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Abstract. The main object of this tutorial article is first to review the main inference tools using
Bayesian approach, Entropy, Information theory and their corresponding geometries. This review is
focused mainly on the ways these tools have been used in data, signal and image processing. After a
short introduction of the different quantities related to the Bayes rule, the entropy and the Maximum
Entropy Principle (MEP), relative entropy and the Kullback-Leibler divergence, Fisher information,
we will study their use in different fields of data and signal processing such as: entropy in source
separation, Fisher information in model order selection, different Maximum Entropy based methods
in time series spectral estimation and finally, general linear inverse problems.
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INTRODUCTION

Bayesian inference is nowadays one of the dominant approaches to statistical inference.
The word Bayesian refers to the influence of Thomas Bayes [1], who introduced what
is now known as Bayes’ theorem even if the idea has been developed prior to him by
Pierre-Simon de Laplace [2] 1.

Whatever the answer to the footnote question, the main idea is that a probability
law P(X) assigned to a quantity X represents our state of knowledge about it [3].
Before starting new observation and gathering new data, we have an a priori probability
law. When a new observation (data D) on X is available (direct or indirect), we gain
some knowledge via the likelihood P(D|X). Then, our state of knowledge is updated
combining P(D|X) and P(X) to obtain an a posteriori law P(X |D) which represents the
new state of knowledge on X . This is the main message of the Laplace or Bayes rule
which can be summarized as: P(X |D) ∝ P(D|X)P(X). Some more details will be given
in the following sections.

Shannon [4] introduced the notion of Quantity of Information In associated to one of
the possible values of xn of X with probabilities P(X = xn) = pn to be In = ln 1

pn
=− ln pn

and the Entropy H as the expected value of it: H = −∑
N
n=1 pn ln pn. This notion of En-

tropy, which has no direct link with entropy in thermodynamics, became the foundation

1 A question to the community: Shall we change Bayes to Laplace and Bayesian to Laplacien?



of the information theory in many data analysis and science of communication. More
one details and extensions will be given in following sections.

Up to now, we did not yet discuss how to assign a probability law to a quantity. For
the discrete values variable, when X can take one of the N values {x1, · · · ,xN} and when
we do not know anything else about it, Laplace proposed the Principe d’indifférence
where P(X = xn) = pn =

1
N ,∀n = 1, · · · ,N. But, what if we know more but not enough

to be able to assign the probability law {p1, · · · , pN} completely? For example, if we
know that the expected value ∑n xn pn is d. This question is an ill-posed problem (in
the mathematical sense of Hadamard) in the sense that the solution is not unique. We
can propose many probability distributions which satisfies the constraint imposed by
this problem. To answer to this question, Jaynes [5, 6, 7] introduced the Principle of
Maximum Entropy as a tool for assigning a probability law to a quantity on which we
have some incomplete or macroscopic (expected values) information. Some more details
about the optimization and expression of the solution and the algorithm to compute it
will be given in the following sections.

Kullback [8] was interested in comparing two probability laws and introduced a tool
to measure the quantity of information gain of a new probability law with respect to
a reference one. This tool is called either the Kullback-Leibler (KL) divergence or the
relative entropy. This tool has also been used to update a prior law when new pieces of
information in the form of expected values are given. As we will see later, this tool can
be used as an extension to MEP of Jaynes.

Fisher [9] wanted to measure the amount of information that a random variable X car-
ries about an unknown parameter θ upon which its probability law p(x|θ) depends. The
partial derivative with respect to θ of the logarithm of this probability law, called the log-
likelihood function for θ , is called the score. He showed that the first order moment of
the score is zero, but its second order moment is positive and is also equivalent to the ex-
pected values of the second derivative of log-likelihood function with respect to θ . This
quantity is called the Fisher information. It is also shown that for the small variations of
θ , the Fisher information induces locally a distance in the space of parameters Θ, if we
had to compare two very close values of θ . In this way, the notion of Geometry of infor-
mation is introduced. We must be careful here that this geometrical property is related to
the space of the parameters Θ for small changes of the parameter for a given family of
parametric probability law p(x|θ) and not in the space of probabilities. However, for two
probability laws p1(x) = p(x|θ1) and p2(x) = p(x|θ2) in the same exponential family,
the Kullback-Leibler divergence KL(p1|p2) induces a Bregmann divergence B(θ1|θ2)
between the two parameters.

At this stage, we have almost introduced all the necessary tools that we can use in
different levels of data, signal and image processing. In the following, we give a little
more details for each of these tools and their inter-relations. Then, we review a few
examples of their use in different applications. As examples, we see how these tools
can be used in data model selection, in Independent Components Analysis (ICA) and
sources separation, in spectral analysis of the signals and in inverse problems.



BAYES OR LAPLACE RULE

Let introduce the things very simply. If we have two discrete valued related variables X
and Y , then from the sum and product rule, we have

P(X ,Y ) = P(X |Y )P(Y ) = P(Y |X)P(X)−→ P(X |Y ) = P(Y |X)P(X)

P(Y )
(1)

where P(X ,Y ) is the joint probability law, P(X) = ∑Y P(X ,Y ) and P(Y ) = ∑X P(X ,Y )
are the marginals and P(X |Y ) = P(X ,Y )/P(Y ) and P(Y |X) = P(X ,Y )/P(X) are the
conditionals.

This relation is easily extended to the continuous valued variables

p(x|y) = p(y|x) p(x)
p(y)

(2)

with
p(y) =

∫
p(y|x) p(x)dx. (3)

More simply, the Bayes’ rule is often written as:

p(x|y) ∝ p(y|x) p(x). (4)

No need for more sophisticated mathematics here if we want to use this approach. The
main use of this rule is in particular when X can not be observed (unknown quantity)
but Y is observed and we want to infer on X . In this case, the terms p(y|x) is called
likelihood (of unknown quantity X in the observed data y), p(x) is called a priori and
p(x|y) a posteriori. The likelihood is assigned using the link between the observed Y and
the unknown X and p(x) is assigned using the prior knowledge about it. The Bayes or
Laplace rule then is a way to do state of knowledge fusion. Before doing any observation,
our state of knowledge is represented by p(x) and after the observation of Y it becomes
p(x|y). However, in this approach, a very important preliminary step the assigning of
p(x) and p(y|x). As noted in the introduction and as we will see later, we need other
tools for this step. Another important step is after: how to use p(x|y) to summarize
it?. For example, compute the Maximum A Posteriori (MAP) solution, the Expected
A Posteriori (EAP) solution, the domains of X on which the probabilities are higher
than other places or any other questions such as median or quantiles. We can also just
explore numerically the whole space of the distribution using the Markov Chain Monte
Carlo (MCMC) or any other sampling techniques. In the scalar case (one dimension), all
these computations can be done numerically very easily. For the vectorial case, when the
dimensions become large, we need to develop specialized approximation methods such
as Bayesian Variational Approximation (BVA) and algorithms to do these computations.

QUANTITY OF INFORMATION AND ENTROPY

To introduce the quantity of Information and the Entropy, Shannon first considered a
discrete valued variable X taking values {x1, · · · ,xN}with probabilities {p1, · · · , pN} and



defined the quantities of information associated to each of them as In = ln 1
pn

= − ln pn
and so its expected value as the Entropy:

H [X ] =−
N

∑
i=1

pi ln pi. (5)

Later, this definition is extended to the continuous case by:

H [X ] =−
∫

p(x) ln p(x)dx. (6)

By extension, if we consider two related variables (X ,Y ) with the probability laws:
joint p(x,y), marginals: p(x), p(y) and conditionals: p(y|x), p(x|y), we can define,
respectively, the joint entropy:

H [X ,Y ] =−
∫∫

p(x,y) ln p(x,y)dxdy, (7)

as well as H [X ], H [Y ], H [Y |x] and H [X |y].
So, for any well defined probability law, we can have an expression for its entropy.

H [X ] should better be noted H [p(x)].

RELATIVE ENTROPY OR KULLBACK-LEIBLER DIVERGENCE

Kullback wanted to compare the relative quantity of information between two probabil-
ity laws p1 and p2 on the same variable X . Two related notions have been defined:

• Relative Entropy of p1 with respect to p2:

D [p1 : p2] =−
∫

p1(x) ln
p1(x)
p2(x)

dx (8)

and
• Kullback-Leibler Divergence of p1 with respec to to p2 :

K [p1 : p2] =−D [p1 : p2] =
∫

p1(x) ln
p1(x)
p2(x)

dx (9)

We may note that:

• D [p1 : p2] is invariant with respect to scale change, but is not symmetric.
• A symmetric quantity can be defined as:

J [p1, p2] = D [p1 : p2]+D [p2 : p1] . (10)



MUTUAL INFORMATION

The notion of Mutual Information is to compare two related variables Y and X which is
defined as:

I [Y,X ] = H [X ]−H [X |Y ] = H [Y ]−H [Y |X ] (11)

or equivalently as:
I [Y,X ] = D [p(X ,Y ) : p(X)p(Y )] . (12)

With this definition, we have the following properties:

H [X ,Y ] = H [X ]+H [Y |X ] = H [Y ]+H [X |Y ] = H [X ]+H [Y ]− I [Y,X ] (13)

and
I [Y,X ] = EX {D [p(Y |X) : p(Y )]}= EY {D [p(X |Y ) : p(X)]} . (14)

We may also remark the following property:

• I [Y,X ] is a concave function of p(Y ) when p(X |Y ) is fixed and a convex function
of p(X |Y ) when p(Y ) is fixed.

• I [Y,X ]≥ 0 with equality only if X and Y are independent.

MAXIMUM ENTROPY PRINCIPLE (MEP)

One step before applying the probability rules is to assign a probability law to a quantity.
MEP can be used as a natural tool to do this when the available information on that
quantity is the form of:

E{φk(X)}= dk, k = 1, . . . ,K. (15)

where φk are any known functions. First, we assume that such probability laws exist by
defining

P =

{
p(x) :

∫
φk(x)p(x)dx = dk, k = 0, . . . ,K

}
with φ0 = 1 and d0 = 1 for the normalization purpose. Then, the MEP writes as an
optimization problem:

pME(x) = argmax
p∈P

{
H [p] =−

∫
p(x) ln p(x)dx

}
(16)

whose solution is given by:

pME(x) =
1

Z(λ )
exp

[
−

K

∑
k=1

λkφk(x)

]
(17)



where Z(λ ), called the partition function, is given by: Z(λ ) =
∫

exp[−∑
K
k=1 λkφk(x)]dx

and λ = [λ1, . . . ,λK]
t have to satisfy:

−∂ lnZ(λ )
∂λk

= dk, k = 1, . . . ,K (18)

which can also be written as: −∇
λ

lnZ(λ ) = d.
The maximum value of entropy reached is given by:

Hmax = lnZ(λ )+λ
td. (19)

This optimization can easily be extended to the use of relative entropy by replacing
H(p) by D[p : q] where q(x) is a given reference of a priori law. See [16, 8, 17, 18] and
[19, 20, 21, 22] for more details.

LINK BETWEEN ENTROPY AND LIKELIHOOD

Consider the problem of the parameter estimation θ of a probability law p(x|θ) from an
n-sample of data x = {x1, · · · ,xn}. The log-likelihood of θ is defined as

L(θ) = ln
n

∏
i=1

p(xi|θ) =
n

∑
i=1

ln p(xi|θ). (20)

Maximizing L(θ) with respect to θ gives what is called Maximum Likelihood (ML)
estimate of θ .

Noting that L(θ) depends on n, we may consider 1
nL(θ) and define:

L̄(θ) = lim
n7→∞

1
n

L(θ) = E{ln p(x|θ)}=
∫

p(x|θ ∗) ln p(x|θ)dx, (21)

where θ
∗ is the right answer and p(x|θ ∗) its corresponding probability law. We may

then remark that:

D [p(x|θ ∗) : p(x|θ)] =−
∫

p(x|θ ∗) ln
p(x|θ)
p(x|θ ∗)

dx =
∫

p(x|θ ∗) ln p(x|θ ∗)dx+ L̄(θ).

(22)
The first term in the right hand side being a constant, we derive that:

argmax
θ

{D [p(x|θ ∗) : p(x|θ)]}= argmax
θ

{L̄(θ)} .

In this way, there is a link between the Maximum Likelihood and Maximum Relative
Entropy solutions.



FISHER INFORMATION

Fisher [9] wanted to measure the amount of information that samples x= {x1, · · · ,xN} of
a variable X carry about an unknown parameter θ upon which its probability law p(x|θ)
depends. For a given sample of observation x, the function L (θ) = p(x|θ) is called the
likelihood of θ in the sample x. He called the score of x over θ the partial derivative with
respect to θ of the logarithm of this function:

S(x|θ) = ∂ ln p(x|θ)
∂θ

(23)

He also showed that the first order moment of the score is zero:

E{S(X |θ)}= E
{

∂ ln p(x|θ)
∂θ

}
= 0 (24)

but its second order moment is positive and is also equivalent to the expected values of
the second derivative of log-likelihood function with respect to θ .

E
{

S2(X |θ)
}
= E

{∣∣∣∣∂ ln p(x|θ)
∂θ

∣∣∣∣2
}

= E
{

∂ 2 ln p(x|θ)
∂θ 2

}
= F (25)

This quantity is called the Fisher information [10, 11, 12].
It is also shown that for the small variations of θ , the Fisher information induces

locally a distance in the space of parameters Θ, if we had to compare two very close
values of θ . In this way, the notion of geometry of information is introduced.

Consider D [p(x|θ ∗) : p(x|θ ∗+∆θ)] and assume that ln p(x|θ) can be developed in
Taylor series. Then, keeping the terms up to the second order, we obtain:

D [p(x|θ ∗) : p(x|θ ∗+∆θ)]' 1
2

∆θ
tF(θ ∗)∆θ . (26)

where F is the Fisher information:

F(θ ∗) = E
{

∂ 2 ln p(x|θ)
∂θ

t
∂θ

|
θ=θ

∗

}
. (27)

We must be careful here that this geometry property is related to the space of the
parameters Θ for a given family of parametric probability law p(x|θ) and not in the space
of probabilities. However, for two probability laws p1(x) = p(x|θ1) and p2(x) = p(x|θ2)
in the same exponential family, the Kullback-Leibler divergence KL(p1|p2) induces a
Bregmann divergence B(θ1|θ2) between the two parameters.

VECTORIAL VARIABLES AND TIME INDEXED PROCESS

The extension of the scalar variable to finite dimensional vectorial case is almost imme-
diate. In particular for the Gaussian case, we need to replace the variances by a covari-
ance matrix and almost all the quantities can be defined immediately. For example, for



a Gaussian vector p(x) = N (x|0,R), the entropy is given by:

H =
n
2

ln(2π)+
1
2

ln(|det(R) |) (28)

and the relative entropy of N (0,R) with respect to N (0,S) is given by:

D =−1
2

(
tr
(
RS−1)− log

|det(R) |
|det(S) |

−n
)
. (29)

The notion of time series or processes need extra definitions. For example, for a
random time series X(t), we can define p(X(t)),∀t and the expected time series x̄(t) =
E{X(t)}. For a stationary time series (when p(X(t)) does not depend on t), we can
define the correlation function Γ(τ) = E{X(t)X(t + τ)} and the spectral density as the
Fourier Transform (FT) of it:

S(ω) =
∫

Γ(τ)exp [− jωτ] dτ. (30)

With these definitions, it is easy to show that the covariance matrix of a stationary
Gaussian process is Toeplitz and we have:

lim
n−→∞

1
n

H(p) =
1

2π

∫
π

−π

lnS(ω)dω (31)

For two stationary Gaussian processes with two spectral density functions S1(ω) et
S2(ω) we have:

lim
n−→∞

1
n

D(p1 : p2) =
1

4π

∫
π

−π

(
S1(ω)

S2(ω)
− ln

S1(ω)

S2(ω)
−1
)

dω (32)

where we find the Itakura-Saito distance in Spectral analysis literature [13, 14, 15].

ENTROPY IN INDEPENDENT COMPONENT ANALYSIS AND
SOURCES SEPARATION

Given a vector of time series x(t) the Independent Component Analysis (ICA) consists in
finding a Separating matrix B such that the components y(t) = Bx(t) be as independent
as possible. The notion of entropy is used here as a measure of independence.

ICA problem has a tight link with the sources separation problem where it is assumed
that the measures time series x(t) are linear combination of the sources s(t), i.e; x(t) =
As(t) with A being the mixing matrix. The objective of sources separation is then to find
the separating matrix B = A−1.

To see how the entropy is used here, let note y = Bx or more generally yi = g([Bx]i)
where g can be any increasing monotonic function. Then,

pY (y) =
1

|∂y/∂x|
pX(x)−→ H(y) =−E{ln pY (y)}= E{ln |∂y/∂x|}−H(x). (33)

H(y) is then used as a criterion for ICA or sources separation.



ENTROPY IN PARAMETRIC MODELING AND MODEL
SELECTION

Determining the order of a model, i.e. the dimension of the vector parameter θ in a
probabilistic model p(x|θ) in many data and signal processing is an important subject.
When the order is fixed, the estimation of the parameters is a very well known problem
and there are Likelihood based or Bayesian approaches for that. The determination of
the order is however more difficult. Between the tools, we may mention the use of
relative entropy D [p(x|θ ∗) : p(x|θ)], where θ

∗ represents the vector of the parameters
of dimension k∗ et θ and the vector θ with dimension k ≤ k∗. The famous criterion
of Akaike [23, 24, 25, 26, 27] uses this quantity to determine the optimal order where
for linear models with Gaussian models and likelihood based methods, there is analytic
solutions for it [28].

ENTROPY IN SPECTRAL ANALYSIS

Entropy and MEP have been used in different ways in spectral analysis problem which
has been a great subject of signal processing. Here, we are presenting in a synthetic way,
these different approaches.

Burg’s method

The first and classical one is the Burg method[29] which can be summarized as
follows: Let X(n) be a stationary, centered process and assume we have as data a finite
number of samples (lags) of its autocorrelation function

r(k) = E{X(n)X(n+ k)}= 1
2π

∫
π

−π

S(ω)exp [jkω] dω, k = 0, . . . ,K. (34)

The question is then to estimate its spectral density function:

S(ω) =
∞

∑
k=−∞

r(k)exp [−jkω]

As we can see, due to the fact that we have only the elements of right hand for k =
−K, · · · ,+K, the problem is ill posed. To obtain a probabilistic solution, we may start
by assigning a probability law p(x) to the vector X = [X(0), . . . ,X(N−1)]t . For this, we
can use PME with the data or constraints (34). The answer is a Gaussian probability law:
N (x|0,R). For a stationary Gaussian process, when the number of samples N −→ ∞,
the expression of the entropy becomes:

H =
∫

π

−π

lnS(ω)dω. (35)



Now, Burg method consisted in maximizing H subject to the constraints (34). The
solution is:

S(ω) =
1∣∣∣∣∣ K

∑
k=−K

λk exp [jkω]

∣∣∣∣∣
2 , (36)

where λ = [λ0, · · · ,λK]
t , the Lagrange multipliers associated to the constraints (34), are

here equivalent to the AR modeling of the Gaussian process X(n).
We may note that, in this particular case, we have an analytical expression for λ ,

which gives the possibility to give an analytical expression for S(ω) as a function of the
data {r(k),k = 0, · · · ,K}:

S(ω) =
δ Γ
−1

δ

eΓ
−1e

, (37)

where Γ= Toeplitz(r(0), · · · ,r(K)) is the Correlation matrix and δ and e are two vectors
defined by δ = [1,0, · · · ,0]t and e = [1,e−jω ,e−j2ω , · · · ,e−jKω ]t .

We may note that, first we used MEP to choose a probability law for X(n). With the
prior knowledge that we have second order moments, the MEP results to a Gaussian
probability density function. Then, as for a stationary Gaussian process, the expression
of the entropy is related to the power spectral density S(ω) and as this is related to the
correlation data by a Fourier transform, a ME solution could be computed easily. This
method is called Burg’s maximum entropy method [? ].

Extension to Burg’s method

The second approach consists in maximizing the relative entropy D [p(x) : p0(x)] or
minimizing K [p(x) : p0(x)] where p0(x) is an a priori law. The choice of this prior is
important. Choosing a uniform p0(x) we find the previous case.

But choosing a Gaussian law for p0(x), the expression to maximize becomes:

D [p(x) : p0(x)] =
1

4π

∫
π

−π

(
S(ω)

S0(ω)
− ln

S(ω)

S0(ω)
−1
)

dω (38)

when N 7→∞ and where S0(ω) corresponds to the power spectral density of the reference
process p0(x).

Shore and Johnson approach

Another approach is to decompose first the process X(n) on the Fourier basis
{coskωt, sinkωt} and consider ω to be the interested variable and S(ω), normalized
properly, to be assimilated as its probability distribution function. Then, the problem
can be described as the determination of S(ω) which maximizes the entropy:

−
∫

π

−π

S(ω) lnS(ω)dω (39)



subject to the linear constraints (34). The solution is in the form of:

S(ω) = exp

[
K

∑
k=−K

λk exp [jkω]

]
. (40)

which can be considered as the most uniform power spectral density which satisfies
those constraints.

ME in the mean approach

In this approach we consider S(ω) as the expected value Z(ω) for which we have
a prior law µ(z) and we are looking for assigning p(z) which maximizes the relative
entropy D(p(z); µ(z)) subject to the constraints (34).

When p(z) is determined, the solution is given by:

S(ω) = E{Z(ω)}=
∫

Z(ω)p(z)dz. (41)

The expression of S(ω) depends on µ(z). When µ(z) is Gaussian we obtain the Rény
entropy:

H =
∫

π

−π

S2(ω)dω. (42)

If we choose a Poisson measure for µ(z), we obtain the Shannon entropy

H =−
∫

π

−π

S(ω) lnS(ω)dω, (43)

and if we choose a Lebesgue measure over [0,∞], we obtain the Burg’s entropy

H =
∫

π

−π

lnS(ω)dω. (44)

When this step is done, the next step becomes maximizing these entropies subject to
the constraints of the correlations. The obtained solutions are very different. For more
details see [29, 30, 31, 32, 33, 38, 22].

ENTROPY BASED METHODS FOR LINEAR INVERSE
PROBLEMS

Let consider the discretized linear inverse problem

y = Ax, (45)

where A is a matrix of dimensions (M×N), which is in general singular or very ill
conditioned. Even if the cases M > N or M = N may appear easier, they have the same



difficulties that the under determined case M < N that we consider here. In this case,
evidently the problem has infinite number of solutions and we need to choose one.

Between the numerous methods, we may mention the minimum norm solution:

x̂NM = argmax
{x :y=Ax}

{
Ω(x) = ‖x‖2}= At(AAt)−1y. (46)

In fact, we may choose any convex criterion Ω(x) and satisfy the uniqueness of the
solution.

The second solution is then to choose

Ω(x) =−∑
j

x j lnx j (47)

which can be interpreted as the entropy when x j > 0 and ∑x j = 1, thus assimilating x j
as a probability distribution x j = P(U = u j). The variable U can correspond (or not) to
a physical quantity. Ω(x) is the entropy associated to this variable [34, 35, 36, 37].

A second approach consists in considering x j = E
{

U j
}

or x = E{U}. Again here,U j
or U can correspond to some physical quantities or not. In any case, we know want to
assign a probability law p̂(u) to it. Noting that the data y = Ax = AE{U}= E{AU} can
be considered as the constraints on it, we may need again a criterion to determine p̂(u).
Assuming then to have some prior µ(u), we may maximize the relative entropy as that
criterion. The mathematical problem then becomes:

p̂(u) = argmax
{x :y=∫ Au p(u)du}

{D[p(u) : µ(u)]} (48)

The solution is :
p̂(u) =

1
Z(λ )

µ(u)exp
[
−λ

tAu
]

(49)

and interestingly, if we focus on x̂=E{U}, we will see that its expression depend greatly
on the choice of the prior µ(u). The following table summarizes those solutions:

µ(u) ∝ exp[−1
2 ∑ j u2

j ] x̂ = At
λ x̂ = At(AAt)−1y

µ(u) ∝ exp[−∑ j |u j|] x̂ = 1./(At
λ ±1) Ax̂ = y

µ(u) ∝ exp[−∑ j uα−1
j exp

[
−βu j

]
], u j > 0 x̂ = α1./(At

λ +β1) Ax̂ = y

In the general case, replacing (49) in (48) and defining Z(λ ) =
∫∫

µ(u)exp
[
−λ

tAu
]

du,

G(s) = ln
∫∫

µ(u)exp [−stu] du and its conjugate convex F(x) = sups {xts−G(s)}, it

can be shown easily that x̂ = E{U} can be obtained either via the dual λ̂ variables
x̂ = G′(At

λ̂ ) with λ̂ is obtained by:

λ̂ = argmin
λ

{
D(λ ) = lnZ(λ )+λ

ty
}
, (50)



or directly
x̂ = argmin

{x :Ax=y}
{F(x)} . (51)

D(λ ) is called the dual criterion and F(x) primal. However, it is not always easy to
obtain an analytical expression for G(s) and its gradient G′(s). The functions F(x) and
G(s) are conjugate convex.

KULLBACK-LEIBLER DIVERGENCE AS A TOOL FOR
APPROXIMATE BAYESIAN COMPUTATION (ABC)

In this final section, we show how the Kullback-Leibler divergence can be used in
the Bayesian approach for the computational purpose when handling high dimensional
inverse problems. To present is simply, let consider a linear inverse problem g = H f +ε

and the Bayesian approach which consists in estimating f given the observations g via
the Bayes or Laplace rule:

p( f |g,θ) ∝ p(g| f ,θ 1) p( f |θ 2) (52)

where p(g| f ,θ 1) is the likelihood, p( f ,θ 2) is the prior and and p( f |g,θ) is the posterior
and where θ = (θ 1,θ 2) are the hyper parameters of the problem. In practical applica-
tions, they also have to be inferred and so we have:

p( f ,θ |g) ∝ p(g| f ,θ 1) p( f |θ 2), p(θ) (53)

Even, in the simplest cases with choosing parametric exponential families for p(g| f ,θ 1)
and p( f |θ 2) and conjugate priors for the hyper parameters p(θ), hadling the joint poste-
rior p( f ,θ |g) for inferring both unknown quantities f and θ is not easy or even easy very
costly. We then need to do approximations. The Bayesian Variational Approximation
methods consists in first approximating p( f ,θ |g) by a simpler probability law q( f ,θ)
for example a separable one q( f ,θ) = q1( f )q2(θ) by choosing them in an appropriate
families and then use them for doing computations. A natural criterion to choose to do
this approximation is the KL divergence

KL(q : p) =
∫ ∫

q lnq/p =
∫ ∫

q1q2 ln
q1q2

p

=
∫

q1 lnq1 +
∫

q2 lnq2−
∫ ∫

q ln p

= −H(q1)−H(q2)−< ln p >q (54)

and a simple algorithm is alternate optimization: q1 = argminq1
{KL(q1q2 : p)} and q2 =

argminq2
{KL(q1q2 : p)} until the convergence. By doing so, we obtain the following

iterations:  q1( f ) ∝ exp
[
〈ln p(g, f ,θ)〉q2(θ )

]
q2(θ) ∝ exp

[
〈ln p(g, f ,θ)〉q1( f )

] (55)



where
p(g, f ,θ) = p(g| f ,θ 1) p( f |θ 2), p(θ) (56)

The last step of simplification before obtaining a practical algorithm which can be really
implemented is to choose easy to use parametric families for q1( f ) and q2(θ). For a
few example, I refer the readers to some of my PhD students papers presented in this
workshop.

CONCLUSIONS

A probability law is a tool for representing our state of knowledge about a quantity.
Bayes or Laplace rule is an inference tool for updating our state of knowledge about an
inaccessible quantity when another accessible related quantity is observed. Entropy is
a measure of information content in a variable with a given probability law. Maximum
Entropy Principle can be used to assign a probability law to a quantity when the available
information about it is in the form of a limited number of constraints on that probability
law. Relative entropy and Kullback-Leibler divergence are tools for updating probability
laws in the same context. When a parametric probability law is assigned to a quantity and
we want to measure the amount of information gain about the parameters when some
direct observations of that quantity is available, we can use the Fisher information. The
structure of the Fisher information geometry in the space of parameters is derived from
the relative entropy by a second order Taylor series approximation. All these rules and
tools are used currently in different ways in data and signal processing. In this paper a
few examples of the ways these tools are used in data and signal processing problems are
presented. One main conclusion is that each of these tools has to be used in appropriate
contexts. The example in spectral estimation show that it is very important to define the
problems very clearly at the beginning and use appropriate tools and interpret the results
appropriately.
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