MinNorm approximation of MaxEnt/MinDiv problems for probability tables

Patrick Bogaert and Sarah Gengler
Rebuilding probability tables
Rebuilding probability tables

• Limited number of samples → Poor estimates
Rebuilding probability tables

• Limited number of samples ⇐ Poor estimates

• How to integrate experts opinion?
Rebuilding probability tables

• Limited number of samples \implies Poor estimates

• How to integrate experts opinion?

\implies Rewriting information as \textit{equality} / \textit{inequality} constraints
Rebuilding probability tables

• Limited number of samples \Rightarrow Poor estimates

• How to integrate experts opinion?

\Rightarrow Rewriting information as **equality** / **inequality** constraints
Rebuilding probability tables

• Limited number of samples ⇒ Poor estimates

• How to integrate experts opinion?

⇒ Rewriting information as equality / inequality constraints

• Equality constraints ⇒ MaxEnt
 • Inequality constraints ⇒ Minimum divergence (MinDiv)
Rebuilding probability tables

• Limited number of samples \Rightarrow Poor estimates

• How to integrate experts opinion?

\Rightarrow Rewriting information as equality / inequality constraints

• Equality constraints \Rightarrow MaxEnt

• Inequality constraints \Rightarrow Minimum divergence (MinDiv)

\Rightarrow Need for an efficient methodology to rebuild probability tables from both equality and inequality constraints
The MaxEnt problem
The MaxEnt problem

• Equality constraints

\[
\begin{cases}
 a'_1 p = b_1 \\
 \vdots \\
 a'_k p = b_k \\
 1' p = 1
\end{cases}
\iff
\begin{pmatrix}
 a_{11} & \cdots & a_{1n} \\
 \vdots & \ddots & \vdots \\
 a_{k1} & \cdots & a_{kn}
\end{pmatrix}
\begin{pmatrix}
 p_1 \\
 \vdots \\
 p_n
\end{pmatrix}
=
\begin{pmatrix}
 b_1 \\
 \vdots \\
 b_k
\end{pmatrix}
\iff
A p = b
\]
The MaxEnt problem

• Equality constraints

\[
\begin{cases}
 a_1' p = b_1 \\
 \vdots \\
 a_k' p = b_k \\
 1' p = 1
\end{cases}
\iff
\begin{pmatrix}
 a_{11} & \cdots & a_{1n} \\
 \vdots & \ddots & \vdots \\
 a_{k1} & \cdots & a_{kn}
\end{pmatrix} \begin{pmatrix}
 p_1 \\
 \vdots \\
 p_n
\end{pmatrix} = \begin{pmatrix}
 b_1 \\
 \vdots \\
 b_k
\end{pmatrix}
\iff
Ap = b
\]

• Entropy maximized subject to the equality constraints

\[
O(p, \mu) = H(p) + \mu' (Ap - b)
\]

\[
\begin{cases}
 \frac{\partial O(p, \mu)}{\partial p} = -\ln p - 1 + A' \mu = 0 \\
 \frac{\partial O(p, \mu)}{\partial \mu} = Ap - b = 0
\end{cases}
\]
The MaxEnt problem

• Equality constraints

\[
\begin{align*}
\begin{cases}
 a'_1 p = b_1 \\
 \vdots \\
 a'_k p = b_k \\
 1' p = 1
\end{cases}
\end{align*}
\] \iff
\[
\begin{pmatrix}
 a_{11} & \cdots & a_{1n} \\
 \vdots & \ddots & \vdots \\
 a_{k1} & \cdots & a_{kn}
\end{pmatrix}
\begin{pmatrix}
 p \\
 \vdots \\
 1
\end{pmatrix} =
\begin{pmatrix}
 b_1 \\
 \vdots \\
 b_k
\end{pmatrix}
\iff
A p = b
\]

• Entropy maximized subject to the equality constraints

\[
O(p, \mu) = H(p) + \mu' (A p - b)
\]

\[
\begin{align*}
\frac{\partial O(p, \mu)}{\partial p} &= -\ln p - 1 + A' \mu = 0 \\
\frac{\partial O(p, \mu)}{\partial \mu} &= A p - b = 0
\end{align*}
\] \iff
\[
\begin{pmatrix}
 0 & A' \\
 A & 0
\end{pmatrix}
\begin{pmatrix}
 p \\
 \mu
\end{pmatrix} =
\begin{pmatrix}
 \ln p + 1 \\
 b
\end{pmatrix}
\]
The MaxEnt problem

• Equality constraints

\[
\begin{align*}
\begin{cases}
a'_1 p = b_1 \\
\vdots \\
a'_k p = b_k \\
p' = 1
\end{cases}
\iff
\begin{pmatrix}
a_{11} & \cdots & a_{1n} \\
\vdots & \ddots & \vdots \\
a_{k1} & \cdots & a_{kn} \\
1 & \cdots & 1
\end{pmatrix}
\begin{pmatrix}
p \\
\vdots \\
p
\end{pmatrix}
=
\begin{pmatrix}
b_1 \\
\vdots \\
b_k
\end{pmatrix}
\iff
\mathbf{A} p = \mathbf{b}
\end{align*}
\]

• Entropy maximized subject to the equality constraints

\[
O(p, \mu) = H(p) + \mu'(\mathbf{A} p - \mathbf{b})
\]

\[
\begin{align*}
\frac{\partial O(p, \mu)}{\partial p} &= -\ln p - 1 + \mathbf{A}' \mu = 0 \\
\frac{\partial O(p, \mu)}{\partial \mu} &= \mathbf{A} p - \mathbf{b} = 0
\end{align*}
\]

\[
\iff
\begin{pmatrix}
0 & \mathbf{A}' \\
\mathbf{A} & 0
\end{pmatrix}
\begin{pmatrix}
p \\
\mu
\end{pmatrix}
=
\begin{pmatrix}
\ln p + 1 \\
\mathbf{b}
\end{pmatrix}
\]

⇒ Sequence of MinNorm problems for solving the MaxEnt problem
MinNorm as an approximation of MaxEnt
MinNorm as an approximation of MaxEnt

- Taylor series of \(\ln p_i \) around \(p_i = k_i \)

\[
\ln p_i = \ln k_i + \sum_{j=1}^{\infty} (-1)^{j+1} \frac{1}{j k_i^j} (p_i - k_i)^j = \frac{p_i}{k_i} - 1 + \ln k_i + R_1(k_i)
\]
MinNorm as an approximation of MaxEnt

• Taylor series of \(\ln p_i \) around \(p_i = k_i \)

\[
\ln p_i = \ln k_i + \sum_{j=1}^{\infty} (-1)^{j+1} \frac{1}{jk_i^j} (p_i - k_i)^j = \frac{p_i}{k_i} - 1 + \ln k_i + R_1(k_i)
\]

• Truncating at degree one and summing over \(i \)

\[
- \sum_{i=1}^{n} p_i \ln p_i \approx - \sum_{i=1}^{n} \frac{p_i^2}{k_i} + \sum_{i=1}^{n} p_i - \sum_{i=1}^{n} p_i \ln k_i
\]

\[
= - \sum_{i=1}^{n} \frac{p_i^2}{k_i} - \sum_{i=1}^{n} p_i \ln k_i + 1
\]
MinNorm as an approximation of MaxEnt

• Taylor series of $\ln p_i$ around $p_i = k_i$

$$
\ln p_i = \ln k_i + \sum_{j=1}^{\infty} (-1)^{j+1} \frac{1}{jk_i^j} (p_i - k_i)^j = \frac{p_i}{k_i} - 1 + \ln k_i + R_1(k_i)
$$

• Truncating at degree one and summing over i

$$
- \sum_{i=1}^{n} p_i \ln p_i \simeq - \sum_{i=1}^{n} \frac{p_i^2}{k_i} + \sum_{i=1}^{n} p_i - \sum_{i=1}^{n} p_i \ln k_i
$$

$$
= - \sum_{i=1}^{n} \frac{p_i^2}{k_i} - \sum_{i=1}^{n} p_i \ln k_i + 1
$$

• In particular, if $k_i = 1/n$

$$
H(p) \simeq -n||p|| + \ln n + 1
$$
MinNorm as an approximation of MaxEnt

For any other choice of the k_i’s, by completing the square

$$p_i \ln p_i \simeq \frac{p_i^2}{k_i} + p_i \ln k_i - p_i$$

$$= \left(\frac{p_i}{\sqrt{k_i}} + \frac{1}{2} \sqrt{k_i \ln k_i} \right)^2 - \frac{1}{4} k_i \ln^2 k_i - p_i$$
MinNorm as an approximation of MaxEnt

- For any other choice of the k_i's, by completing the square

$$p_i \ln p_i \simeq \frac{p_i^2}{k_i} + p_i \ln k_i - p_i$$

$$= \left(\frac{p_i}{\sqrt{k_i}} + \frac{1}{2} \sqrt{k_i} \ln k_i \right)^2 - \frac{1}{4} k_i \ln^2 k_i - p_i$$

- Summing over i

$$H(p) \simeq -||\tilde{p}|| + c$$

Where

$$\tilde{p} = (\tilde{p}_1, \ldots, \tilde{p}_n)'$$

$$\tilde{p}_i = \frac{p_i}{\sqrt{k_i}} + \frac{1}{2} \sqrt{k_i} \ln k_i$$

$$c = \frac{1}{4} \sum_{i=1}^{n} k_i \ln^2 k_i + 1$$
The MinDiv problem
The MinDiv problem

• Divergence or Kullback-Leibler distance

\[
D(p|q) = \sum_{i=1}^{n} p_i \ln \frac{p_i}{q_i} = p' \ln \left(\frac{[p]}{[q]} \right)
\]

with

\[
\begin{align*}
D(p|q) &\geq 0 \quad \forall (p, q) \\
D(p|q) = 0 &\iff p = q
\end{align*}
\]
The MinDiv problem

- Divergence or Kullback-Leibler distance

\[D(p||q) = \sum_{i=1}^{n} p_i \ln \frac{p_i}{q_i} = p' \ln \left(\frac{[p]}{[q]} \right) \]

with \(\begin{cases} D(p||q) \geq 0 \quad \forall (p,q) \\ D(p||q) = 0 \iff p = q \end{cases} \)

- Equality constraints

\[D(p||q) = 0 \iff \text{Maximizing} \quad H(p) \]
The MinDiv problem

• Divergence or Kullback-Leibler distance

\[D(p||q) = \sum_{i=1}^{n} p_i \ln \frac{p_i}{q_i} = p' \ln \left(\frac{[p]}{[q]} \right) \]

with \[\left\{ \begin{array}{c} D(p||q) \geq 0 \quad \forall (p,q) \\ D(p||q) = 0 \iff p = q \end{array} \right. \]

• Equality constraints

\[D(p||q) = 0 \iff \text{Maximizing } H(p) \]

• Inequality constraints \(\Rightarrow \) Random vector Q
The MinDiv problem

• Divergence or Kullback-Leibler distance
\[D(p||q) = \sum_{i=1}^{n} p_i \ln \frac{p_i}{q_i} = p' \ln \left(\frac{p}{q} \right) \]
with \[\begin{cases} D(p||q) \geq 0 & \forall (p, q) \\ D(p||q) = 0 \iff p = q \end{cases} \]

• Equality constraints
\[D(p||q) = 0 \iff \text{Maximizing} \quad H(p) \]

• Inequality constraints \(\Rightarrow \) Random vector \(Q \)
\(\Rightarrow \) Minimizing the expected divergence
\[E[D(p||Q)] = -H(p) - p'E[\ln Q] \geq 0 \]
The MinDiv problem

- Divergence or Kullback-Leibler distance

\[D(p||q) = \sum_{i=1}^{n} p_i \ln \frac{p_i}{q_i} = p' \ln \left(\left[\frac{p}{q} \right] \right) \]

with \(\begin{cases}
D(p||q) \geq 0 & \forall (p,q) \\
D(p||q) = 0 & \iff p = q
\end{cases} \)

- Equality constraints

\[D(p||q) = 0 \iff \text{Maximizing} \ H(p) \]

- Inequality constraints \(\Rightarrow \) Random vector Q

\(\Rightarrow \) Minimizing the expected divergence

\[E[D(p||Q)] = -H(p) - p'E[\ln Q] \geq 0 \]

\(\Rightarrow \) Sequence of MinNorm problems for solving the MinDiv problem
The MinDiv problem

• Divergence or Kullback-Leibler distance
 \[D(p||q) = \sum_{i=1}^{n} p_i \ln \frac{p_i}{q_i} = p' \ln \left(\frac{[p]}{[q]} \right) \]
 with \(\begin{cases} D(p||q) \geq 0 & \forall (p, q) \\ D(p||q) = 0 \iff p = q \end{cases} \)

• Equality constraints
 \[D(p||q) = 0 \iff \text{Maximizing } H(p) \]

• Inequality constraints \(\Rightarrow \) Random vector Q
 \(\Rightarrow \) Minimizing the expected divergence
 \[E[D(p||Q)] = -H(p) - p' E[\ln Q] \geq 0 \]

\(\Rightarrow \) Sequence of MinNorm problems for solving the MinDiv problem

Both **Equality** and **Inequality** constraints can be processed together by MinNorm approximations
MinNorm as an approximation of MinDiv
MinNorm as an approximation of MinDiv

- Taylor series around $p_i = k_i$ and completing the square

\[
p_i \ln p_i - p_i E[\ln Q_i] \simeq \frac{p_i^2}{k_i} + p_i (\ln k_i - E[\ln Q_i]) - p_i
\]

\[
= \left(\frac{p_i}{\sqrt{k_i}} + \frac{1}{2} \sqrt{k_i} (\ln k_i - E[\ln Q_i]) \right)^2
- \frac{1}{4} k_i \left(\ln k_i - E[\ln Q_i] \right)^2 - p_i
\]
MinNorm as an approximation of MinDiv

• Taylor series around $p_i = k_i$ and completing the square

\[
 p_i \ln p_i - p_i E[\ln Q_i] \simeq \frac{p_i^2}{k_i} + p_i (\ln k_i - E[\ln Q_i]) - p_i
\]

\[
 = \left(\frac{p_i}{\sqrt{k_i}} + \frac{1}{2} \sqrt{k_i} (\ln k_i - E[\ln Q_i]) \right)^2
 - \frac{1}{4} k_i (\ln k_i - E[\ln Q_i])^2 - p_i
\]

• Summing over i

\[
 E[D(p||Q)] \simeq ||\tilde{p}|| - c
\]

Where

\[
 \tilde{p} = (\tilde{p}_1, \ldots, \tilde{p}_n)'
 \tilde{p}_i = \frac{p_i}{\sqrt{k_i}} + \frac{1}{2} \sqrt{k_i} (\ln k_i - E[\ln Q_i])
\]

\[
 c = \frac{1}{4} \sum_{i=1}^n k_i (\ln k_i - E[\ln Q_i])^2 + 1
\]
Application in drainage classes mapping
Application in drainage classes mapping

• Categorical data are found in a wide variety of applications
Application in drainage classes mapping

- Categorical data are found in a wide variety of applications
- 90% of variables collected in soil surveys are categorical
Application in drainage classes mapping

• Categorical data are found in a wide variety of applications

• 90% of variables collected in soil surveys are categorical

• Soil drainage, an important criterion in rating soils for various uses
Application in drainage classes mapping

- Categorical data are found in a wide variety of applications
- 90% of variables collected in soil surveys are categorical
- Soil drainage, an important criterion in rating soils for various uses
- However, mapping methods ⇒ Laborious ⇒ Expensive
Application in drainage classes mapping

• Categorical data are found in a wide variety of applications

• 90% of variables collected in soil surveys are categorical

• Soil drainage, an important criterion in rating soils for various uses

• However, mapping methods ⇒ Laborious
 ⇒ Expensive

• Useful to integrate secondary information to improve the prediction
Application in drainage classes mapping

• Categorical data are found in a wide variety of applications

• 90% of variables collected in soil surveys are categorical

• Soil drainage, an important criterion in rating soils for various uses

• However, mapping methods ⇒ Laborious
 ⇒ Expensive

• Useful to integrate secondary information to improve the prediction

⇒ Equality /Inequality information to improve the prediction
⇒ MinNorm approximations can deal with mathematical coding
Application in drainage classes mapping

- Belgian Lorraine, in the south of Luxembourg province

- Two information sources ⏪ 428 point observations of drainage classes
 ⏪ A lithological map as secondary information
Application in drainage classes mapping

- Belgian Lorraine, in the south of Luxembourg province
- Two information sources \Rightarrow 428 point observations of drainage classes
 \Rightarrow A lithological map as secondary information
Application in drainage classes mapping

\[\hat{P}(D=c_i | L=c_j) \ [\%] \]

<table>
<thead>
<tr>
<th></th>
<th>j=1</th>
<th>j=2</th>
<th>j=3</th>
<th>j=4</th>
<th>j=5</th>
<th>j=6</th>
</tr>
</thead>
<tbody>
<tr>
<td>i=1</td>
<td>55.6</td>
<td>62.7</td>
<td>22.2</td>
<td>28.1</td>
<td>78.6</td>
<td>67.0</td>
</tr>
<tr>
<td>i=2</td>
<td>44.4</td>
<td>34.9</td>
<td>66.7</td>
<td>61.4</td>
<td>14.3</td>
<td>31.9</td>
</tr>
<tr>
<td>i=3</td>
<td>0.0</td>
<td>2.4</td>
<td>11.1</td>
<td>10.5</td>
<td>7.1</td>
<td>1.1</td>
</tr>
</tbody>
</table>
Application in drainage classes mapping

\[\hat{P}(D=c_i | L=c_j) \] [%]

<table>
<thead>
<tr>
<th></th>
<th>j=1</th>
<th>j=2</th>
<th>j=3</th>
<th>j=4</th>
<th>j=5</th>
<th>j=6</th>
</tr>
</thead>
<tbody>
<tr>
<td>i=1</td>
<td>55.6</td>
<td>62.7</td>
<td>22.2</td>
<td>28.1</td>
<td>78.6</td>
<td>67.0</td>
</tr>
<tr>
<td>i=2</td>
<td>44.4</td>
<td>34.9</td>
<td>66.7</td>
<td>61.4</td>
<td>14.3</td>
<td>31.9</td>
</tr>
<tr>
<td>i=3</td>
<td>0.0</td>
<td>2.4</td>
<td>11.1</td>
<td>10.5</td>
<td>7.1</td>
<td>1.1</td>
</tr>
</tbody>
</table>
Application in drainage classes mapping

\[\hat{P}(D=c_i | L=c_j) \ [\%] \]

<table>
<thead>
<tr>
<th></th>
<th>j=1</th>
<th>j=2</th>
<th>j=3</th>
<th>j=4</th>
<th>j=5</th>
<th>j=6</th>
</tr>
</thead>
<tbody>
<tr>
<td>i=1</td>
<td>AMO</td>
<td>LUX</td>
<td>GRT</td>
<td>ETH</td>
<td>MIR</td>
<td>LGW</td>
</tr>
<tr>
<td>i=2</td>
<td>55.6</td>
<td>62.7</td>
<td>22.2</td>
<td>28.1</td>
<td>78.6</td>
<td>67.0</td>
</tr>
<tr>
<td>i=3</td>
<td>44.4</td>
<td>34.9</td>
<td>66.7</td>
<td>61.4</td>
<td>14.3</td>
<td>31.9</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>2.4</td>
<td>11.1</td>
<td>10.5</td>
<td>7.1</td>
<td>1.1</td>
</tr>
</tbody>
</table>
Integrating the lithological map : 4 cases

- 4 cases for coding $P_{i|j} = P(\text{Drainage}=c_j | \text{Lithology}=c_j)$

<table>
<thead>
<tr>
<th>Case 1</th>
<th>Case 2</th>
<th>Case 3</th>
<th>Case 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_{1</td>
<td>1} = 55.6$; $P_{2</td>
<td>1} = 44.4$; $P_{3</td>
<td>1} = 0.0$</td>
</tr>
<tr>
<td>$P_{1</td>
<td>2} = 62.7$; $P_{2</td>
<td>2} = 34.9$; $P_{3</td>
<td>2} = 2.4$</td>
</tr>
<tr>
<td>$P_{1</td>
<td>3} = 22.2$; $P_{2</td>
<td>3} = 66.7$; $P_{3</td>
<td>3} = 11.1$</td>
</tr>
<tr>
<td>$P_{1</td>
<td>4} = 28.1$; $P_{2</td>
<td>4} = 61.4$; $P_{3</td>
<td>4} = 10.5$</td>
</tr>
<tr>
<td>$P_{1</td>
<td>5} = 78.6$; $P_{2</td>
<td>5} = 14.3$; $P_{3</td>
<td>5} = 7.1$</td>
</tr>
<tr>
<td>$P_{1</td>
<td>6} = 67.0$; $P_{2</td>
<td>6} = 31.9$; $P_{3</td>
<td>6} = 1.1$</td>
</tr>
</tbody>
</table>

- Information content degraded from case 1 to case 4
Integrating the lithological map : 4 cases

- 4 cases for coding $P_{i|j} = P(\text{Drainage}=c_j \mid \text{Lithology}=c_i)$

<table>
<thead>
<tr>
<th>Case 1</th>
<th>Case 2</th>
<th>Case 3</th>
<th>Case 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_{1</td>
<td>1} = 55.6$; $P_{2</td>
<td>1} = 44.4$; $P_{3</td>
<td>1} = 0.0$</td>
</tr>
<tr>
<td>$P_{1</td>
<td>2} = 62.7$; $P_{2</td>
<td>2} = 34.9$; $P_{3</td>
<td>2} = 2.4$</td>
</tr>
<tr>
<td>$P_{1</td>
<td>3} = 22.2$; $P_{2</td>
<td>3} = 66.7$; $P_{3</td>
<td>3} = 11.1$</td>
</tr>
<tr>
<td>$P_{1</td>
<td>4} = 28.1$; $P_{2</td>
<td>4} = 61.4$; $P_{3</td>
<td>4} = 10.5$</td>
</tr>
<tr>
<td>$P_{1</td>
<td>5} = 78.6$; $P_{2</td>
<td>5} = 14.3$; $P_{3</td>
<td>5} = 7.1$</td>
</tr>
<tr>
<td>$P_{1</td>
<td>6} = 67.0$; $P_{2</td>
<td>6} = 31.9$; $P_{3</td>
<td>6} = 1.1$</td>
</tr>
</tbody>
</table>

- Information content degraded from case 1 to case 4
Integrating the lithological map: 4 cases

<table>
<thead>
<tr>
<th></th>
<th>Case 1</th>
<th>Case 2</th>
<th>Case 3</th>
<th>Case 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\hat{p}(D=c_i</td>
<td>L=c_j)) [%]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(j=1)</td>
<td>(j=2)</td>
<td>(j=3)</td>
<td>(j=4)</td>
</tr>
<tr>
<td>(i=1)</td>
<td>AMO: 55.6</td>
<td>LUX: 62.7</td>
<td>GRT: 22.2</td>
<td>ETH: 28.1</td>
</tr>
<tr>
<td>(i=2)</td>
<td>AMO: 44.4</td>
<td>LUX: 34.9</td>
<td>GRT: 66.7</td>
<td>ETH: 61.4</td>
</tr>
<tr>
<td>(i=3)</td>
<td>AMO: 0.0</td>
<td>LUX: 2.4</td>
<td>GRT: 11.1</td>
<td>ETH: 10.5</td>
</tr>
</tbody>
</table>

Notes:
- \(D\) represents depth, \(L\) represents lithology, \(c_i\) and \(c_j\) are categories.
- The table shows the estimated probability \(\hat{p}(D=c_i|L=c_j)\) in percentage for each combination of depth and lithology categories in the four cases.
Spatial prediction
Integrating the lithological map: 4 cases

Case 1	\(\hat{P}(D=c_i	L=c_j) \) [%]				
	j=1 AMO	j=2 LUX	j=3 GRT	j=4 ETH	j=5 MIR	j=6 LGW
i=1	55.6	62.7	22.2	28.1	78.6	67.0
i=2	44.4	34.9	66.7	61.4	14.3	31.9
i=3	0.0	2.4	11.1	10.5	7.1	1.1

Case 2						
j=1 AMO	j=2 LUX	j=3 GRT	j=4 ETH	j=5 MIR	j=6 LGW	
i=1	45.7	64.6	15.7	15.7	68.5	67.9
i=2	45.5	27.3	68.5	68.5	15.8	31.0
i=3	8.8	8.1	15.7	15.7	15.7	1.1

Case 3						
j=1 AMO	j=2 LUX	j=3 GRT	j=4 ETH	j=5 MIR	j=6 LGW	
i=1	64.6	64.7	27.3	27.3	64.7	64.5
i=2	27.3	27.3	64.6	64.7	27.3	27.4
i=3	8.1	8.1	8.1	8.1	8.0	8.1

Case 4						
j=1 AMO	j=2 LUX	j=3 GRT	j=4 ETH	j=5 MIR	j=6 LGW	
i=1	68.4	68.5	15.8	15.7	68.6	68.5
i=2	15.8	15.7	68.5	68.5	15.7	15.7
i=3	15.8	15.8	15.8	15.8	15.7	15.9
Spatial prediction
Integrating the lithological map : 4 cases

\[\hat{P}(D=c_i | L=c_j) \] \ [%]\]

<table>
<thead>
<tr>
<th>Case 1</th>
<th>(j=1)</th>
<th>(j=2)</th>
<th>(j=3)</th>
<th>(j=4)</th>
<th>(j=5)</th>
<th>(j=6)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AMO</td>
<td>LUX</td>
<td>GRT</td>
<td>ETH</td>
<td>MIR</td>
<td>LGW</td>
</tr>
<tr>
<td>(i=1)</td>
<td>55.6</td>
<td>62.7</td>
<td>22.2</td>
<td>28.1</td>
<td>78.6</td>
<td>67.0</td>
</tr>
<tr>
<td>(i=2)</td>
<td>44.4</td>
<td>34.9</td>
<td>66.7</td>
<td>61.4</td>
<td>14.3</td>
<td>31.9</td>
</tr>
<tr>
<td>(i=3)</td>
<td>0.0</td>
<td>2.4</td>
<td>11.1</td>
<td>10.5</td>
<td>7.1</td>
<td>1.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Case 2</th>
<th>(j=1)</th>
<th>(j=2)</th>
<th>(j=3)</th>
<th>(j=4)</th>
<th>(j=5)</th>
<th>(j=6)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AMO</td>
<td>LUX</td>
<td>GRT</td>
<td>ETH</td>
<td>MIR</td>
<td>LGW</td>
</tr>
<tr>
<td>(i=1)</td>
<td>45.7</td>
<td>64.6</td>
<td>15.7</td>
<td>15.7</td>
<td>68.5</td>
<td>67.9</td>
</tr>
<tr>
<td>(i=2)</td>
<td>45.5</td>
<td>27.3</td>
<td>68.5</td>
<td>68.5</td>
<td>15.8</td>
<td>31.0</td>
</tr>
<tr>
<td>(i=3)</td>
<td>8.8</td>
<td>8.1</td>
<td>15.7</td>
<td>15.7</td>
<td>15.7</td>
<td>1.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Case 3</th>
<th>(j=1)</th>
<th>(j=2)</th>
<th>(j=3)</th>
<th>(j=4)</th>
<th>(j=5)</th>
<th>(j=6)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AMO</td>
<td>LUX</td>
<td>GRT</td>
<td>ETH</td>
<td>MIR</td>
<td>LGW</td>
</tr>
<tr>
<td>(i=1)</td>
<td>64.6</td>
<td>64.7</td>
<td>27.3</td>
<td>27.3</td>
<td>64.7</td>
<td>64.5</td>
</tr>
<tr>
<td>(i=2)</td>
<td>27.3</td>
<td>27.3</td>
<td>64.6</td>
<td>64.7</td>
<td>27.3</td>
<td>27.4</td>
</tr>
<tr>
<td>(i=3)</td>
<td>8.1</td>
<td>8.1</td>
<td>8.1</td>
<td>8.1</td>
<td>8.0</td>
<td>8.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Case 4</th>
<th>(j=1)</th>
<th>(j=2)</th>
<th>(j=3)</th>
<th>(j=4)</th>
<th>(j=5)</th>
<th>(j=6)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AMO</td>
<td>LUX</td>
<td>GRT</td>
<td>ETH</td>
<td>MIR</td>
<td>LGW</td>
</tr>
<tr>
<td>(i=1)</td>
<td>68.4</td>
<td>68.5</td>
<td>15.8</td>
<td>15.7</td>
<td>68.6</td>
<td>68.5</td>
</tr>
<tr>
<td>(i=2)</td>
<td>15.8</td>
<td>15.7</td>
<td>68.5</td>
<td>68.5</td>
<td>15.7</td>
<td>15.7</td>
</tr>
<tr>
<td>(i=3)</td>
<td>15.8</td>
<td>15.8</td>
<td>15.8</td>
<td>15.8</td>
<td>15.7</td>
<td>15.9</td>
</tr>
</tbody>
</table>
Conclusions
Conclusions

- Equality \Rightarrow MaxEnt
- Inequality \Rightarrow MinDiv
Conclusions

• Equality \Rightarrow MaxEnt
• Inequality \Rightarrow MinDiv

\Rightarrow MinNorm Approximations
Conclusions

• Equality \Rightarrow MaxEnt
• Inequality \Rightarrow MinDiv

\Rightarrow MinNorm Approximations

• Approximations close to direct estimates when large amount of data
Conclusions

• Equality \(\Rightarrow\) MaxEnt
• Inequality \(\Rightarrow\) MinDiv

\[\Rightarrow\quad \text{MinNorm Approximations}\]

• Approximations close to direct estimates when large amount of data

• In most cases in environmental sciences, \textbf{few data} are at hand
Conclusions

• Equality \Rightarrow MaxEnt
• Inequality \Rightarrow MinDiv

\Rightarrow MinNorm Approximations

• Approximations close to direct estimates when large amount of data

• In most cases in environmental sciences, few data are at hand

\Rightarrow Direct estimates not reliable
Conclusions

- Equality \Rightarrow MaxEnt
- Inequality \Rightarrow MinDiv

\Rightarrow MinNorm Approximations

- Approximations close to direct estimates when large amount of data

- In most cases in environmental sciences, few data are at hand

 \Rightarrow Direct estimates not reliable \Rightarrow Inequality constraints
Conclusions

• Equality \Rightarrow MaxEnt
• Inequality \Rightarrow MinDiv \Rightarrow MinNorm Approximations

• Approximations close to direct estimates when large amount of data

• In most cases in environmental sciences, few data are at hand \Rightarrow Direct estimates not reliable \Rightarrow Inequality constraints

• Equality / Inequality useful to improve the prediction
Conclusions

• Equality \Rightarrow MaxEnt

• Inequality \Rightarrow MinDiv

\Rightarrow MinNorm Approximations

• Approximations close to direct estimates when large amount of data

• In most cases in environmental sciences, few data are at hand

\Rightarrow Direct estimates not reliable \Rightarrow Inequality constraints

• Equality / Inequality useful to improve the prediction

\Rightarrow Useful to integrate experts opinion
Thank you for your attention
References