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Institut de Mathématiques de Bordeaux
Thales Air Systems

Abstract
We focus on the study of time-varying paths in the two-dimensional hyperbolic space, and our aim is to define

a reparameterization invariant distance on the space of such paths. We adapt the geodesical distance on the space
of parameterized plane curves given by Bauer et al. in [1] to the space Imm([0, 1],H) of parameterized curves in
the hyperbolic plane. We present a definition which enables to evaluate the difference between two curves, and
show that it satisfies the three properties of a metric. Unlike the distance of Bauer et al., the distance obtained takes
into account the positions of the curves, and not only their shapes and parameterizations, by including the distance
between their origins.

Introduction
Todays surface radars face a new challenge: detecting small, low-altitude targets, melted in strongly
inhomogeneous environments, which lead to the non-stationarity of the radar signal. The ultimate
aim of the approach presented in this article is to define a CFAR (Constant False Alarm Rate) detec-
tor optimized for the hypothesis of a non-stationary signal.

The detector yet to define is based on a statistical analysis of the radar signal, which we study
as a time-varying path in a differential manifold. We assume that the signal is locally stationary,
and we represent each stationary portion by an autoregressive process, the parameters of which -or
equivalently, the covariance matrix of which- we are looking to estimate. Depending on the chosen
representation -coefficients of the autoregressive model or covariant matrix- a stationary portion of
the time-varying radar signal can be seen as a path in the corresponding manifold -the Poincaré disk
or the space of Toeplitz matrices. We are then confronted with the study of oriented paths -or curves-
in differential manifolds, and a key point is to be able to compute the distance between two curves.

Here, we place ourselves in the two-dimensional hyperbolic space, of which the Poincaré disk is a
possible representation, and study the curves which lie in that space.

Objective
Our aim is to find a satisfying definition of distance between two curves in the hyperbolic plane.
We want our distance to be invariant under reparameterization, that is we want to induce a distance
on the shape space.

Distance on the space of parameterized curves in H
Bauer et al. suggested such a metric on the space of plane curves in [1]. They first define a Riemannian
metric G on the space P = Imm(S1,R2) of parameterized plane curves, which is reparameterization
invariant and therefore induces a Riemannian metric on the shape space S = Imm(S1,R2)/Diff(S1).
The geodesical distances in P and in S are then linked by the following property

dist(C0, C1) = inf
φ∈Diff(S1)

dist(c0, c1 ◦ φ),

where C0 and C1 are the natural projections of c0 and c1 from P onto S. The simplest example of a
reparamerization invariant metric on the space Imm(S1,R2) is the L2-metric

Gc(h, k) =

∫
S1
〈h, k〉ds,

where c ∈ Imm(S1,R2) is a curve, h, k ∈ TcImm(S1,R2) are infinitesimal deformations and we
integrate over arc-length ds in order to have the reparamaterization invariance. Unfortunately, the
geodesic distance induced by this metric on the shape space vanishes, as was shown in [2]. That is
why Bauer et. al look into the family of first-order Sobolev metrics

G
a,b
c (h, h) =

∫
S1
a2〈Dsh, n〉2 + b2〈Dsh, v〉2ds.

They show that it can be obtained as the pullback of the L2-metric in the space C∞(S1,R3) of curves
in space, by a certain transformationRa,b. In the case of plane curves, the image of this transformation
is the set of curves with values in a certain cone Ca,b. Therefore the geodesic distance corresponding
to the metric G is simply the pointwise distance between the image curves in that cone

dist(c, d) =

∫ 2π

0
distCa,b(R(c)(θ), R(d)(θ))dθ.

We try to adapt this distance to the space of curves in the hyperbolic plane.

A first definition
We consider the transformation Ra,b : Imm([0, 1],H)→ C∞([0, 1], TH× R+):

Ra,b(c) = ||ċ||1/2
(
a

(
v
0

)
+
√
4b2 − a2

(
0
1

))
For a given curve c ∈ Imm([0, 1],H), the image Ra,b(c)(t) of each point c(t) belongs to a cone placed
above c(t), and so we use parallel transport to bring every image vector in the same cone. For each
t ∈ [0, 1], we first send the image vectorsR(c)(t) andR(d)(t) of both curves on the image cones based
at their respective origins Cc(0) et Cd(0), and then we parallel transport one of the two vectors from
one cone onto the other, for example from Cd(0) onto Cc(0), along the geodesic γ that connects them,
as illustrated in figure 1. Once both vectors are in the same cone, we compute the distance between
them in the cone that contains them. We add the length of the geodesic γ in order to take into account
the relative positions of the curves.

dist(c, d) =
√
d2γ(c, d) + `2(γ), (1)

where

d2γ(c, d) =

∫ 1

0
dist2Cc(0)

(
P t→0
c (R(c)(t)), P 1→0

γ ◦ P t→0
d (R(d)(t))

)
dt.

Results
•We find that the parallel transport of a vector u ∈ Tc(t)H along a curve c = (x, y) to its origin c(0)

is obtained by a rotation of angle b(t) coupled with homothety of ratio k(t), with
b(t) =

∫ t
0
ẋ(τ )
y(τ )

dτ and k(t) =
y(t)
y(0)

(Poincaré half-plane),

b(t) =
∫ t
0

xẏ−yẋ
1−(x2+y2)(τ ) dτ and k(t) =

√
1−r(t)2
1−r(0)2 (Poincaré disk).

• The distance on the cone Ca,b ∈ TH×R+ is the same as the distance on the cone Ca,b of R3 given
by Bauer et al.

• The function defined by (1) is invariant under a single reparameterization,

dist(c ◦ φ, d ◦ ψ) = dist(c, d),

which assures the symmetry of the distance on the shape space.

• The function defined by (1) does not verify the triangular inequality, and is therefore not a distance
function. This can be seen with the example shown in figure 2, of a triangle of geodesics and por-
tions d and e of geodesics obtained by parallel transporting another portion c of geodesic along γ1
and then γ2 respectively. Then we have dγ1(c, d) = dγ2(d, e) = 0 but dγ3(c, e) > 0, and if we make
c long enough, then dγ3(c, e) will outgrow the difference of length between ˆγ1γ2 and γ3.

A better definition of the distance
In order to overcome the problem highlighted by the example of figure 2, we modify the previous
definition in the following way :

dist(c, d) = inf
γ path of H

γ(0) = c(0), γ(1) = d(0)

√
d2γ(c, d) + `2(γ). (2)

Results
• The function defined by (2) is a distance function (equality of indiscernibles, symmetry, triangular

inequality). The infimum over the paths connecting the two origins of the curve make the example
of figure 2 no longer a problem.

• The interesting properties of the precedent definition still hold.

Figure 1: Illustration of our distance
Figure 2: Examples of curves for which distance (1) does not
verify the triangular inequality

Conclusions
•We were able to define a first function which measures the disparity between two curves of the

two-dimensional hyperbolic space. It takes into account not only the shape and parameterization,
but also the difference of position. Two curves that differ only by translation will not be considered
the same.

•As this function failed to verify the triangular inequality, we modified its definition to obtain a
second function which proved to be a distance function.

• Since it is invariant by a single reparameterization, it will induce a distance function on the shape
space.

• The key point now resides in whether we can equip the space of parameterized curves
Imm([0, 2π],H) with a Riemannian structure, i.e. whether the distance presented in this article
corresponds to the geodesical distance of a certain scalar product.

Acknowledgements
This research was supported by Thales Air Systems and the french MoD DGA (Direction Générale
de l’Armement).

References
[1] M. Bauer, M. Bruveris, C. Cotter, S. Marsland, P. W. Michor, Constructing reparametrization invariant metrics on

spaces of plane curves, arXiv:1207.5965v1 [math.DG] 25 Jul 2012.

[2] M. P. Michor and D. Mumford, Vanishing geodesic distance on spaces of submanifolds and diffeomorphisms, Doc.
Math.,10:217-245 (electronic), 2005.


