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Abstract. The François Massieu 1869 idea to derive some mechanical and thermal properties of physical systems from 
“Characteristic Functions”, was developed by Gibbs and Duhem in thermodynamics with the concept of potentials, and 
introduced by Poincaré in probability. This paper deals with generalization of this Characteristic Function concept by 
Jean-Louis Koszul in Mathematics and by Jean-Marie Souriau in Statistical Physics. The Koszul-Vinberg Characteristic 
Function (KVCF) on convex cones will be presented as cornerstone of “Information Geometry” theory, defining Koszul 
Entropy as Legendre transform of minus the logarithm of KVCF, and Fisher Information Metrics as hessian of these dual 
functions, invariant by their automorphisms. In parallel, Souriau has extended the Characteristic Function in Statistical 
Physics looking for other kinds of invariances through co-adjoint action of a group on its momentum space, defining 
physical observables like energy, heat and momentum as pure geometrical objects. In covariant Souriau model, Gibbs 
equilibriums states are indexed by a geometric parameter, the Geometric (Planck) Temperature, with values in the Lie 
algebra of the dynamical Galileo/Poincaré groups, interpreted as a space-time vector, giving to the metric tensor a null 
Lie derivative. Fisher Information metric appears as the opposite of the derivative of Mean “Moment map” by geometric 
temperature, equivalent to a Geometric Capacity or Specific Heat.  These elements has been developed by author in 
[10][11]. 

KOSZUL CHARACTERISTIC FUNCTION/ENTROPY BY LEGENDRE DUALITY 

We define Koszul-Vinberg Hessian metric on convex sharp cone, and observe that  the Fisher information metric 

of Information Geometry coincides with the canonical Koszul Hessian metric (given by Koszul forms). We also 

observe, by Legendre duality (Legendre transform of minus Koszul characteristic function logarithm), that we are 

able to introduce a Koszul Entropy, that plays the role of generalized Shannon Entropy. 

Koszul-Vinberg Characteristic Function and Metric for convex sharp cone 

   Jean-Louis Koszul [1][2][3][4] and E. Vinberg have introduced an affinely invariant hessian metric on a sharp 

convex cone Ω  through its characteristic function ψ . In the following, Ω  is a sharp open convex cone in a vector 

space E  of finite dimension on R  (a convex cone is sharp if it does not contain any full straight line). In dual space 
*E of E , *Ω  is the set of linear strictly positive forms on  { }0−Ω . *Ω  is the dual cone of Ω  and is a sharp open 

convex cone. If *Ω∈ξ , then the intersection { }1,/ =∈Ω ξxExI  is bounded. ( )Ω= AutG  is the group of linear 

transform of E  that preserves Ω . ( )Ω= AutG  operates on *Ω  by ( ) *, EAutGg ∈∀Ω=∈∀ ξ  then 1.~ −= gg oξξ           

Koszul-Vinberg Characteristic function definition:  



Let ξd  be the Lebesgue measure on *E , the following integral:   
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with *Ω  the dual cone is an analytic function on Ω , with ] [+∞∈Ω ,0)(xψ , called the Koszul-Vinberg characteristic 

function of cone Ω . 

The Koszul-Vinberg Characteristic Function has the following properties: 

• Ωψ  is analytic function defined on the interior of Ω  and +∞→Ω )(xψ  as Ω∂→x  

If ( )Ω∈ Autg  then ( ) )(det
1

xggx Ω
−

Ω = ψψ  and since ( )Ω=∈ AutGtI  for any 0>t , we have  

( ) ntxtx /)(ΩΩ =ψψ                                                                                                                  (2) 

• Ωψ  is logarithmically strictly convex  ( ( ))(log)( xx ΩΩ = ψφ  is strictly convex) 

From the KVCF, could be introduced two forms defined by Koszul: 

Koszul 1-form α α α α : The differential 1-form ΩΩΩΩ === ψψψφα /log ddd                               (3) 

is invariant by all automorphisms ( )Ω= AutG  of Ω . If Ω∈x  and Eu∈  then  
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and 

Koszul 2-form ββββ : The symmetric differential 2-form  

Ω== ψαβ log2dD                     (5) 

is a positive definite symmetric bilinear form onE invariant under ( )Ω= AutG . 0>αD   

This positivity is given by Schwarz inequality and 
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We can then introduce the Koszul metric based on previous definitions: 

Koszul Metric: αD  defines a Riemanian structure invariant by ( )ΩAut , and then the Riemanian metric is given by  
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This result is obtained using Schwarz inequality, 
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A diffeomorphism is used to define dual coordinate:  

)(log* xdx x Ω−=−= ψα                                  (8) 

With )()(),(
0

tuxf
dt

d
xfDuxdf

t
u +==

=

. When the cone Ω  is symmetric, the map 
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an isometry with one unique fixed point (the manifold is a Riemannian Symmetric Space given by this isometry):  
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*x  is characterized by { }nyxyyx =Ω∈= ,,/)(minarg ** ψ  and *x  is the center of gravity of the cross section 

{ }nyxy =Ω∈ ,,*  of 
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If we set )(log)( xx Ω−=Φ ψ , Gromov has observed that )(* xdx Φ=  is an injection where the closure of the image 

equals the convex hull of the support and the volume of this hull is the n-dimensional volume defined by the integral 
of the determinant of the hessian of this function )(xΦ , where the map ( ) ( )( )∫

Ω

Φ=ΦΦ dxxHessM .)(deta  obeys non-

trivial convexity relation given by the Brunn-Minkowsky inequality  ( )[ ] ( )[ ] ( )[ ] nnn MMM /1
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/1
1

/1
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Koszul Entropy and its barycenter 

From this last equation, we can deduce the “Koszul Entropy” defined as Legendre Transform of )(xΦ  minus 

logarithm of Koszul-Vinberg characteristic function:   
)(,)( *** xxxx Φ−=Φ  with Φ= xDx*  and *

* Φ=
x

Dx   where )(log)( xx Ω−=Φ ψ                          (11) 

( ) ( )[ ] { }Ω∈Φ∈∀ΦΦ−Φ=Φ −− xxDxxDxxDx xxx /)(   )(),()( **1**1**                                                     (12) 

By definition of Koszul-Vinberg Characteristic function, and by use that xex ,log, ξξ −=− ,we can write:  
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In this last equation, ∫
−−=

*
Ω

ξ,xξ,x
x dξeep /)(ξ  appears as a density, and the Legendre transform ()*Φ  looks like the 

classical Shannon Entropy, named in the following Koszul Entropy: 
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We will call 
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But the development is not achieved and we have to make appear *x  in )( ** xΦ . For this objective, we have to write: 
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The last equality is true if and only if we have the following relation: 
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This condition could be written more synthetically: 
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The meaning of this relation is that “Barycenter of Koszul Entropy is Koszul Entropy of Barycenter”. 
This condition is achieved for Φ= xDx*  taking into account Legendre Transform property: 
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Relation of Koszul density with Maximum Entropy Principle 

We will observe in this section, that Koszul density is solution of Maximum Entropy. Classically, the density given 

by Maximum Entropy Principle] is given by: 
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Then by using the fact that ( )11log −−≥ xx  with equality if and only if 1=x , we find the following: 



ξ
ξ
ξξξ

ξ
ξξ d

p

q
pd

q

p
p

x

x
x

x

x
x ∫∫

ΩΩ








−−≤−

** )(

)(
1)(

)(

)(
log)(                       (26) 

We can then observe that: 

0)()(
)(

)(
1)(

***

=−=







− ∫∫∫

ΩΩΩ

ξξξξξ
ξ
ξξ dqdpd

p

q
p xx

x

x
x

                      (27) 

because 1)()(
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If we develop the last inequality, using expression of )(ξxq : 
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We have then observed that Koszul Entropy provides density of Maximum Entropy: 
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SOURIAU LIE GROUP THERMODYNAMICS 

Souriau [6][7][8][9] has defined Gibbs canonical ensemble on Symplectic manifold M  for a Lie group action on M. 

In classical statistical mechanics, a state is given by the solution of Liouville equation on the phase space, the 

partition function. As Symplectic manifolds have a completely continuous measure, invariant by diffeomorphisms,  

the Liouville measure λ , all statistical states will be the product of Liouville measure by the scalar function given 

by the generalized partition function Ue .β−Φ defined by the generalized energy U  (the moment that is defined in dual 

of Lie Algebra of this dynamical group) and the geometric temperature β , where Φ  is a normalizing constant such 

the mass of probability is equal to 1, ∫
−−=Φ

M

U de ωβ .log . Jean-Marie Souriau then generalizes the Gibbs equilibrium 

state to all Symplectic manifolds that have a dynamical group. To ensure that all integrals, that will be defined, 

could converge, the canonical Gibbs ensemble is the largest open proper subset (in Lie algebra) where these 



integrals are convergent. This canonical Gibbs ensemble is convex. The derivative of Φ  , 
β∂
Φ∂=Q  is equal to the 

mean value of the energy U  (heat in thermodynamic). The minus derivative of this generalized heat Q , 
β∂

∂− Q  is 

symmetric and positive (it is a generalization of heat capacity). Entropy s is then defined by Legendre transform of 

Φ , Φ−= Qs .β . If this approach is applied for the group of time translation, this is the classical thermodynamic 

theory. But Souriau has observed that if we apply this theory for non-commutative group (Galileo or Poincaré 

groups), the symmetry has been broken. Classical Gibbs equilibrium states are no longer invariant by this group. 

This symmetry breaking provides new equations, discovered by Jean-Marie Souriau.  
   For each temperature β , Jean-Marie Souriau has introduced a tensor 

βf , equal to the sum of cocycle f  and Heat 

coboundary (with [.,.] Lie bracket): 

( ) ( ) [ ]21222121 ,)(   with   )(.,,
11
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This tensor βf  has the following properties: 

• βf   is  a symplectic cocycle (we refer to books of Sympectic geometry for cocycle definition) 

•  ββ fKer ∈  

• The following symmetric tensor βg , defined on all values of  (.)βad  is positive definite: 

[ ] [ ]( ) [ ]( )2121 ,,,,, ZZfZZg βββ ββ =                                                                                                                  (36) 

   These equations are universal, because they are not dependent of the symplectic manifold but only of the 

dynamical group G, its symplectic cocycle f , the temperature β  and the heat Q. Souriau called this model “Lie 

Groups Thermodynamics”. We can read in his paper this prophetical sentence “Peut-être cette thermodynamique 

des groups de Lie a-t-elle un intérêt mathématique”. He explains that for dynamic Galileo group (rotation and 

translation) with only one axe of rotation, this thermodynamic theory is the theory of centrifuge where the 

temperature vector dimension is equal to 2 (sub-group of invariance of size 2), used to make “butter”, “uranium 

235” and “ribonucleic acid”. The physical meaning of these 2 dimensions for vector-valued temperature are 

“thermic conduction” and “viscosity”. Souriau said that the model unifies “heat conduction” and “viscosity” 

(Fourier and Navier equations) in the same theory of irreversible process. Souriau has applied this theory in details 

for relativistic ideal gas with Poincaré group for dynamical group. 

   We will give in the following the two others main theorems of Souriau on this “Lie Group Thermodynamics”. 

Souriau Theorem:  
Let Ω  be the largest open proper subset of g , Lie algebra of G, such that  ∫
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where θ  is the cocycle associated with the group G and the moment, and )(ς+
Ma  is the image under 

Ma  of the 

probability measure ς . 

We observe that the entropy s is unchanged, and Φ  is changed but with linear dependence to β ,  with 

consequence that Fisher Information Geometry metric is unchanged by dynamical group: 
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   In previous notation, 
g

aaa the adjoint representation of G can be written: 
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g
aaa  defines an action of G on its Lie algebra g ,  with 

g
a  is called the adjoint representation, that is a linear 

representation of G on its Lie algebra g . This Souriau theorem if based on invariance property of  Liouville 
measure. 

 

FIGURE 1. Souriau figure on Lie Groups Thermodynamics 
We will synthetize in Table 1 results of previous chapters with Koszul Hessian Structure of Information 

Geometry and the Souriau model of Statistical Physics with the general concepts of geometric temperature, heat and 
capacity. Analogies between models will deal with characteristic function, Entropy, Legendre Transform, density of 

probability, dual coordinate systems, Hessian Metric and Fisher metric. As 
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Dual Coordinate Systems 
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