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Abstract. The Frangois Massieu 1869 idea to derive some améchl and thermal properties of physical systerosf
“Characteristic Functions”, was developed by Giahd Duhem in thermodynamics with the concept oémpiils, and
introduced by Poincaré in probability. This paperld with generalization of this Characteristic €ion concept by
Jean-Louis Koszul in Mathematics and by Jean-Maderiau in Statistical Physics. The Koszul-Vinb@igaracteristic
Function (KVCF) on convex cones will be presentedarnerstone of “Information Geometry” theory,idiefg Koszul
Entropy as Legendre transform of minus the logaritf KVCF, and Fisher Information Metrics as hessiithese dual
functions, invariant by their automorphisms. Ingll, Souriau has extended the Characteristic famdn Statistical
Physics looking for other kinds of invariances tigb co-adjoint action of a group on its momenturacsp defining
physical observables like energy, heat and momertsippure geometrical objects. In covariant Sounieael, Gibbs
equilibriums states are indexed by a geometricrpater, the Geometric (Planck) Temperature, withueslin the Lie
algebra of the dynamical Galileo/Poincaré groupterpreted as a space-time vector, giving to thiiengnsor a null
Lie derivative. Fisher Information metric appeassttae opposite of the derivative of Mean “Momenpirlay geometric
temperature, equivalent to a Geometric Capacitpmecific Heat. These elements has been developetithor in
[10][21].

KOSZUL CHARACTERISTIC FUNCTION/ENTROPY BY LEGENDRE DUALITY

We define Koszul-Vinberg Hessian metric on convearp cone, and observe that the Fisher informatietric
of Information Geometry coincides with the canohikaszul Hessian metric (given by Koszul forms). \&so
observe, by Legendre duality (Legendre transforrmifus Koszul characteristic function logarithnijat we are

able to introduce Koszul Entropythat plays the role of generalized Shannon Egtrop

Koszul-Vinberg Characteristic Function and Metric for convex sharp cone

Jean-Louis Koszul [1][2][3][4] and E. Vinberg\®introduced an affinely invariant hessian metrica sharp
convex coneQ. through its characteristic functiqp . In the following, Q is a sharp open convex cone in a vector

spaceE of finite dimension orR (a convex cone is sharp if it does not containfatiystraight line). In dual space
E'of E, Q is the set of linear strictly positive forms o —{0}. Q" is the dual cone of) and is a sharp open
convex cone. Iff0Q", then the intersectiom ﬂ{xD E/(x, g) :]} is bounded.G = Aut(Q) is the group of linear

transform of E that preserves). G = Aut(Q) operates o’ by [g0G = Au(Q),0fJE" thengé=&og™

Koszul-Vinberg Characteristic function definition:



Let d¢ be the Lebesgue measure Bh, the following integral:

Ya(0 = [e'ds OxDQ @
&

with Q" the dual cone is an analytic function @n, with g (x) 0]0,+co[, called theKoszul-Vinberg characteristic

function of coneQ.

The Koszul-Vinberg Characteristic Function hasftil®wing properties:
sy, is analytic function defined on the interior Of andy (x) - +» asx - 0Q

If g0Aut(Q) theny, (gx) = \detg\'lz/jg(x) and sincel G = Aut(Q) for anyt >0, we have

Yo ()= 01" @
* ¢, islogarithmically strictly convex &, (x) = log(i,, (x)) is strictly convex)

From the KVCF, could be introduced two forms deditey Koszul:

Koszul 1-forma : The differential 1-formy = dg,, = dlogy, = dy,, /¥, 3

is invariant by all automorphisms = Aut(Q) of Q. If x0Q anduOE then

(ax,u> - _.R‘t' u>_e-<z.x>d5 andg, 0-Q' 4)
o>

and

Koszul 2-formg The symmetric differential 2-form

B=Da=d’logy, (5)
is a positive definite symmetric bilinear form Bimvariant underg = Aut(Q). Da >0

This positivity is given by Schwarz inequality and

dlogyg (uv) = [(£.u)(& e de ©)
o
We can then introduce the Koszul metric based ewipus definitions:
Koszul Metric Dg defines a Riemanian structure invariant hy;t(Q), and then the Riemanian metric is given by

g=d’logy,

2 — 1 2 2 _ ’
(0% ogu (0 ) —W{ j F(&)*dé. j G(6)*d¢ ( j F(c‘)-G(f)df] }o @
with F(&) = e2™ and G = e_%<x'{><u,<‘>

2
This result is obtained using Schwarz inequalitmongdﬂ and d2|og¢,:d2‘/’_(d‘/’j where
Y Y Y

(@e(o)) = - [& u.)de 3 (d%p(oku) = [ (u.¢) de-

A diffeomorphism is used to define dual coordinate:
X =-a, = -dlogy,(X) 8)

d

With (df (%),u) = D, () = f(x+tu)- When the con&® is symmetric, the mag— x" = -a, is a bijection and

t=0

an isometry with one unique fixed point (the makifis a Riemannian Symmetric Space given by thimigtry):
(X) =x ., <x, x*> =n and g, (). (x') = cste 9)



X is characterized by = argmin{z/x(y)/yl]Qﬂ(x, y> = n} and x is the center of gravity of the cross section
{yoo'.(xy)=nfof Q"
X = [£edé/ [e*d¢ and (- x',h)=d, logyq (x) = [ (£ e “dé/ [e ¢ dg (10)
Q Q Q Q
If we setd(x) =-logy, (x), Gromov has observed that = d(x) is an injection where the closure of the image
equals the convex hull of the support and the velaithis hull is the n-dimensional volume defirmdthe integral
of the determinant of the hessian of this functipfx) , where the magy,_, (d))zjdel(Hessﬁd)(x))).dx obeys non-
Q
trivial convexity relation given by the Brunn-Minksky inequality [M (o, + @, )" 2[M (@, )]'" +[M (@, )]'".
Koszul Entropy and its barycenter

From this last equation, we can deduce tKeszul Entropy” defined as Legendre Transform af(x) minus

logarithm of Koszul-Vinberg characteristic functian

O (x') =(xx ) -d(x) With X' =D, @ andx=D " whered(x) = -logy, (x) (11)

@ () =((0,®)(x).x )-o|(D,@)* ()] Ox O{D,®(x)/x00Q) (12)

By definition of Koszul-Vinberg Characteristic fuiman, and by use that—<g,x>:|oge‘<<’-x> ,we can write:

- < X, x> = Ilog e ¥ glENg gy Ie’“‘”d{ (13)
Q Q

and

® (x') =(xX )~ ®(x) = - [loge ™ e “de/ [e'Vde +log [ de
Q' Q' Q'

o (X) = (J-e“”df}log J‘e*<<‘,><>d<r_ J'|Ogef<<',x> .e’<"’x>d£ / J-ei<{’x>df
> p o> J
[0} (X*) =|log J'e‘<¢',x>d<(_ J|Oge—<{,x>.idf
Q' o J‘ef<<{'x>d{
L Q'
(&%) (&%) )
‘o - e ) o . .
) (X ): |Og e<¢',x>d<(_ 7(-1(( _ |oge<{,x>.7df with 7(1{:1
(-!: c'! J‘ei<{’x>df f'!. Ie’<fvx>d<( (.!. J‘ef@x)dg
L Q' o >
~(£,x) ~(£,%) (14)
v, e e
O (X)=| - |77 log ———|d¢
J*femdf [e“de
L Q' Q'

In this last equationp &) = e (¥ je’wd{ appears as a density, and the Legendre transfgign looks like the
4

classical Shannon Entropy, named in the follovKiogzul Entropy
o == p, (&)logp, (£)dE (15)
>
~(x&)-log f& e

With p.(&) = e ey J'e‘<€'-><>dé: —e P =g e and y* = jgr p (&)dé (a6)
&

o



We will call b.(&) = e’ the Koszul Density, with the property that:

J'e*mdf
log p, (&) =—(x&) - Iog[e (X ge = ~(x&)+®(x) (17)
and g,[~log p, (&)] = (xX ) ~#(x) (18)

We can observe that:

®(x) = -log [e“?d¢ = ~log je'[“”“‘)*“"*)]d{ = d(x) -log [e™ ¥d& .
3 J 2 19

= [e*@dé=1
)

But the development is not achieved and we havediee appeax’ ing’ (x'). For this objective, we have to write:
log p, (€) =loge™**** =loge™® @ = -0 (¢)

(20)
=@ ==[p,(€)logp,(£)dE = [ (&) p,()dE = ' (X)
The last equality is true if and only if we have following relation:
IREGLAGL cb*( < px(ade Sy = [£p,(&)de (21)

This condition could be written more synthetically:
Elo’ (&)|=o" (E[8]) , é0Q" (22)

The meaning of this relation is th@d&rycenter of Koszul Entropy is Koszul Entropy ofB/centef.
This condition is achieved fof' = D, @ taking into account Legendre Transform property:

Legendrdransform &' (x') = Supk X, x*> - CD(X)J

@ (X) 2<x, x*> - D(X) o (x)2 E[q;’ (5)] (23)
T ()2 [0 ()P, (DA |equalityfor X :zﬁ
Q" X

Relation of Koszul density with Maximum Entropy Principle

We will observe in this section, that Koszul depsst solution of Maximum Entropy. Classically, thensity given
by Maximum Entropy Principle] is given by:
[P (&)dE=1

Ma{— j P, (§)log px(f)df} such{® ) (24)
PO J' £.p, (&)dE = x
If we take qx({) — e—(é,x) / J‘e—<g,x>d§ o =(x&)- Ioggje SUCh that:

[a,&)de = [ede/ [el e =1

o o o (25)

~(x¢&)-log jeloXgs

loga,(£)=loge  + =~(x¢)~log [

Then by using the fact thaggx = (1-x*) with equality if and only ifx=1, we find the following:



-[p (E)Iogﬂp*({) = Ipx ( (;t?)] 3 (26)

We can then observe that:

P (f)[l q*gjdf: [ P(&)d¢ - [q,(5)de =0 (27)

becausq p,(e)d¢ = [a,(&)de =1

We can then deduce that:

~ [ . (©10g 294 <0= - [, ()log p. ()¢ < - p, (loga, (1 28)
If we develop the last inequality, using expressibig, (&):

- [ p.(©)logp, ()<~ p, (@[—(x.a ~log | e‘<*’<‘>df}df (29)
- [ p.(©)logp, ()¢ < <x, [€p, (f)df> +log [ *a¢ 30)

If we take X*zjf-Px(f)df and ¢(x):—log.fe'<x"’>dfi then we deduce that the Koszul density

~(x¢)-log [e dz

q, (&) =e*5'*>/fe*5'x>d5:e F% is the Maximum Entropy solution constrained t]yp (&)dé=1 and

[Ep(&dg=x " = [p.(E)logp,(£)dE s (xx ) - () (31)

~ [ p,(&)log p, (E)dE < &' (x) (32)

We have then observed that Koszul Entropy proviliessity of Maximum Entropy:

0.(6) = e -(5074()) with x=@*(F) and F=0(x)= dod(x) (33)
f Je oD g dx

whereg - J'gt P (E)dé and P(x) = -log J'e*<><,5>d<r (34)

SOURIAU LIE GROUP THERMODYNAMICS

Souriau [6][7][8][9] has defined Gibbs canonicasemble on Symplectic manifod for a Lie group action oM.

In classical statistical mechanics, a state ismilg the solution of Liouville equation on the pbaspace, the
partition function. As Symplectic manifolds have@mpletely continuous measure, invariant by diffegohisms,
the Liouville measurei, all statistical states will be the product of lidlle measure by the scalar function given

by the generalized partition functia?#" defined by the generalized enengy(the moment that is defined in dual
of Lie Algebra of this dynamical group) and the gstric temperaturgs, where® is a normalizing constant such
the mass of probability is equal to é':—log.[e“?“ dew- Jean-Marie Souriau then generalizes the Gibbiilegum

M

state to all Symplectic manifolds that have a dyicaingroup. To ensure that all integrals, that ved defined,

could convergethe canonical Gibbs ensemble is the largest openper subset (in Lie algebra) where these



integrals are convergent. This canonical Gibbs enmd#e is convexThe derivative ofob |, Q:ai’ is equal to the
0B
mean value of the energy (heat in thermodynamic). The minus derivative lo$ tgeneralized heap, _Q s
0p

symmetric and positive (it is a generalization eéhcapacity). Entropy is then defined by Legendre transform of
®, s=Q-d. If this approach is applied for the group of titnanslation, this is the classical thermodynamic
theory. ButSouriau has observed that if we apply this theoor hon-commutative group (Galileo or Poincaré
groups), the symmetry has been broké&Hassical Gibbs equilibrium states are no longewariant by this group
This symmetry breaking provides new equations,adised by Jean-Marie Souriau.

For each temperaturg, Jean-Marie Souriau has introduced a terf%orequal to the sum of cocycle and Heat
coboundary (with [.,.] Lie bracket):
t,(2,2,)= 1(2,,2,)+ Qad, (2,) with ad,(Z,)=[z,,Z,] (35)
This tensorf, has the following properties:

A is a symplectic cocycle (we refer to books ofpgctic geometry for cocycle definition)

. BUOKer f,

e The following symmetric tensogﬁ, defined on all values Oiadﬂ(.) is positive definite:

9,(8.21[8.2,])= 1,(z.[8.2.)) (36)

These equations are universal, because theyh@relependent of the symplectic manifold but onfytlwe
dynamical group G, its symplectic cocycte, the temperatures and the heat). Souriau called this modeLie

Groups Thermodynamics We can read in his paper this prophetical sezegeReut-étre cette thermodynamique

des groups de Lie a-t-elle un intérét mathématitjuele explains that for dynamic Galileo group (tata and
translation) with only one axe of rotation, thisetimodynamic theory is the theory of centrifuge vehdéhne
temperature vector dimension is equal to 2 (sulbygrof invariance of size 2), used to make “buttédianium
235" and “ribonucleic acid”. The physical meanin§ these 2 dimensions for vector-valued tempera@ne
“thermic conduction” and “viscosity”. Souriau saibat the model unifies “heat conduction” and “visitg’

(Fourier and Navier equations) in the same thebiiyreversible process. Souriau has applied théoith in details
for relativistic ideal gas with Poincaré group flynamical group.

We will give in the following the two others miaiheorems of Souriau on this “Lie Group Thermodhyits”.

Souriau Theorem:
Let Q be the largest open proper subsetgofLie algebra of G, such thatje—ﬂ.umdw and _[E.e’”““’dw are
M M

convergent integrals, this s&€ is convex and is invariant under every transforinmtan, where a3, is the

adjoint representation of G. Then, the variables ehanged according to:

* A&l @37)

. DL D- B(afl)ﬂ =P+ B(a)én (ﬂ) (38)



. S 5 S (39)

* Q-3.(Q+6a)=3a.(Q (40)

-39 (41)

where g is the cocycle associated with the group G andntiwenent, andg;; (¢) is the image undeg,, of the
probability measure; .

We observe that the entropy is unchanged, and® is changed but with linear dependence tg, with

consequence that Fisher Information Geometry metiscunchanged by dynamical group:

(o p)=-2 100 )] oo, (42)

0p3? B
In previous notationg — g“the adjoint representation Gfcan be written:
a,(z) =dlaxbxa™| with b=e , =2 and&=0 (43)

a3, defines an action d& on its Lie algebray, with a, is called the adjoint representation, that isnadr

representation ofs on its Lie algebrag. This Souriau theorem if based on invariance pitypef Liouville
measure.

Gibbs canonical Q-
q ensemble q
Y NN
/ \

FIGURE 1. Souriau figure on Lie Groups Thermodynamics
We will synthetize in Table 1 results of previousapters with Koszul Hessian Structure of Informatio
Geometry and the Souriau model of Statistical Risysiith the general concepts of geometric temperaheat and
capacity. Analogies between models will deal witlaracteristic function, Entropy, Legendre Transfodensity of

probability, dual coordinate systems, Hessian Metrid Fisher metric. A@:aﬁ, we observe that the Information

0B
Geometry metric|(ﬂ) :_a2q>(2[,3 - _9Q could be considered asgeneralization of “Heat Capacity Souriau
0B 0B
1
called it K the ‘Geometric Capacity When B= 1, K __0Q__0Q aj __1 0Q, then this geometric
kT 08 oT| oT | kT2 aT

capacity is related to calorific capacify.is related to the mean, aKds related to the variance 0f

1(B) :—%:varu) - IU(f)z-pB(f)dw-( | U(a.pﬁ(ﬁde “44)



Koszul Information
Geometry Model

Souriau Lie Groups
Thermodynamics Model

__ ~(£.x)
Characteristic function ®(x) =-log .[e d¢ OxOQ
Q

®(B) =-log j e"YOdw 0B0w
M

Entropy ®*(x) ==[ p, (&)log p, (£)dé

5=~ p(&)log p(é)dew

Legendre Transform @' (X) =(xx)~D(x)

M
Q) =BQ-®(h)

Density p, (&) = X< e p, (&) = ePLOre® __ e
x - T e 4 B -B.
of probability [e'de [e? @dw
o M
xO0Q and X OQ° LB0a and QDQ*
J'E.e'<<'x>d{ .[U (e Odw
Dual Coordinate Systems X = [€P(Odé = Q= [U(&).ps(&)dew=4
y & e de g [e7"Odw
o M
M
. _ OD(x) _ 0 (X) _9% and ;_9s
X == andx_iax* Q Y B 30
Hessian Metric ds® = -d’®(x) ds® = -d*o(B)
__g | 9%logp,($) 9°log p, (&)
1(x) -—E{axz} l('B):_E‘rlia,Bzﬂ
d%log [e Y d¢ 92log [e#Y@d
Fisher metric 1) ==-9"P0) _ ! g2 000D _ oghj;e v
axz aXZ (ﬁ) - 0,32 - aﬂZ
1(B) = —a:’% = —g% =K Souriau Capacity
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