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Summary

Currently the Riemannian geometry of symmetric

positive definite (SPD) matrices is gaining

momentum as a powerful tool in a wide range of

engineering applications such as image, radar and

biomedical data signal processing.

If the data is not natively represented in the form of

SPD matrices, often we may summarize them in

such form, typically estimating covariance matrices

of the data. However, once we manipulate the

covariance matrices on the Riemannian manifold

we lose the representation in the original data

space. For instance, we can evaluate the

geometric mean of a set of covariance matrices,

but not the geometric mean of the data generating

the covariance matrices, the space of interest in

which the geometric mean can be interpreted. As a

consequence, Riemannian information geometry is

often perceived by non-experts as a “black-box”

tool and this perception prevents a wider adoption

in the scientific community.

Hereby we show that this limitation can be

overcome by constructing a special form of SPD

matrix embedding both the covariance structure of

the data and the data itself. Incidentally, whenever

the original data can be represented in the form of

a generic data matrix (not even square), this

special SPD matrix describes exhaustively and

uniquely the data up to second-order statistics.

This is achieved embedding the covariance

structure of both the rows and columns of the data

matrix, allowing naturally a wide range of possible

applications and bringing us over and above just

an interpretability issue.

Method
Given realization of data in the form of an RxC matrix 

consider first the following data expansion:

where T=R+C and I is the identity matrix. Now, consider its 
associated Gram matrix (covariance structure) 
scaled by 1/2α such as

Now, any manipulation of Ci on the Riemannian manifold will enforce 
a unique corresponding manipulation on its block Xi , allowing the 
interpretation of our manipulations in the original space of the data 
matrix Xi , whatever it represents.

Example: 

moving images along geodesics in the SPD manifold

An image can be represented by a generic (not SPD) matrix, however 
once we represent images Xi by matrices Ci  we can manipulate them 
on the SPD manifold. 

In this example the problem is: given image A (a low-resolution color 
image) and B (an high-resolution image), get image C (a color image 
with high resolution).
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