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Abstract. Classical information geometry prescribes, on the parametric family of probability func-
tions Mθ : (i) a Riemannian metric given by the Fisher information; (ii) a pair of dual connections
(giving rise to the family of α-connections) that preserve the metric under parallel transport by
their joint actions; and (iii) a family of (non-symmetric) divergence functions (α-divergence) de-
fined on Mθ ×Mθ , which induce the metric and the dual connections. The role of α parameter, as
used in α-connection and in α-embedding, is not commonly differentiated. For instance, the case
with α = ±1 may refer either to dually-flat (e- or m- ) connections or to exponential and mixture
families of density functions. Here we illuminate that there are two distinct types of duality in infor-
mation geometry, one concerning the referential status of a point (probability function, normalized
or denormalized) expressed in the divergence function (“reference duality”) and the other concern-
ing the representation of probability functions under an arbitrary monotone scaling (“representation
duality”). They correspond to, respectively, using α as a mixture parameter for constructing diver-
gence functions or as a power exponent parameter for monotone embedding of probability func-
tions. These two dualities are coupled into referential-representational biduality for manifolds of
denormalized probability functions with α-Hessian structure (i.e, transitively flat α-geometry) and
for manifolds induced from homogeneous divergence functions with (α,β )-parameters but one-
parameter family of (α ·β )-connections.
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INTRODUCTION

Information geometry is, narrowly speaking, the differential geometric study of the
manifold of probability measures or probability density functions [3]. Let (X ,µ) be
a measure space with σ -algebra built upon the atoms, dζ , of X . Let M̃µ and Mµ

denote, respectively, the space of denormalized and normalized probability functions,
p : X →R+(≡R+∪{0}), defined on the sample space, X , with background measure
dµ = µ(dζ ):

M̃µ = {p(ζ ) : p(ζ )> 0,∀ζ ∈X } , Mµ =
{

p(ζ ) ∈ M̃ ,Eµ{p(ζ )}= 1
}
.

Here, and throughout this paper, Eµ{·}=
∫
X {·}dµ denotes the expectation of a measur-

able function (in curly brackets) with respect to the background measure, µ . We do not
differentiate probability measures on discrete support or probability density functions
on continuous support, and use the generic term of probability function.



A parametric family of probability functions, p(·|θ), called a parametric statistical
model, is the association (indexing) of a probability function, θ 7→ p(·|θ), for each n-
dimensional vector θ = [θ 1, · · · ,θ n]. The space of parametric statistical models forms a
Riemannian manifold (where θ is treated as the local chart):

Mθ = {p(ζ |θ) ∈Mµ : θ ∈Θ⊂ Rn} ⊂Mµ (1)

with the so-called Fisher-Rao metric gi j as its Riemannian metric:

gi j(θ) = Eµ

{
p(ζ |θ) ∂ log p(ζ |θ)

∂θ i
∂ log p(ζ |θ)

∂θ j

}
(2)

and a family of α-connections with coefficients Γ(α) (α ∈ R):

Γ
(α)
i j,k(θ) = Eµ

{(
1−α

2
∂ log p(ζ |θ)

∂θ i
∂ log p(ζ |θ)

∂θ j +
∂ 2 log p(ζ |θ)

∂θ i∂θ j

)
∂ p(ζ |θ)

∂θ k

}
. (3)

Recall that, in general, a metric g is a bilinear map on the tangent space, and an
affine connection Γ is used to define parallel transport of tangent vectors. Introducing
“conjugacy” of a pair of connections, Γ←→ Γ∗, as defined by their jointly preserving
the metric when each acts on one of the two tangent vectors; that is, when each tangent
vector undergo parallel transport according to Γ or Γ∗ respectively:

∂gi j

∂θ k = Γki, j(θ)+Γ
∗
k j,i(θ) . (4)

Any Riemannian manifold with its metric g and the family of connections Γ(α) in the
form of (2) and (3) is called α-structure, denoted by {Mθ ,g,Γ(±α)}. Amari [1, 2] gave
dualistic interpretation of α ←→−α as conjugate connections on the manifold Mθ :

Γ
∗(α)
i j,k (θ) = Γ

(−α)
i j,k (θ) . (5)

The so-called e-connection (α = 1) vanishes (i.e., its components becomes identically
zero) on the manifold of the exponential family of probability functions under natural
parameters, whereas the so-called m-connection (α = −1) vanishes on the manifold
of the mixture family of probability functions under mixture parameters; this is in
addition to the fact that Γ(±1) have zero curvatures for both exponential and mixture
families under either natural or expectation parameterization. Such α-geometry has been
extended non-parametric (infinite-dimensional) statistical manifolds [26, 29].

In a broader sense, a statistical manifold {M ,g,Γ,Γ∗} is a differentiable man-
ifold equipped with a Riemannian metric g and a pair of torsion-free connections
Γ≡ Γ(1),Γ∗ ≡ Γ(−1) compatible with g in the sense of (4), without necessarily requiring
g and Γ,Γ∗ to take the forms of (2) and (3). Historically, the notion of dual (conjugate)
connections appeared independently in the investigation of affine hypersurface immer-
sion (see [17, 23]), where the compatibility of the metric structure and the affine con-
nection structure generalizes that of Levi-Civita coupling. There, α-connections arise as
convex mixture of the pair of conjugate connections [14].



It is known that the α-geometry {Mθ ,g,Γ(±α)} can be induced from a paramet-
ric family of divergence functions called “α-divergence” [2], which measure non-
symmetric distance of any two points (probability functions) on the manifold Mθ . On
the other hand, α-connections can also arise as the so-called α-embedding of paramet-
ric family of probability functions [2, 3], see Equations (7) and (8) in the next Section,
where an α-affine family generalizes the notion of exponential and mixture families.
Zhang [25, 26, 29] obtained further generalizations of the α-geometry for a pair of
monotone embeddings (called ρ- and τ-embeddings there), with corresponding fami-
lies of (denormalized) probability functions parameterized by natural and expectation
parameters that are linked via Legendre–Fenchel transformation.

There have been several different usages of α-parameter in Amari’s formulation
of information geometry: (i) parameterizing the convex mixture of connections (α-
connections); (ii) parameterizing the divergence functions (α-divergences); (iii) pa-
rameterizing monotone embedding of probability functions (α-embedding). Below, we
carefully scrutinize these usages of α , by illuminating how convex mixing and mono-
tone embedding interact in a divergence function and in the resulting structure of α-
connections. Recapitulating [25? , 26, 29], it will be argued that there are two senses of
duality in information geometry, a reference duality related to the reference/comparison
status of a pair of points (functions) and a representation dualtiy related to monotone-
scaled representations of them. We remark that such (bi)dualistic structure of the α-
geometry is preserved in the infinite-dimensional setting as well [26, 29].

REPRESENTATION DUALITY: EMBEDDING AND DUAL
PARAMETERIZATIONS

Monotone embedding

Recall that the α-embedding function [2] is defined as l(α) : R+→ R

l(α)(t) =
{

log t α = 1
2

1−α
t(1−α)/2 α 6= 1 . (6)

The α-embedding (or representation) of a probability function plays an important role in
Tsallis statistics; see [16, 18, 4]. The Fisher-Rao metric and α-connections, under such
α-representation, have the following expressions:

gi j(θ) = Eµ

{
∂ l(α)(p(·|θ))

∂θ i
∂ l(−α)(p(·|θ))

∂θ j

}
, (7)

Γ
(α)
i j,k(θ) = Eµ

{
∂ 2l(α)(p(·|θ))

∂θ i∂θ j
∂ l(−α)(p(·|θ))

∂θ k

}
. (8)

The notion of α-embedding can be extended to monotone embedding in general [25].
Assume that f : R→R is a strictly convex function, with convex conjugate f ∗ given by:

f ∗(t) = t ( f ′)−1(t)− f (( f ′)−1(t)) .



The conjugate function f ∗, being a function R→ R, is also strictly convex and satisfies
( f ∗)∗ = f and ( f ∗)′ = ( f ′)−1. The Legendre–Fenchel inequality reads

f (δ )+ f ∗(λ )− γ λ ≥ 0 .

For later application, the notion of conjugate monotone representations of (possibly
denormalized) probability function p(·) is introduced [25]:

Definition 1. Conjugate representations (Zhang, 2004). For a strictly increasing func-
tion ρ : R→ R, we call ρ-representation of probability function p the mapping p 7→
ρ(p). For a strictly increasing function τ : R→ R, we say that τ-representation of the
probability function, p 7→ τ(p), is conjugate to ρ-representation with respect to a smooth
and strictly convex function, f : R→ R, if:

τ(p) = f ′(ρ(p)) = (( f ∗)′)−1(ρ(p)) ←→ ρ(p) = ( f ′)−1(τ(p)) = ( f ∗)′(τ(p)) . (9)

As an example, we may set ρ(p) = l(α)(p) to be the α-representation given by Equa-
tion (6), and the conjugate representation is the (−α)-representation τ(p) = l(−α)(p):

ρ(t) = l(α)(t)←→ τ(p) = l(−α)(p) (10)

In this case:

f (t) =
2

1+α

((
1−α

2

)
t
) 2

1−α

, f ∗(t) =
2

1−α

((
1+α

2

)
t
) 2

1+α

(11)

so that
f (ρ(p)) =

2
1+α

p , f ∗(τ(p)) =
2

1−α
p

are both linear in p.
The motivation for introducing the auxiliary function f in the definition of conjugate

representations will be clear in the discussion of divergence functions. For the moment,
it suffices to note that strictly increasing functions from R→ R form a group, with
functional composition as group composition operation and the functional inverse as
the group inverse operation. That is, (i) for any two strictly increasing functions, ρ1, ρ2,
their functional composition ρ2 ◦ ρ1 is strictly increasing; (ii) the functional inverse,
ρ−1, of any strictly increasing function, ρ , is also strictly increasing; (iii) there exists
a strictly increasing function, ι , the identity function, such that ρ ◦ρ−1 = ρ−1 ◦ρ = ι .
From this perspective, f ′ = τ ◦ρ−1, ( f ∗)′ = ρ ◦τ−1, encountered above, are themselves
two mutually inverse, strictly increasing functions.

α-Geometry under monotone embedding

The parametric family of functions, p(ζ |θ), forms a finite-dimensional manifold Mθ

with coordinates θ as natural parameter of the parametric model, see (1). The following



generalized α-geometry were derived in [25] based on an analysis of divergence func-
tions and the geometries they induce. For convenience, we denote ρ(ζ ,θ)≡ ρ(p(ζ |θ)),
τ(ζ ,θ)≡ τ(p(ζ |θ)).
Proposition 2. (Zhang, 2004). For parametric models p(ζ |θ) ∈Mθ , the metric tensor
takes the form:

gi j(θ) = Eµ

{
f ′′(ρ(ζ ,θ))

∂ρ(ζ ,θ)

∂θ i
∂ρ(ζ ,θ)

∂θ j

}
(12)

and the α-connections take the form:

Γ
(α)
i j,k(θ) = Eµ

{
1−α

2
f ′′′(ρ(ζ ,θ))Ai jk + f ′′(ρ(ζ ,θ))Bi jk

}
(13)

Γ
∗(α)
i j,k (θ) = Eµ

{
1+α

2
f ′′′(ρ(ζ ,θ))Ai jk + f ′′(ρ(ζ ,θ))Bi jk

}
. (14)

where:

Ai jk(ζ ,θ) =
∂ρ(ζ ,θ)

∂θ i
∂ρ(ζ ,θ)

∂θ j
∂ρ(ζ ,θ)

∂θ k , Bi jk(ζ ,θ) =
∂ 2ρ(ζ ,θ)

∂θ i∂θ j
∂ρ(ζ ,θ)

∂θ k . (15)

Clearly, α-connections form conjugate pairs Γ
∗(α)
i j,k (θ) = Γ

(−α)
i j,k (θ). Note that strict

convexity of f requires that f ′′ > 0, hence ensuring the positive-definiteness of gi j(θ).
As an example, we take the embedding f (t) = et and ρ(p) = log p, with τ(p) = p, the

identity function; then, the expressions in Proposition 2 reduce to the Fisher information
and α-connections of the exponential family in Equations (2) and (3).

With conjugare representations, the geometric quantities of Proposition 2 have dual-
istic expressions:

Corollary 3. (Zhang, 2004). Under conjugate representations, the metric and α-
connections of (12) - (15) are:

gi j(θ) = Eµ

{
∂ρ(ζ ,θ)

∂θ i
∂τ(ζ ,θ)

∂θ j

}
(16)

Γ
(α)
i j,k(θ) = Eµ

{
1−α

2
∂ 2τ(ζ ,θ)

∂θ i∂θ j
∂ρ(ζ ,θ)

∂θ k +
1+α

2
∂ 2ρ(ζ ,θ)

∂θ i∂θ j
∂τ(ζ ,θ)

∂θ k

}
(17)

Γ
∗(α)
i j,k (θ) = Eµ

{
1+α

2
∂ 2τ(ζ ,θ)

∂θ i∂θ j
∂ρ(ζ ,θ)

∂θ k +
1−α

2
∂ 2ρ(ζ ,θ)

∂θ i∂θ j
∂τ(ζ ,θ)

∂θ k

}
(18)

Affine submanifolds

Recall that an exponential family of probability functions is defined as:

p(e)(ζ |θ) = exp

(
F0(ζ )+∑

i
θ

i Fi(ζ )−φ(θ)

)
(19)



where θ is its natural parameter and Fi(ζ )(i = 1, · · · ,n) is a set of linearly independent
functions with the same support in X , and the cumulant generating function (“potential
function”) φ(θ) is:

φ(θ) = logEµ

{
exp

(
F0(ζ )+∑

i
θ

i Fi(ζ )

)}
. (20)

On the other hand, the mixture family

p(m)(ζ |θ) = ∑
i

θ
iFi(ζ )

can be viewed as a manifold charted by its mixture parameter θ satisfying ∑i θ i = 1,
along with the constraints

∫
X Fi(ζ )dµ = 1. The exponential family and the mixture

family are special cases of the α-family [2, 3] of probability functions, p(ζ |θ), whose
denormalization satisfies (with constant κ):

l(α)(κ p) = F0(ζ )+∑
i

θ
iFi(ζ ) .

With respect to general monotone embedding, we have the notion of a ρ-affine family.
A parametric model, p(ζ |θ) ∈ M̃µ , is said to be ρ-affine if its ρ-representation can be
embedded into a finite-dimensional affine space

ρ(p(ζ |θ)) = ∑
i

θ
iFi(ζ ) . (21)

For any denormalized probability function, p(ζ ), the projection of its τ-representation
onto the functions Fi(ζ ),

ηi =
∫
X

τ(p(ζ ))Fi(ζ )dµ (22)

forms a vector η = [η1, · · · ,ηn]⊆Rn. We call η the expectation parameter of p(ζ ), and
the functions F(ζ ) = [F0(ζ ),F1(ζ ), · · · ,Fn(ζ )] the affine basis functions.

The above notion of ρ-affinity is a generalization of α-affine manifolds [2, 3], where
ρ- and τ-representations are just α- and (−α)-representations, respectively. Note that
elements of the ρ-affine manifold may not be a probability model; rather, after denor-
malization, probability models can become ρ-affine.

Biorthogonality of natural and expectation parameters

Lemma 4. (Zhang, 2004). When a parametric model is ρ-affine,

(i) the function Φ(θ) is strictly convex, where

Φ(θ) =
∫
X

f (ρ(p(ζ |θ)))dµ ; (23)



(ii) define

Φ̃(θ) =
∫
X

f ∗(τ(p(ζ |θ)))dµ (24)

then Φ∗(η) ≡ Φ̃((∂Φ)−1(η)) is the convex conjugate of Φ(θ), via Legendre-
Fenchel transformation;

(iii) the pair of convex functions, Φ,Φ∗, form a pair of “potentials” to induce η ,θ :

∂Φ(θ)

∂θ i = ηi←→
∂Φ∗(η)

∂ηi
= θ

i (25)

where η is given by (22).

Recall that, for a convex function of several variables, Φ : Rn→ R, its convex conju-
gate Φ∗ is defined through the Legendre–Fenchel transform:

Φ
∗(η) = 〈η ,(∂Φ)−1(η)〉−Φ((∂Φ)−1(η)) (26)

where ∂Φ stands for the gradient (sub-differential) of Φ, and 〈 , 〉 denotes the standard
bilinear form. The function Φ∗, which is also convex, has Φ as its conjugate (Φ∗)∗ = Φ.
The Hessian (second derivatives) of a strictly convex function (Φ and Φ∗) is positive-
definite. The Legendre–Fenchel inequality (26) can be expressed using dual variables,
θ ,η , as:

Φ(θ)+Φ
∗(η)−∑

i
ηiθ

i ≥ 0

where equality holds if and only (25) is satisfied.
Note that while Φ(θ) in Lemma 4 can be viewed as the generalized cumulant gen-

erating function (or partition function), Φ∗(η) is the generalized entropy function. It is
important to realize that, while f (·) is strictly convex, F (p) =

∫
X f (p(ζ |θ))dµ is not

at all convex in θ in general, when p is not ρ-affine and does not satisfy (21).

Proposition 5. (Zhang, 2004; Zhang, 2007; Zhang and Matsuzoe, 2009). The family of
ρ-affine denormalized probability functions generates α-Hessian manifold, with

(i) Riemannian metric tensor
gi j(θ) = Φi j ;

(ii) a family of affine connections

Γ
(α)
i j,k(θ) =

1−α

2
Φi jk = Γ

∗(−α)
i j,k (θ) ;

(iii) Riemann curvature tensor R(α) for Γ(α) as

R(α)
i jµν

(θ) =
1−α2

4 ∑
l,k
(ΦilνΦ jkµ −ΦilµΦ jkν)Φ

lk = R∗(α)
i jµν

(θ) ;

(iv) equiaffine parallel volume form Ω(α) for Γ(α) as

Ω
(α)(θ) = det[Φi j(θ)]

1−α

2 .



Here, Φi j, Φi jk denote, respectively, second and third partial derivatives of Φ(θ):

Φi j =
∂ 2Φ(θ)

∂θ i∂θ j , Φi jk =
∂ 3Φ(θ)

∂θ i∂θ j∂θ k

and Φi j is the matrix inverse of Φi j.

For ρ-affine family, the natural parameter, θ ∈Θ and the expectation parameter η ∈Ξ

form biorthogonal coordinates:

∂ηi

∂θ j = gi j(θ)←→
∂θ i

∂η j
= g̃i j(η)

where g̃i j(η) is the matrix inverse of gi j(θ). Biorthogonal coordinates (being “good”
coordinates on the manifold) leads to the vanishing of affine connection coefficients
Γ
∗(−1)
i j,k (η) = 0 or Γ

(1)
i j,k(θ) = 0. This is the well-studied “dually flat” parametric statistical

manifold [1, 2, 3], under which divergence functions have a unique, canonical form.
When Γ(±1) is dually flat, Γ(α) is called “α-transitively flat” [24]. Therefore, the α-
Hessian structure stated by Proposition 4 is the full α-geometry of the Hessian manifold,
where α =±1 leads to the vanishing of the curvature tensor, R(±1)

i jµν
(θ) = 0.

REFERENCE DUALITY IN DIVERGENCE FUNCTIONS

Reference duality is to be understood in the context of divergence functions and the
resulting statistical manifold they induce. In general, a divergence function (also called
“contrast function”) is non-negative for all p,q and vanishes only at its global minimum
when p= q; it is assumed to be smooth, with vanishing first derivatives at those extremal
points. In general, a divergence function is not symmetric, hence, demonstrating an
effect of choosing either p or q as the reference point. For technical convenience, we
also assume the divergence functions to be negative semi-definite for its mixed second
derivatives at p = q.

Take, for instance, the Kullback-Leibler divergence between two probability densities,
p,q ∈Mµ , here expressed in its extended form (i.e., without requiring p and q to be
normalized):

K(p,q) =
∫ (

q− p− p log
q
p

)
dµ , (27)

K∗(p,q) =
∫ (

p−q−q log
p
q

)
dµ , (28)

both expressions with a unique, global minimum of zero when p= q. Each version of the
KL divergence is directed, meaning K(p,q) 6= K(q, p);K∗(p,q) 6= K∗(q, p). The effect
of exchanging the two points p,q (and hence demonstrating the reference duality) is
seen as switching from K to K∗:

K(p,q) = K∗(q, p) .



Hence, K and K∗ are, in this sense, “dual” divergence functions.
A generalization of the Kullback-Leibler divergence is the α-divergence, defined as:

A (α)(p,q) =
4

1−α2 Eµ

{
1−α

2
p+

1+α

2
q− p

1−α

2 q
1+α

2

}
, (29)

with

lim
α→−1

A (α)(p,q) = K(p,q) = K∗(q, p) ,

lim
α→1

A (α)(p,q) = K∗(p,q) = K(q, p) .

It is easily seen that the α-divergence family contain dual divergence pairs, with refer-
ence duality p←→ q reflected as α ←→−α duality:

A (α)(p,q) = A (−α)(q, p) .

D (α)-divergence

A general theory of divergence functions was proposed in Zhang (2004). Starting
from a strictly convex functino f : R→ R which, by definition, satisfies

f
(

1−α

2
γ +

1+α

2
δ

)
≤ 1−α

2
f (γ)+

1+α

2
f (δ )

for all γ,δ ∈ R, with equality holding, if and only if γ = δ , for all α ∈ (−1,1).
This fundamental convex inequality applies to any two real numbers, γ,δ . We can
treat γ,δ as point evaluations, at any particular sample point, ζ , of two functions
p,q : X → R, γ = p(ζ ), δ = q(ζ ). This allows us to define the following family of
divergence functions.

Lemma 6. (Zhang, 2004). Let f : R→R be smooth and strictly convex, and ρ : R→R
be strictly increasing. For any two (possibly denormalized) probability functions, p,q,
and any α ∈ R:

D
(α)
f ,ρ (p,q)=

4
1−α2 Eµ

{
1−α

2
f (ρ(p))+

1+α

2
f (ρ(q))− f

(
1−α

2
ρ(p)+

1+α

2
ρ(q)

)}
(30)

is non-negative and equals zero, if and only

p(ζ ) = q(ζ ) almost everywhere.

Furthermore, evaluated at p = q, it has vanishing first derivatives and negative semi-
definite mixed second derivatives. Here we require p,q to be elements of the set:

{p(ζ ) : Eµ{ f (ρ(p))}< ∞} .



Lemma 6 constructed a family (parameterized by α) of divergence functionals, D (α),
with reference duality embodied as:

D
(α)
f ,ρ (p,q) = D

(−α)
f ,ρ (q, p)

Note that in the above construction, we retain the freedom of the ρ-embedding function
(which can be taken to be the identity function if necessary). The reason ρ is introduced
is for conjugate representations of probability functions (see the previous section). The
two functions f and ρ allows the family of D (α)-divergence to allow for dual divergence
under conjugate representations, see the next section.

D (α)-divergence, introduced in [25], generalizes many familiar divergence functions.

(a) α-divergence [2]: There are several ways D (α)-divergence reduces to the familiar
α-divergence (29) as a special case:

• Take f (p) = ep and ρ(p) = log p. Then D
(α)
f ,ρ (p,q) = A (α)(p,q).

• Take α = 1, ρ(p) = l(β )(p) and τ(p) = l(−β )(p), that is the alpha-
representation (11) with (10) using β parameter. Then D

(1)
f ,β (p,q)=A (β )(p,q).

• Take α = −1, ρ(p) = l(−β )(p) and τ(p) = l(β )(p), the minus-alpha-
representation. Then D

(−1)
f ,β (p,q) = A (β )(p,q).

(b) U-divergence [15]: It is defined with any strictly convex function U : R→ R:

DU(p,q) = Eµ{U((U ′)−1(q))−U((U ′)−1(p))− p · ((U ′)−1(q)− (U ′)−1(p))} .

That D (α)-divergence includes U-divergence as a special case can be seen by taking
f (p) =U(p),ρ(p) = (U ′)−1(p),α → 1.

(c) β -divergence [6]: This family is defined as

B(β )(p,q) = Eµ

{
p

pβ−1−qβ−1

β −1
− pβ −qβ

β

}
.

It was well known that β -divergence is a special case of U-divergence, when taking

U(t) =
1
β
(1+(β −1)t)

β

β−1 (β 6= 0,1) .

(d) (α,β )-divergence of Cichocki et al. [8]: the following two-parameter family was
introduced

Dα,β
AB =− 1

αβ
Eµ

{
pαqβ − α

α +β
pα+β − β

α +β
qα+β

}
(31)

and called (α,β )-divergence (which is different from the usage of the terminology
in [25]). Essentially, it is α-divergence under β - (power) embedding:

Dα,β
AB = (α +β )2 A

β−α

α−β (pα+β ,qα+β ) .



Clearly, by taking f (t) = et ,ρ(t) = (α +β ) log t and renaming β−α

α+β
as α , Dα,β

AB is a

special case of D
(α)
f ,ρ (p,q).

(For the meaning of A , see Equation (32) later). Note that the above divergence func-
tions reduce to Kullback-Leibler divergence under appropriate choice of α,β .

Canonical divergence

When α →±1, the divergence function D
(±1)
f ,ρ (p,q) takes the form:

D
(−1)
f ,ρ (p,q) = Eµ{ f (ρ(q))− f (ρ(p))− (ρ(q)−ρ(p)) f ′(ρ(p))}

= Eµ{ f ∗(τ(p))− f ∗(τ(q))− (τ(p)− τ(q))( f ∗)′(τ(q))} = D
(−1)
f ∗,τ (q, p) ;

D
(1)
f ,ρ(p,q) = Eµ{ f (ρ(p))− f (ρ(q))− (ρ(p)−ρ(q)) f ′(ρ(q))}

= Eµ{ f ∗(τ(q))− f ∗(τ(p))− (τ(q)− τ(p))( f ∗)′(τ(p))} = D
(1)
f ∗,τ(q, p) ,

where conjufate representations (9) are used. The canonical divergence function, A :
M ×M → R+, is defined (with the aid of a pair of conjugate representations) as:

A f (ρ(p),τ(q)) = Eµ{ f (ρ(p))+ f ∗(τ(q))−ρ(p)τ(q)} (32)

where
∫
X f (ρ(p))dµ can be called the (generalized) cumulant generating functional

and
∫
X f ∗(τ(p))dµ , the (generalized) entropy functional. Reference duality is reflected

by:
A f (ρ(p),τ(q)) = A f ∗(τ(q),ρ(p)) .

Thus, switching reference p←→ q can be achieved through α = 1←→ α = −1 or
through ( f ,ρ)←→ ( f ∗,τ):

D
(1)
f ,ρ(p,q) = D

(−1)
f ,ρ (q, p) = D

(1)
f ∗,τ(q, p) = D

(−1)
f ∗,τ (p,q) .

We can see that under conjugate (±α)-representations (10), A f is simply the α-
divergence proper A (α):

A f (ρ(p),τ(q)) = A (α)(p,q)

In fact:
1−α2

4
A (α)(u,v) = Eµ

{
1−α

2
u

2
1−α +

1+α

2
v

2
1+α −uv

}
≥ 0

is an expression of Young’s inequality between two functions u = (l(α))−1(p),v =

(l(−α))−1(q) under conjugate exponents, 2
1−α

and 2
1+α

.



Divergence on ρ-affine family

For the exponential family (19), the expression (27) takes the form of the so-called
Bregman divergence [7] defined on Θ×Θ⊆ Rn×Rn:

Bφ (θp,θq) = φ(θp)−φ(θq)−〈θp−θq,∂φ(θq)〉 (33)

where φ is the potential function (20), ∂ is the gradient operator and 〈·, ·〉 denotes the
standard bilinear form.

In general, when p is ρ-affine, because of Lemma 4, D
(α)
f ,ρ (p,q) of (30) becomes

D
(α)
f ,ρ (p,q)=

4
1−α2

{
1−α

2
Φ(θp)+

1+α

2
Φ(θq)−Φ

(
1−α

2
θp +

1+α

2
θq

)}
≡D(α)

Φ
.

When α →±1, D
(α)
f ,ρ reduces to the Bregman divergence:

D(−1)
Φ

(θp,θq) = D(1)
Φ
(θq,θp) = Φ(θq)−Φ(θp)−〈θq−θp,∂Φ(θp)〉= BΦ(θq,θp)

D(1)
Φ
(θp,θq) = D(−1)

Φ
(θq,θp) = Φ(θp)−Φ(θq)−〈θp−θq,∂Φ(θq)〉= BΦ(θp,θq) ,

with reference duality revealed as

D(−1)
Φ

(θp,θq) = D(−1)
Φ∗ (∂Φ(θq),∂Φ(θp)) = D(1)

Φ∗ (∂Φ(θp),∂Φ(θq)) = D(1)
Φ
(θq,θp)

REFERENTIAL-REPRESENTATIONAL BIDUALITY IN
α-GEOMETRY

Linking D (α)- and D(α)-divergence to α-geometry

A divergence function D will induce a Riemannian metric, g by its second order
properties and a pair of conjugate connections, Γ,Γ∗ by its third order properties; these
relations were first formulated by Eguchi [12, 13].

gi j = −
∂

∂θ i
p

∂

∂θ
j

q
D(p,q)

∣∣∣∣∣
p=q

,

Γi j,k = −
∂

∂θ i
p

∂

∂θ
j
p

∂

∂θ k
q
D(p,q)

∣∣∣∣∣
p=q

, Γ
∗
i j,k = −

∂

∂θ i
q

∂

∂θ
j

q

∂

∂θ k
p
D(p,q)

∣∣∣∣∣
p=q

.

Applying these relations, we can show:

Proposition 7. (Zhang, 2004).

1. The family of D
(α)
f ,ρ -divergence induces the α-geometry given in Proposition 2 (and

its dualistic expressions of Collorary 3);



2. The family of D(α)
Φ

-divergence induces the α-Hessian geometry given in Proposi-
tion 5.

We remark that α-Hessian is a special kind of α-geometry; this parallels the fact that
D(α)-divergence is a special case of D (α)-divergence, where the probability functions
are ρ-affine, and Φ is related to f ,ρ via (23).

The link between a divergence function, which has the freedom of a choice of convex
function for its construction and a choice of monotone function for embedding proba-
bility functions, and the resulting geometry, reveals the interaction between reference
duality and representation duality. It is in this sense that we say the α-geometry reflect
referential-representational biduality.

As an application, consider dualistic expressions of Corollary 3 and its inducing (dual)
divergence functions. If we construct the divergence function, D

(α)
f ∗,τ(θp,θq), then the

induced metric, g̃i j, and the induced conjugate connections, Γ̃
(α)
i j,k, Γ̃

∗(α)
i j,k , will be related

to those induced from D
(α)
f ,ρ (θp,θq) (and denoted without the ˜ ) via:

g̃i j(θ) = gi j(θ)

with:
Γ̃
(α)
i j,k(θ) = Γ

(−α)
i j,k (θ) , Γ̃

∗(α)
i j,k (θ) = Γ

(α)
i j,k(θ)

So, the difference between using D
(α)
f ,ρ (θp,θq) and D

(α)
f ∗,τ(θp,θq) reflects a conjugacy

in the ρ- and τ-representations of p(ζ |θ). Corollary 3 says that the conjugacy in the
connection pair Γ←→ Γ∗ reflects, in addition to the referential duality θp←→ θq, the
representational duality between ρ-representation and τ-representation of a probability
function:

Γ
∗(α)
i j,k (θ) = Γ̃

(α)
i j,k(θ) .

Divergence from quasi-linear means

Recall the construction of D
(α)
f ,ρ in a previous section. If f ′ = τ ◦ ρ−1 is further

assumed to be strictly convex, that is:

1−α

2
τ(ρ−1(γ))+

1+α

2
τ(ρ−1(δ ))≥ τ

(
ρ
−1
(

1−α

2
γ +

1+α

2
δ

))
for any γ,δ ∈R and α ∈ (−1,1), then by taking τ−1 on both sides of the inequality and
renaming ρ−1(γ) as γ and ρ−1(δ ) as δ , we obtain:

τ
−1
(

1−α

2
τ(γ)+

1+α

2
τ(δ )

)
≥ ρ

−1
(

1−α

2
ρ(γ)+

1+α

2
ρ(δ )

)
This is to say:

M(α)
τ (γ,δ )≥M(α)

ρ (γ,δ )



with equality holding, if and only if γ = δ , where:

M(α)
ρ (γ,δ ) = ρ

−1
(

1−α

2
ρ(γ)+

1+α

2
ρ(δ )

)
is the quasi-linear mean of two numbers γ,δ . Therefore, the following is also a diver-
gence function

4
1−α2 Eµ

{
τ
−1
(

1−α

2
τ(p(ζ ))+

1+α

2
τ(q(ζ ))

)
−ρ

−1
(

1−α

2
ρ(p(ζ ))+

1+α

2
ρ(q(ζ ))

)}
.

Homogeneous (α,β )-divergence

Suppose that f is, in addition to being strictly convex, strictly increasing. We may set
ρ(t) = f−1(εt)←→ f (t) = ερ−1(t), and construct a divergence function:

D
(α)
ρ (p,q)=

4ε

1−α2

∫
X

{
1−α

2
p(ζ )+

1+α

2
q(ζ )−ρ

−1
(

1−α

2
ρ(p(ζ ))+

1+α

2
ρ(q(ζ ))

)}
dµ

(34)
As an example, take ρ(p) = log p, ε = 1; then M(α)

ρ (p,q) = p
1−α

2 q
1+α

2 , and D
(α)
ρ (p,q)

is the α-divergence (29), while

D
(1)
ρ (p,q) =

∫
X
(p−q− (ρ(p)−ρ(q)))(ρ−1)′(ρ(q))dµ = D

(−1)
ρ (q, p)

is an immediate generalization of the KL divergence in (27) and (28).
If we impose a homogeneous requirement (κ ∈ R+) on D

(α)
ρ :

D
(α)
ρ (κ p,κq) = κD

(α)
ρ (p,q)

then (see [25]) ρ(p) = l(β )(p); so (34) becomes a two-parameter family

D (α,β )(p,q)≡ 4
1−α2

2
1+β

Eµ

{
1−α

2
p+

1+α

2
q−
(

1−α

2
p

1−β

2 +
1+α

2
q

1−β

2

) 2
1−β

}
(35)

Here (α,β ) ∈ [−1,1]× [−1,1], and ε = 2/(1+β ) in Equation (34) is chosen to make
D (α,β )(p,q) well defined for β = −1. We call this family (α,β )-divergence[26] 1 ; it
belongs to the general class of f -divergence studied by [11]. Note that the α parameter
encodes referential duality, and the β parameter encodes representational duality. When
either α = ±1 or β = ±1, the one-parameter version of the generic alpha-connection

1 This usage of the term “(α,β )-divergence” is different from the later use by [8] who refer to another
two-parametric family in the form of (31). See discussions in the previous subsection.



results. The family, D (α,β ), is then a generalization of Amari’s α-divergence (29) with:

lim
α→−1

D (α,β )(p,q) = A (−β )(p,q) , lim
α→1

D (α,β )(p,q) = A (β )(p,q) ,

lim
β→1

D (α,β )(p,q) = A (α)(p,q) , lim
β→−1

D (α,β )(p,q) = J(α)(p,q)

where J(α) denotes the Jensen difference discussed by [20]:

J(α)(p,q) ≡ 4
1−α2 Eµ

(
1−α

2
p log p+

1+α

2
q logq

−
(

1−α

2
p+

1+α

2
q
)

log
(

1−α

2
p+

1+α

2
q
))

J(α) reduces to Kullback-Leibler divergence (27) when α → ±1. Lastly, we note that
D (α,β ), when either α or β equals zero, leads to the Levi-Civita connection.

With respect to the geometry induced from the (α,β )-divergence of Equation (35),
we have the following result.

Corollary 8. (Zhang, 2004). The metric and affine connections for the parametric
(α,β )-manifold are:

gi j(θ) = Eµ

{
p

∂ log p
∂θ i

∂ log p
∂θ j

}
Γ
(α,β )
i j,k (θ) = Eµ

{
p

∂ 2 log p
∂θ i∂θ j

∂ log p
∂θ k +

1−αβ

2
∂ log p

∂θ i
∂ log p

∂θ j
∂ p
∂θ k

}
Γ
∗(α,β )
i j,k (θ) = Eµ

{
p

∂ 2 log p
∂θ i∂θ j

∂ log p
∂θ k +

1+αβ

2
∂ log p

∂θ i
∂ log p

∂θ j
∂ p
∂θ k

}
This is to say, with respect to the (α,β )-divergence, the product of the two parameters,

αβ , acts as the “alpha” parameter in the family of induced connections, so:

Γ
∗(α,β ) = Γ

(−α,β ) = Γ
(α,−β )

Setting limβ→1 Γ(α,β ) yields Amari’s one-parameter family of α-connections.

This two-parameter family of affine connections, Γ
(α,β )
i j,k (θ), indexed now by the

numerical product, αβ ∈ [−1,1], is actually the alpha-connection proper (i.e., the one-
parameter family of its generic form:

Γ
(α,β )
i j,k (θ) = Γ

(−α,−β )
i j,k (θ)

with biduality compactly expressed as

Γ
∗(α,β )
i j,k (θ) = Γ

(−α,β )
i j,k (θ) = Γ

(α,−β )
i j,k (θ) .



DISCUSSIONS

Our analysis above illuminates two different types of duality in information geometry,
one concerning the choice of a reference point (probability function, normalized or
denormalized) in the divergence function (“reference duality”) and the other concerning
the choice of a monotone scale in representing probability functions (“representation
duality”). To tease apart the two, we study the conjugate ρ- and τ-representations and
the associated ρ-affine family of probability function. Our investigation demonstrated an
intimate connection between convex analysis and information geometry. The divergence
functions are associated with the fundamental inequality of a convex function, f :R→R
(or Φ : Rn→ R), with the convex mixture coefficient as the α-parameter in the induced
geometry. Reference duality is associated with α ←→−α , and representation duality
is associated with the convex conjugacy f ←→ f ∗ (or Φ←→ Φ∗). To illustrate these
differences, we introduce the (α,β )-divergence, with bidualistic structure extending that
of the α-divergence, with α and β representing reference duality and representation
duality, respectively. Interestingly, the induced Fisher metric is independent of α,β
while the induced alpha-connection uses αβ as a single parameter.

The kind of reference duality (originating from non-symmetric status of a referent
and a comparison object), while common in behavioral-psychological contexts [27],
has always been implicitly acknowledged in statistics. Formal investigation of such non-
symmetry between a reference and a comparison probability function leads to the frame-
work of preferred point geometry [9, 10, 31, 32]. Preferred point geometry reformulates
Amari’s [1] expected geometry and Barndorff-Nelsen’s [5] observed geometry by study-
ing the product manifold Mθp×Mθq formed by an ordered pair of probability functions
(p,q) and defining a family of Riemannian metric defined on the product manifold. The
precise relation of the preferred point approach with our approach to reference duality
awaits future exploration.
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