Bayesian Approaches in Acoustic Source Localization and Imaging

Ning CHU, Ali MOHAMMAD-DJAFARI, Nicolas GAC, José PICHERAL

Abstract

- Background: Acoustic source localization and power reconstruction from limited noisy measurements on microphones.
- Challenges: Ill-posed inverse problem, low spatial resolution at low frequencies, time-consuming for large imaging.
- Motivation: Super resolution, robustness to noises, large dynamic range, efficient imaging on vehicle surface in wind tunnel.
- Contribution: Beamforming, deconvolution, Bayesian approach with sparsity prior, Variational Bayesian Approximation.

1. Forward models of acoustic propagation

- Assumptions:
 - Sources: monopole, uncorrelated;
 - Background noise: i.i.d AGWN ($\sim N(0, \sigma^2)$);
 - Sensors: omni-directional, unit gain;
 - Wind tunnel: simple reverberations (refraction, reflection).

- Wind tunnel
- Microphone array
- Object
- Ground

2. State-of-the-art methods

- Beamforming [3]: Simple, fast, but low resolution.
- $y = \begin{bmatrix} y_1 & y_2 & \ldots & y_N \end{bmatrix} \in \mathbb{C}^{N \times 1}$; Beamforming power at grid n;
- Low spatial resolution (W Cincinnati) at low frequency (200Hz).
- $\text{beam} = \text{orientation and magnitude}$; Spatially variant PSF.

- Deconvolution and regularization [4, 1]: High resolution.
- $y = \begin{bmatrix} y_1 & y_2 & \ldots & y_N \end{bmatrix} \in \mathbb{C}^{N \times 1}$; Beamforming power at grid n;
- Sparsity priors on correlated sources;
- Model errors $e - \text{Beamforming}$.

- Bayesian Principle:
 to jointly infer (x, θ) from measurements y using useful prior models to obtain the most probably sparse solution of x.

- Bayesian framework of JMAP estimation:
 $y = Cx + \sigma^2_2 l + \xi$
 $(x, \theta) = \arg \max (p(x, \theta | y))$
 $p(x, \theta | y)$ Full Bayes laws
 $\theta = \{\theta_1, \theta_2\} = \{[\alpha, \sigma_2^2] \}$: Hyper-parameters
 - Robust forward model [5]: random uncertainty $\xi \sim N(0, \sigma^2)$ caused by unknown acoustic multi-propagation (refraction, reflection, etc.).
 - Sparsity enforcing prior from Generalized Gaussian family $p(x | \theta) \propto \exp(\gamma |x|^\alpha) P_s(x | \theta)$.

4. Proposed Variational Bayesian Approximation (VBA) [6]

- Y = HX + e
 $y = \begin{bmatrix} y_1 & y_2 & \ldots & y_N \end{bmatrix} \in \mathbb{C}^{N \times 1}$; Beamforming power at grid n;
 - Prior models $p(x | \theta)$ perform as regularization.
 - Non-quadratic optimization on joint estimation of x, θ.

5. Simulation at 2500Hz and SNR=0dB

- Efficient imaging for monopole and extended sources.
- 64 sensors, 33x33 pixels; 4.5 m distance; 10dB span; 101 pixels; 3.5 m sound reflection.

6. Wind tunnel experiments at 2500Hz

- Mapping acoustic power on vehicle.
- 64 sensors; 5cm discretization; 31x101 pixels; 4.5 m distance; 10dB span; 101 pixels; 3.5 m sound reflection.

7. Perspectives

- Forward model of full-wave acoustic propagation.
- Sparsity priors on constant sources.
- Real-time realization using GPU Parallelization.

References