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Abstract. Information H is a unique relationship between probabilities, based on the property of
independence which is central to scientific methodology. Information Geometry makes the tempting
but fallacious assumption that a local metric (conventionally based on information) can be used to
endow the space of probability distributions with a preferred global Riemannian metric.

No such global metric can conform to H, which is “from-to” asymmetric whereas geometrical
length is by definition symmetric. Accordingly, any Riemannian metric will contradict the required
structure of the very distributions which are supposedly being triangulated. Probabilities do not form
a metric space.

We give counter-examples to alternative formulations of information, and to the use of informa-
tion geometry.

Keywords: Information geometry; metric space; probability distribution.
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INFORMATION

The Bayesian sum and product rules allow us to do rational inference in accordance
with a unique calculus [1, 2] which places probability on the unit simplex (∑i pi = 1).
The calculus is profitably extended by quantifying, as some function H(p;q), the mag-
nitude of change when a source distribution q = (q1,q2, . . .) is updated to a destination
distribution p = (p1, p2, . . .).

p
update

←−−−−−−−− q

Usually, whatever constraints force change could be satisfied by a range of destinations.
To remove this ambiguity, we ask that the chosen destination p̂ is a minimal distortion
of the source q.

p̂
constraints

←−−−−−−−−
minimise H(p;q)
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Minimal distortion

Constraint surface

Other destinations might also satisfy the constraints, but would be “worse” in the sense
of involving more distortion.

To uncover the form of H (if one exists), we use independence. A logician might
quibble that there can never be true independence because everything’s connected to



everything else. However, most connections are negligible, hence ignorable, otherwise
we couldn’t proceed at all. Problem A (winning my village lottery) doesn’t noticeably
influence problem B (getting a “six” next time I toss a die). Those two processes are
deemed independent, and no practical consequence is expected if we choose to analyse
them together.

p̂A ←−− constraints qA on A

p̂B ←−− constraints qB on B

}
≡ p̂A× p̂B ←−− constraints qA×qB

The unique “p log(p/q)” information formula (generally attributed to Shannon [3] by
physicists and to Kullback and Leibler [4] by statisticians) follows:∥∥∥∥ H(p;q) = ∑

i
pi log

pi

qi

∥∥∥∥ (information) (1)

We see that H ≥ 0 with equality if and only if p = q, so it quantifies the distortion
of p away from an arbitrary source distribution q. This formula holds for arbitrary
probabilities, and it satisfies independence. Hence the sought function H can exist, and
it takes this uniquely defined form.

Minimising any other function leads to interference between independent applica-
tions, and that’s unacceptable in a calculus of inference. Generalising the truth is a mis-
take which necessarily admits counter-examples.

Alternative proposals

Unfortunately, the definition of information remains questioned. Perhaps the term
“entropy” (related to the negative of information) has caused confusion.

In physics, entropy quantifies the uncertainty about a system’s state that remains
after macroscopic constraints (on volume, temperature and so on) are applied. The
combinatorics of a macroscopic system with independent components quickly lead to
a “−∑ p log p” entropy, and it’s tempting to view this as a justification of that formula.
Actually, it’s no more than a sanity check, because any system with independence
necessarily conforms. Conversely, systems lacking independence must and do have
different formulas for their entropy. But that does not justify using different formulas
for the information H from which those formulas ultimately derive.

The most popular alternative formula, invented without derivation, is

4! H†
α(p;q) =

1
α(1−α)

(
1−∑

i
pα

i q1−α

i

)
4! (2)

as propounded by Rényi [5] and by Tsallis [6]. There are various special cases:

α = 2 Least squares 1
2 ∑(p−q)2/q

α → 1 Information ∑ p log(p/q)

α = 1
2

1
2(Hellinger distance)2 2∑(

√
p−√q)2

α → 0 Reverse information ∑q log(q/p)



(All these formulas have easy generalisations to non-normalised distributions.) We pro-
ceed to test the outcomes of minimising Rényi-Tsallis in various situations.

First counter-example

Consider the direct product of two probability distributions, p(1) = ( 1
10 ,

9
10) and p(2) =

(1
6 ,

5
6). My chance of winning the village lottery is 1 in 10, and my chance of a “six”

when I next throw a die is 1 in 6. Minimising the information (1) relative to uniform
source q correctly produces the direct-product result p(1)×p(2) = ( 1

10 ,
9

10)× (1
6 ,

5
6).

Rényi-Tsallis does not. With α = 2, which is least-squares, that result would involve
a negative value if least-squares were taken seriously. In practice, positivity would
supervene and force a hard zero.
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The zero value indicates that winning the village lottery would prevent me throwing
“six” with my next die — an implication that defies common sense.

Second counter-example

Consider the distribution of unit mass

M =
∫ 1

0
dx
∫ 1

0
dy p(x,y) = 1 (3)

across the a-priori-uniform unit square (0,1)×(0,1). Known moments

〈x〉=
∫ 1

0
dx
∫ 1

0
dy p(x,y)x =

1
6
, 〈y〉=

∫ 1

0
dx
∫ 1

0
dy p(x,y)y =

1
6

(4)

constrain the centre of mass to 〈(x,y)〉= (1
6 ,

1
6). This is in no way a difficult dataset.

Take α → 0. Minimising H†
0 under these constraints yields

p̂(x,y) = 0.5379 δ (x)δ (y)︸ ︷︷ ︸
mass=1

+0.4621
(log4)−1

x+ y︸ ︷︷ ︸
mass=1

4! (5)

with over half the mass concentrated into a delta-function singularity at the exact corner.
This solution, inaccessible to any setting of Lagrange multipliers, would be rejected by



any thoughtful user, who would object to the coarse constraint producing an infinitely
sharp result.

Systematic misbehaviour

Misbehaviour occurs whenever α 6= 1. Minimising H†
α under integral constraints

〈 fk〉=
∫

fk(x)p(x)dx (6)

yields
p̂(x) =

(
F(x)

)1/(α−1) (7)

where F = ∑λk fk is linear in the f ’s, with Lagrange multipliers λ as coefficients. For
constraints so weak as to be ineffective, F ≈ 1. For less weak constraints, F stays positive
everywhere so that p̂ is bounded. But, as the constraints require greater non-uniformity,
the minimum value of F may shrink to zero.

When α > 1, the consequence is that the density p̂ becomes zero. As the constraints
are strengthened even more, the Lagrange-multiplier solution (7) cannot respond without
sending p̂ negative. That being prohibited, a hard zero is imposed at the minimum of F .
Each such zero, as it comes into play, removes the influence of H†

α until none remains.
There is still a 1:1 correspondence between constraint values and the optimal p̂, but
duality with Lagrange multipliers λ fails because multipliers no longer characterise the
result.

constraints
1:1

←−−−→ p̂
fail

←−−−→ λ

When α < 1, the consequence is that the density p̂ becomes infinite. In a space of
suitably high dimension, this can happen without the constraint values 〈 fk〉 becoming
singular, as volumetric factors stabilise the infinite density by giving it finite mass.
As the constraints are strengthened even more, the Lagrange-multiplier solution (7)
cannot respond without sending p̂ negative. Again, duality fails. Instead, a delta-function
singularity is imposed at the minimum of F , which absorbs any further added mass.

Conclusion regarding the information formula

Scientific methodology requires results to be tested, and if (as here) a proposal fails
simple tests, it cannot be recommended for complicated work. Danger lies not in simple
problems where an immediate absurdity will guard the user against accepting error, but
in more complicated situations where the consequences may be disguised and insidious.

Generalising the truth by ignoring relevant criteria (here, independence) damages it,
and necessarily yields unacceptable results. This presages similar difficulties that arise
when information is misinterpreted as geometry.

For inference, the only acceptable value for the Rényi-Tsallis parameter is α = 1,
which is the correct information (1). That negates the generalisation to α 6= 1 which
underlies Amari’s “α-divergences” [7] in information geometry.



GEOMETRY

Being a smooth function, H necessarily has a symmetric second derivative

∂ 2H
∂ pi∂ p j

=
∂ 2H

∂ p j∂ pi
=

δi j

pi
(8)

which is widely used as a Riemannian metric gi j in an identification usually attributed
to Fisher [8] and Rao [9]. There, the length element d` is defined by

(d`)2 = ∑
i j

gi jd pid p j = ∑
i j

∂ 2H
∂ pi∂ p j

d pid p j = ∑
i

(d pi)
2

pi
(9)

Geodesic curves and lengths, and densities, are then constructed in the standard way,
with microscopic local triangulation promoted to the macroscopic level.

Paths, lengths, density

The geodesic path from q to p, linearly parameterised by θ and confined to the unit
simplex, is

xi =

(
sin(θγ)

sinγ

√
pi +

sin((1−θ)γ)

sinγ

√
qi

)2

(10)

where γ = arccos(∑i
√

piqi). Its length

`(p,q) = 2γ (11)

is basically Rényi-Tsallis with α = 1
2 , and is somewhat greater than the Hellinger dis-

tance 4sin(γ/2) which would be accessible if paths could leave the simplex. Meanwhile,
the density over the unit simplex is

ρ(p) ∝ δ

(
∑

i
pi−1

)
∏

i
p−1/2

i (12)

Fundamental inconsistency

The connective H is “from-to” directed and not symmetric: H(p;q) 6= H(q;p). Its
uniqueness implies that no acceptable symmetric connective exists. Geometric distance
can be artificially endowed on the space, but any such distance is symmetric by con-
struction, `(p;q) = `(q;p). So, any definition of geometric distance is necessarily in-
compatible with the independence that is at the heart of probabilistic practice.∥∥ Probabilities do not form a metric space.

∥∥



More precisely, imposition of a distance is incompatible with independence, and it’s
simply not possible to do science if irrelevant independent unknowns can’t be discarded
without changing the results.

connect

Independence =⇒ Information H

?

Local metric
g = ∇∇H

-
promote

Global metric
Riemannian geometry

@
@

@@I 4! Inconsistent4!

Awkward consequences must follow, and they do, as will be seen.

Geodesic paths

Consider a simple 2-cell probability problem, in which a path starts at q = (1
2 ,

1
2) and

ends at p = (1,0). Normalisation only allows one degree of freedom, so there’s only one
track, (a,b) with a+b = 1, which the geodesic must follow.

- -1
2

1
2 a b 1 0

Now take the direct product of this problem with a second problem, which happens to
be the same, so the product path starts at (1

2 ,
1
2)×(

1
2 ,

1
2) and ends at (1,0)×(1,0). Here

is the independence path:

- -
1
4

1
4

1
4

1
4

ab b2

a2 ab

0 0

1 0

But the geodesic path, with three of the four cells starting the same and ending the same,
is shown below with only two distinct values (α +3β = 1) instead of three.

- -
1
4

1
4

1
4

1
4

β β

α β

0 0

1 0 4!

Geometry does not distinguish between the three “β” cells. This elementary example
demonstrates that geodesic paths do not conform to the independence that the informed
user of probability might expect.

Start and finish points q and p do not in themselves define a unique path between
them. In fact, the basic Bayesian task of learning about the contents of a domain does not
even require a dimension, let alone a geometry. Thus the answers are the same whether
a unit square is decomposed in two dimensions, or as a one-dimensional spiral, or some



quite different pattern. The choice is arbitrary, and usually made for computational
convenience rather than reference to a supposedly pre-eminent geometry.

• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •

or

• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •

or
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• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •

or . . .

Conclusion regarding geodesic paths

Geometry is not fundamental to Bayesian analysis or computation, and in fact the
freedom to discard topology and geometry is used to advantage in the general-purpose
nested-sampling algorithm [10].

Geodesic length

Whether or not the path is confined to the simplex, the distance between two probabil-
ity distributions is determined by ∑i

√
piqi, which is basically the Rényi-Tsallis formula

(2) with α = 1
2 . Accordingly, misbehaviour is expected.

Take the geometrically-defined closest probability distribution p̂ to uniform q, subject
to expectation ∫

p(x)E(x)dx = 〈E〉 (13)

where

E(x) = sin2(πx1)+ sin2(πx2)+ sin2(πx3)+ sin2(πx4)+ sin2(πx5)+ sin2(πx6) (14)

over the 6-dimensional unit cube (−1
2 ,

1
2)

6. The constraint value is 〈E〉 = 1, implying a
degree of central condensation towards the minimum Emin = 0. This could represent a
particle in a 6-dimensional periodic unit cell, or perhaps two particles in a 3-dimensional
box, or 6 particles in a 1-dimensional box.

Minimising the information (1) would yield the smooth exponential form p̂(x) ∝

exp(−3.650E(x)) familiar to physicists as the maximum-entropy distribution. Geomet-
rically, though, the closest-to-uniform distribution is

p̂(x) = 0.5481 δ (x)︸ ︷︷ ︸
mass=1

+ 0.4519
5.944
E(x)2︸ ︷︷ ︸
mass=1

4! (15)



with over half of the probability mass confined to a delta-function spike at the exact
centre.
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Conclusion regarding geodesic lengths

Informed users would not accept this infinite-resolution implication being drawn from
a coarse constraint. Was one of the particles in a 3-dimensional box really definitively
located at the exact centre? Did the average-energy constraint really support an infinite
compression, quantified by H(p;q) = ∞ bits of information?

Geometric density

Next, we test the suggestion that the
√

detg geometrical density could be a plausible
assignment of belief (prior probability Pr(p)), in a development taken forward by Amari
[7] and followers.

First counter-example: Three proportions

The geometric prior for proportions p = (p1, p2, p3) that add to 1 is

Pr(p) =
1

2π

δ (p1+p2+p3−1)
√

p1 p2 p3
(16)

Accurate observation yields a likelihood

Pr(data | p) = δ (p1− p3) (17)

(If this delta function gives concern, use 1(|p1− p3|< ε) before taking ε → 0.)
Perhaps masses 1 and 3 happened to balance. Perhaps the average number of spots
〈ns〉 = p1 + 2p2 + 3p3 converged on 2 after many throws of a 3-die. There could be
many applications: here we are concerned with the joint distribution

Pr(data,p) =
1

2π

δ (p1+p2+p3−1)
√

p1 p2 p3
δ (p1− p3) (18)



and what follows. On marginalising away p1 and p3 (each equal to 1
2(1− p2)), we reach

the posterior

Pr(p2 | data) ∝
1

(1− p2)
√

p2
4! (19)

which has a non-integrable singularity at p2 = 1.
With probability 1, p2 is inferred to be arbitrarily close to 1. On observing p1 to be

equal to p3, we are thus invited to infer that both are arbitrarily close to zero. That,
surely, over-interprets the observation. The Bayesian analysis is correct, so the informed
user will reject the geometric prior (16).
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Second counter-example: Six faces

A 6-die, not known to be uniform, has proportions p1, p2, p3, p4, p5, p6 associated
with its faces. The geometric prior is

Pr(p) =
2

π3
δ (p1+p2+p3+p4+p5+p6−1)

√
p1 p2 p3 p4 p5 p6

(20)

Accurate observation reveals that the die is a rectangular parallelepiped, with faces 1
and 6, 2 and 5, and 3 and 4, being equivalent. The likelihood is

Pr(data | p) = δ (p1− p6)δ (p2− p5)δ (p3− p4) (21)

On marginalising away p4, p5, p6 away from the joint distribition, we reach

Pr(p1, p2, p3 | data) ∝
1

p1 p2 p3
4! (22)

There are now three non-integrable singularities. With probability 1, only one compo-
nent survives, either p1 = p6 or p2 = p5 or p3 = p4. The others are almost certainly
almost zero. In lay terms, “all bricks are needles”. Informed users would doubt that.
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Third counter-example: N items

The geometric prior for N items is

Pr(p) =
Γ(N

2 )

πN/2
δ (p1+p2+ . . .+pN−1)

√
p1 p2 . . . pN

(23)

Measuring any accurate linear relationship |api− bp j| < ε ensures that pi and p j will
be inferred to be almost certainly arbitrarily close to zero as the uncertainty ε becomes
small.

api = bp j︸ ︷︷ ︸
data

=⇒ pi = p j = 0︸ ︷︷ ︸
implication

4! (24)

This over-implication needs no further comment.

Third counter-example: Continuum analysis

Suppose a continuum distribution is digitised into N microcells, with N large in order
to approximate the continuum well. However, data are never infinitely sharp, so that it
always suffices to combine the microcells, r at a time, into larger mesocells.

p N microcells︸ ︷︷ ︸
r microcells

P M=N/r mesocells

Marginalising (23) over r microcell p’s summing to a mesocell’s quantity P shows the
mesocell prior to be

Pr(P) ∝

∫ ∫
. . .
∫

δ (p1+p2+ . . .+pr−P)
√

p1 p2 . . . pr
d p1d p2 . . .d pr ∝ P−1+r/2 (25)

so that the overall prior becomes

Pr(P) ∝ (P1P2 . . .PM)−1+r/2
δ (P1+P2+ . . .+PM−1) 4! (26)

The exponents, which were −1 + 1
2 at the microscale, have become −1 + r

2 at the
mesoscale.

Now, what ought to happen as the continuum limit r→ ∞ is approached, is that the
microscale exponent approaches −1 while mesoscale and macroscale exponents remain
fixed. With power laws as here, this is the Dirichlet process [11], a “process” being a
family of probability distributions defined consistently at all scales.

What is actually happening here is different. The microscale exponent is staying fixed
at −1

2 while mesoscale and macroscale exponents increase indefinitely. This means that
the prior for p, at observable scales, becomes indefinitely sharply peaked about exact



uniformity (P1 = P2 = . . . = PM = 1/M). This contradicts the aim of allowing p to be
usefully uncertain.

It is possible for P to be moved away from uniformity, but only by data that completely
prohibit that possibility. In that event, P remains sharply defined, though relocated to the
permitted maximum of P1P2 . . .PM, equivalently of ∑ logPj. But that’s the Rényi-Tsallis
prescription with α → 0, already seen to be unacceptable.

Conclusion regarding geometric densities

If the geometric p−1/2 density is assigned at all, it has to be on a fixed grid, in which
the cells can’t be combined or subdivided. That grid can’t be indefinitely fine, so that
continuum problems are excluded. Even on a locked grid, unacceptable results follow
accurate observation of any linear relationship.

Geometric manifolds

It seems unlikely that the difficulties remarked above would disappear when attention
is restricted to a manifold within the probability simplex. If the density

√
detg fails in

general, it’s unlikely to succeed in arbitrary sub-spaces. Nevertheless, we investigate the
possibility.

Parameters u = (u1,u2, . . .), fewer in number than the dimension of the probability
distribution, parameterise a manifold p(u) in a way that for convenience automatically
imposes normalisation. The length element from (9), as confined to the manifold, be-
comes

(d`)2 = ∑
i

1
pi

(
∑

j

∂ pi

∂u j
du j

)(
∑
k

∂ pi

∂uk
duk

)
= ∑

jk
G jkdu jduk (27)

where

G jk = ∑
i

1
pi

∂ pi

∂u j

∂ pi

∂uk
(28)

is the metric tensor in the manifold. Consequently, the geometric density is

ρ(u) ∝
√

detG (29)

Can this be used to assign prior probability over the manifold?
The simple answer is “generally no”: it’s dominated by the wrong properties. If the

manifold allows large gradients ∂ p/∂u to appear anywhere, then the density will be
large and prior probability will coalesce there. Yet it’s the magnitude of p that matters
in probabilistic analysis, not the gradient. Local gradients tend to be unobservable
because data have finite resolution, so they should surely not dominate the analysis.
The supposition is fundamentally misdirected.



Counter-example: Growth and decay

A user seeks two locations around the unit circle. These are the minimum and max-
imum of a periodic distribution. The allowed distributions are functions p(x) over the
periodic unit interval x ∈ [0,1), parameterised by the location u1 of the minimum value,
and the subsequent location u2 of the maximum. From u1 to u2, the function p grows as

p(x) = f
( x−u1

u2−u1

)
(30)

with a given monotonically increasing profile f . The same profile is used in reverse as

p(x) = f
( 1+u1− x

1+u1−u2

)
(31)

to give decay from u2 to the next minimum at 1+u1. The profile f
(a) is normalised

∫ 1
0 f (θ)dθ = 1 to ensure normalisation of p;

(b) is strictly positive f > 0 to avoid division by zero;
(c) is differentiable with f ′ > 0 between its end points 0 and 1;
(d) has zero slope f ′ = 0 at those end points to avoid concern about matching.

Direct evaluation gives(
G11 G12
G21 G22

)
=

1
(u2−u1)(1+u1−u2)

(
A B
B C

)
(32)

where A,B,C are positive constants. For example, f (t) = (8+ 6t2− 4t3)/9 gives A =
0.01762, B = 0.01273,C = 0.01636. This gives density

ρ(u1,u2) ∝
√

detG =

√
AC−B2

(u2−u1)(1+u1−u2)
4! (33)

which is not normalisable, so cannot be used as a prior probability. The proposal fails.
If the attempt is nevertheless made, then with probability one either growth is instan-

taneous (u1 = u2) or decay is instantaneous (u2 = 1+u1). That’s not what the user will
have wanted. An ecologist interested in annual cycles would view askance the sugges-
tion that either spring or autumn were instantaneous transitions between highest summer
and deepest winter.

Geometry in thermodynamics

Physicists model systems by listing the allowed states, endowed with an appropriate
counting measure (usually uniform, 1 per state). Each state i has associated observable
“coordinates” X (1)

i ,X (2)
i , . . . such as energy, volume,. . . . The system is to occupy its state

subject to constraints on those values. Those values could in principle be known exactly,
but it’s more illuminating — and realistic — to constrain only average values so that the



occupancy is somewhat uncertain, being defined by a probability distribution p restricted
by

∑
i

piX
(k)
i = 〈X (k)〉= fixed, for k = 1,2, . . .. (34)

Rational assignment of p is then uniquely defined by minimising H(p;uniform) subject
to the constraints, which produces the Gibbs distribution

pi = Z−1 e−∑k λkX (k)
i (35)

in which the “partition function”

Z(λ ) = ∑
i

e−∑k λkX (k)
i (36)

ensures the normalisation ∑i pi = 1 that must always hold.
If we call the X’s coordinates, we can equally call the Lagrange multipliers λ “forces”.

They control physical observables, so are themselves observable and carry physical
interpretations such as coolness (inverse temperature) to control energy, pressure to
control volume, and so on. The partition function encapsulates a neat summary of all
this, as its derivatives

∂ logZ
∂λk

=−∑
i

piX
(k)
i =−〈X (k)〉 (37)

are identifiable with the required constraint values. Going further, the second derivatives

∂ 2 logZ
∂λk∂λl

=
〈(

X (k)−〈X (k)〉
)(

X (l)−〈X (l)〉
)〉

(38)

identify the uncertainty covariance of the X’s around their mean values. This uncertainty
will manifest as observable fluctuations if their timescale isn’t too long.

The Gibbs distribution (35) can be viewed either as a function of the constraints 〈X〉
or as a function of the λ ’s. Taking the latter view, the distributions form a manifold
parameterised by λ , on which the metric (28) would evaluate to

Gkl = ∑
i

pi
(
X (k)

i −〈X
(k)
i 〉
)(

X (l)
i −〈X

(l)
i 〉
)
=
〈(

X (k)−〈X (k)〉
)(

X (l)−〈X (l)〉
)〉

(39)

This happens to be the same as (38) so that the geometric length element would be
simply

(d`)2 = ∑
kl

∂ 2 logZ
∂λk∂λl

dλkdλl (40)

The identification [12] is neat, but does it correspond to useful physics?



Example: Independent particles

In this simple example, the sole constraining coordinate X is energy E, which has
just two levels, E = 0 and E = 1. Each level can be occupied independently by any
of n equivalent classical particles. Accordingly there are in all 2n states, which can be
grouped into energy levels r = 0,1,2, . . . ,n, with nCr states having energy r.

Level r:

{
E = 1 • • • r particles

E = 0 • • • • • n−r particles

}
nCr states

As a function of coolness λ , the Gibbs distribution is

pr = Z−1 n!
r!(n− r)!

e−λ r (41)

with partition function

Z =
n

∑
r=0

n!
r!(n− r)!

e−λ r = (1+ e−λ )n (42)

Its first derivative gives

mean 〈E〉=−∂ logZ
∂λ

=
n

eλ +1
(43)

so that (plausibly) energy ranges from the ground state 〈E〉= 0 at infinite coolness (zero
temperature) up to 〈E〉 = n/2 with all states equally occupied at zero coolness (infinite
temperature). The physics is behaving properly.

What about geometry?

The geometric length element from (40) is

d`=
n1/2

2cosh(λ/2)
dλ (44)

which integrates to
`(λ ) = n1/2 arctansinh(λ/2) (45)

Unit length corresponds to unit fluctuation, and the full path between λ = 0 and λ = ∞

has length O(
√

n):
`(∞)− `(0) = π

2 n1/2 (46)

With only one degree of freedom λ , the geometric prior density obeys ρ ∝ d`/dλ , so is

ρ(λ ) = π
−1sech(λ/2) (47)

Low temperature (high λ ) is exponentially improbable, which might disconcert the low-
temperature physicist with a rather different prior expectation.

Is it the job of theory to dictate the domain of experimentation?



Counter-example: First-order phase change

There are again only two energy states, but internal attractions between the compo-
nents dictate that the system resides either in the unique ground state E = 0 or in any
of the en top states of energy E = n. This idealises a phase change between a cold con-
densed state (“water”) and a hot gaseous phase (“steam”) in which the n components all
evaporate into a larger volume of high-energy states. As before, the size of the system
is n.

E = n steam en states

E = 0 water 1 state

The Gibbs distribution covers the water state with no energy and en steam states with
energy n, so is

pwater = Z−1 , psteam = Z−1ene−λn , (48)

with partition function
Z = 1+ ene−λn (49)

Its first derivative gives

mean 〈E〉=−∂ logZ
∂λ

=
n

e(λ−1)n +1
(50)

which again ranges from the ground state (λ = ∞) to equal-occupancy (λ = 0). The
“boiling-point” transition at λ = 1 is sharp, with only a small interval δλ ∼ n−1 between
almost all water and almost all steam. Recall that in macroscopic thermodynamics, n
is large, of the order of Avogadro’s number 1024, so the boiling-point is very sharply
defined. This physics is correct and understood.

What about geometry?

The geometric length element from (40) is

d`=
n/2

cosh(1
2(λ −1)n)

dλ (51)

which integrates to
`(λ ) = arctansinh(1

2(λ −1)n) (52)

with total length
`(∞)− `(0)≈ π 4! (53)

This means that the transition, which involves macroscopic changes in energy and en-
tropy, is only assigned O(1) length, so that water and steam are only assigned com-
paratively minuscule geometric separation. In placing highly distinct states together,
geometry fails to reflect practical physics.

Moreover, the geometric prior density (29) for λ is

ρ(λ ) =
n/2π

cosh(1
2(λ −1)n)

(54)



If, as suggested, this were used as a prior probability, it would imply that λ was a priori
known (far more accurately than is experimentally possible) to be almost exactly 1.
Specifically,

λ = 1± π

n 4! (55)

(mean± standard deviation). In other words, a macroscopic system is known to be at its
transition temperature, just because a transition exists. That’s obviously counter-factual.

OVERALL CONCLUSIONS

Information geometry promotes the information-based (Fisher-Rao) local metric to
global status, thereby inducing macroscopic lengths and distances. That’s mathematics
but it’s not science.

It is central and critical for science that independent systems are allowed to behave
independently. The only connective that allows independence is H, which is “from-
to” asymmetric so cannot be a distance. Geometry can be imposed mathematically, but
conflicts with scientific expectation quickly appear in the very simplest of tests.

For use in science, theories should always, always, be appropriately tested, not just
developed as mathematical formalism. Testing lies at the indispensible heart of scientific
methodology, and underlies the reliable performance that is required there.
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