Most Likely Maximum Entropy for Population Analysis: a case study in decompression sickness prevention

Y. Bennani, L. Pronzato, J. Rendas Université Nice Sophia Antipolis, CNRS, I3S

Problem Formulation

• $\Theta \subset \mathbb{R}^d$ space of parameters θ , π_{θ} probability distribution over Θ ,

- Q a L-partition of Θ : $\Theta = \bigcup_{\ell=1}^{L} Q_{\ell}$, $Q_i \cap Q_j = \emptyset, i \neq j$,
- $\blacktriangleright p_{\pi_{\theta},Q}$ the probability law induced by π_{θ} on Q : $p_{\pi_{\theta},Q_{\ell}} = \int_{Q_{\ell}} d\pi_{\theta}$.

 $\tilde{p}_{Q^{(n)}}$ empirical estimate of $p_{\pi_{\theta},Q^{(n)}}, \nu_n = \frac{N_n}{\sum_{n'=1}^N N_{n'}}$

- ▶ <u>Data</u>: samples from distributions laws $\{p_{\pi_{\theta},Q^{(n)}}\}_{n=1}^{N}$ determined by N distinct L-partitions: $G_i^n \sim p_{\pi_a, Q^{(n)}}, i = 1, \dots, N_n, n = 1, \dots, N, \quad G_i^n \in \{1, \dots, L\}.$
- Goal : Determination of π_{θ} from the N observed samples.
- ► Log-likelihood :

$$\mathscr{L}(\pi_{\theta}) = -\sum_{n=1}^{N} \nu_n \left[\mathcal{D}_{KL} \left(\tilde{p}_{Q^{(n)}} || p_{\pi_{\theta}, Q^{(n)}} \right) + \sum_{n=1}^{N} H \left(\tilde{p}_{Q^{(n)}} \right) \right]$$

 \mathcal{D}_{KL} : Kullback-Leibler divergence; H: Shanon entropy.

Application : Decompression sickness

- ▶ Accidents due to formation of gas bubbles due to a fast decrease in diver's depth (fast reduction of pressure)
- ▶ Only the maximum gas volume $B(\theta, P_i)$ is measured through a (known) quantification $\mathcal{Q} \rightarrow$ grades
- From observations of grades G_i we only know that $\theta_i \in \{\theta : \mathcal{Q}(B(\theta, P_i)) = G_i\}$.

NPMLE

- support of $\hat{\pi}_{\theta}$ is confined to \mathcal{P} , $(|\mathcal{P}| = K)$ a subset of the intersections of the elements of $\{Q^{(n)}\}_{n=1}^N$ elements,
- \blacktriangleright only the probability mass **w** of the sets in \mathcal{P} can be estimated.
- ▶ non uniqueness the solution

$$\operatorname*{argmax}_{\mathbf{w}} \sum_{n=1}^{N} \sum_{\ell=1}^{L} \tilde{p}_{Q_{\ell}^{(n)}} \log \mathbf{B}_{\ell}^{(n)} \mathbf{w}$$

 $\mathbf{B}_{\ell}^{(n)}$ the ℓ -th row of a $(L \times K)$ binary matrix describing the link between observations G_{i}^{n} and elements of \mathcal{P} .

▶ optimization very fast with the modification of Vertex Exchange Method (Harmann et al, Statistics & Probability Letters(2007)).

Results

Most Likely Maxent

- ▶ In the large sample where $(N_n \to \infty)$ we should have $\tilde{p}_{Q^{(n)}} \to p_{\pi_{\theta},Q^{(n)}}$
- ▶ Dudik et al. (Journal of Machine Learning Research, 2007) propose a generalized maxent estimator of the form : argmin $[\mathcal{D}_{KL}(\pi || q_0) + U(\mathbb{E}_{\pi} [\tilde{p}_Q])]$ with specific choice of U to express ℓ_1 $\pi \in \mathscr{P}$ or ℓ_2 -regularization, and where features \tilde{p}_Q are obtained from the same empirical distribution. • We propose to estimate π_{θ} as the Rényi-maxent (quadratic programming) that best matches
- observed frequencies : $\epsilon^* \geq 0$ the smallest value of ϵ for which there exists a solution to

$$\tilde{\pi}^{\epsilon}_{\theta} = \operatorname*{argmax}_{-} h_2(\pi) \text{ s.t}$$

of $\tilde{p}_{Q^{(n)}}$.

• We propose to use likelihood to chose the degree of regularization $\tilde{\pi}_{\mu}^{ml} = \operatorname{argmax} \mathscr{L}(\tilde{\pi}_{\mu}^{\epsilon})$ $\tilde{\pi}^{\epsilon}_{\rho}, \epsilon > \epsilon^{\star}$

unstable solution not physically plausible biological model of a population

has larger support than $\hat{\pi}_{\theta}$, still large regions with zero mass

▶ Leave-one-out-cross-validation, compare kolmogorov and total variation distances between estimated and observed frequencies.

$$\left\|\Sigma^{(n)^{-1/2}}\left(p_{\pi_{\theta},Q^{(n)}}-\tilde{p}_{Q^{(n)}}\right)\right\|_{\infty} \leq \epsilon, \ \forall n,$$

 $h_2(\cdot)$: Rényi-entropy of order 2; $\Sigma^{(n)}$: $L \times L$ covariance matrix of the empirical distribution

▶ π_{θ}^{ml} the most efficient estimator in terms of prediction.

MaxEnt 2014