an undirected graph, this gives:

0 = 〈Θi〉−
N∑
j=1

〈Qij〉, ∀i ∈ {1, ...,N} (16)

In vector-tensor form this gives:

0 =

˙

Ω

dQdΘd∆→E p(Q,Θ,∆→E|M,N,A, I)
(
Θ−

N∑
j=1

Q·j

)
, (17)



whereQ·j is the jth column vector of Q.
Finally, the network will be constrained by a mean formulation of conservation of

energy (Kirchhoff’s second law), for which the mean potential difference around any
flow loop must vanish. For each loop ` on an undirected graph with single connections
between nodes, this gives:

0 =
∑
ij∈`

〈∆→Eij〉, ∀` ∈ {1, ...,L} (18)

where L is the total number of independent loops. A number of search algorithms are
available to identify a linearly independent set of loops, expressed by the loop adjacency
tensors M(`), l ∈ {1, ...,L} with elements M (`)

ij ∈ {0,1} for each loop `, indicating a
specified orientation. Eq. (18) can then be rewritten with ij indices:

0 =
N∑
i=1

N∑
j=1

M(`)
ij 〈∆→Eij〉= M(`) : 〈∆→E〉, ∀` ∈ {1, ...,L} (19)

where V : W = trace (V>W) =
∑N

i=1

∑N
j=1VijWij is the tensor scalar product [12].

This gives the integral form:

0 =

˙

Ω

dQdΘd∆→E p(Q,Θ,∆→E|M,N,A, I) M(`) : ∆→E , ∀` ∈ {1, ...,L} (20)

2.4. MaxEnt Analysis

In the MaxEnt method, we extremise the entropy, subject to the constraints on the
system, to determine its most probable or least informative state (here denoted ∗).
Using the moment shorthand (14) and dropping the functional dependencies of p and
q, the entropy (5) subject to the constraints (6), (10)-(12), (15), (17) and (20) gives the
Lagrangian:

L=−
〈

ln
p

q

〉
−κ
(
〈1〉−1

)
−λ :

(
〈Q〉−〈Q〉spec

)
−µ ·

(
〈Θ〉−〈Θ〉spec

)
−ν :

(
〈∆→E〉−〈∆→E〉spec

)
−ρ :

(
〈∆→E〉−R(〈Q〉)

)
−α ·

〈
Θ−

N∑
j=1

Q·j

〉

−
L∑
`=1

β`
〈
M(`) : ∆→E

〉
(21)

where a ·b=a>b=
∑N

i=1aibi is the vector scalar product,> is the transpose, and we use
the following Lagrangian multipliers: κ for normalisation, λ (tensor) for internal flow
rates, µ (vector) for external flow rates, ν (tensor) for potential differences, ρ (tensor)
for the resistance function relations, α (vector) for Kirchhoff node constraints and β`



(scalar) for each Kirchhoff loop constraint. If any constraint within 〈Q〉, 〈Θ〉, 〈∆→E〉
or within the resistance relation (2) is unspecified, the corresponding multiplier λij , µi,
νij or ρij can be fixed to zero. In contrast, all Kirchhoff constraints will be present.
Combining integrals and simplification gives:

L=

〈
− ln

p

q
−κ−λ : Q−µ ·Θ−ν : ∆→E−ρ : ∆→E−α ·Θ+α1> : Q

−
L∑
`=1

β`M(`) : ∆→E
〉

+ρ : R(〈Q〉) +κ+λ : 〈Q〉spec+µ · 〈Θ〉spec+ν : 〈∆→E〉spec
(22)

which uses the identity:

α ·
N∑
j=1

Q·j =
N∑
i=1

N∑
j=1

αiQij =α ·Q1 =α1> : Q (23)

The total variation of the Lagrangian is:

δL= 0 =
∂L

∂p
δp (24)

from which ∂L/∂p= 0 for all p. Within this, by the chain rule

∂R〈Q〉
∂p

=
∂R〈Q〉
∂〈Q〉 �

∂〈Q〉
∂p

= R′(〈Q〉)� ∂〈Q〉
∂p

(25)

where V �W is the element-wise tensor (Hadamard) product, in which (V �W)ij =
VijWij [12]. The extremum is therefore:

0 =− ln
p

q
−1−κ−λ : Q−µ ·Θ−ν : ∆→E−ρ : ∆→E−α ·Θ+α1> : Q

−
L∑
`=1

β`M(`) : ∆→E +ρ : R′(〈Q〉)�Q
(26)

Defining the partition function Z = e1+κ, this gives the Boltzmann equation:

p∗ =
q

Z
exp

[
−
(
λ−α1>

)
: Q−

(
µ+α

)
·Θ−

(
ν+ρ+

L∑
`=1

β`M(`)
)

: ∆→E

+ρ : R′(〈Q〉)�Q
] (27)

This can be inserted into the seven sets of constraints (6), (10)-(12), (15), (17) and (20)
to calculate the partition function Z and multipliers λ, µ, ν, ρ, α and β`. Any other
moment, for example of the quantity F (Q,Θ,∆→E), can then be calculated over p∗:

〈F 〉=
1

Z

˙

Ω

dQdΘd∆→E p∗F (28)



2.5. Prior Probabilities

In the MaxEnt formulation, the joint prior probability q(Q,Θ,∆→E|M,N,A, I) ex-
presses the expected joint distribution of the uncertain parameters in the absence of any
physical constraints. Commonly, the prior encodes information extracted from the sym-
metry or geometry of the problem, which can be expected to restrict the solution domain
and hence will alter the solution inferred by MaxEnt.

In analyses of simple undirected flow networks, it is necessary to allow the internal
flow rates to vary over the entire real domain R, which gives rise to the possibility of flow
reversal in any edge as a function of the constraints. From the resistance constraints (15),
the potential differences must also be real-valued, and so may also undergo sign rever-
sal. It is also convenient to allow the external flow rates to extend over the real domain,
to encompass inflows and outflows. However, for a physically realizable network, it is
important to ensure that the flow rates and potential differences each be centred some-
where within the “middle” of the real domain, with vanishing probability of approaching
±∞. While many functions satisfy this choice, we have found it useful to adopt Gaus-
sian priors for each variable, since these will – to a fair degree – express the information
inherent in the problem specification, while remaining analytically tractable. The prior
can then be written as a separable product of individual priors:

q =

∏
ij∈A

1
σQij

e

−
(Qij−mQij

)2

2σ2
Qij

N∏
i=1

1
σΘi

e
−

(Θi−mΘi
)2

2σ2
Θi

∏
ij∈A

1
σ∆→Eij

e

−
(∆→Eij−m∆→Eij

)2

2σ2
∆→Eij

(2π)(2M+N)/2

(29)

where mX is the mean and σX is the standard deviation of parameter X . If the mean is
specified by a constraint 〈X〉spec in (10)-(12), this can be used in the prior; otherwise we
have found zero mean priors to be a good choice. Similarly, if a standard deviation is
known from constraints 〈X2〉spec and 〈X〉spec, this can be used in the prior; otherwise a
broad standard deviation is useful for numerical solution purposes.

3. GENERAL FORMULATION

As a final comment, we may consider a network in which there is uncertainty in both
the network formulation itself, as expressed by M , N and A, as well as the flow rates
and potential differences. This gives the joint pdf p(M,N,A,Q,Θ,∆→E|I), leading to
the relative entropy:

Hgen =−
˙

Ωgen

dAdQdΘd∆→E p(M,N,A,Q,Θ,∆→E|I) ln
p(M,N,A,Q,Θ,∆→E|I)

q(M,N,A,Q,Θ,∆→E|I)

(30)

where Ωgen is the more general domain. This will also be subject to constraints on the
network structure itself, in addition to the above flow constraints (6), (10)-(12), (15),



(17) and (20). The MaxEnt formulation readily lends itself to the analysis of both the
inferred structure and flow properties of such a network.

4. CONCLUSIONS

We present a generalised MaxEnt method to infer the stationary state of a flow network.
The method invokes a relative entropy over all uncertainties within the system, in
this case the internal flow rates, external flow rates and potential differences, which is
constrained by “observable” constraints on expectations of various parameters, as well
as “physical” constraints arising from frictional properties and network conservation
laws (Kirchhoff laws). The resulting Boltzmann equation can contain non-linearities,
depending on the form of the resistance equations. The MaxEnt framework is readily
extendable to the analysis of networks in which there is uncertainty in the network
structure itself.
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