Fisher Information Geometry of The Barycenter Map

Mitsuhiro Itoh and Hiroyasu Satoh
Aim of this talk: Fisher information geometry of barycenter map:

\[
\text{bar} : \mathcal{P}^+ (\partial X) \to X \quad \text{and}
\]

isometry problem related to a barycentrically associated map \(\varphi \) of \(X \);

\[
\begin{array}{cccc}
\mathcal{P}^+ (\partial X) & \xrightarrow{\Phi^\#} & \mathcal{P}^+ (\partial X) \\
\downarrow \text{bar} & & \downarrow \text{bar} \\
X & \xrightarrow{\varphi} & X
\end{array}
\]
Content:

1. Barycenter and barycenter map
2. Barycenter map and Fisher information metric
3. Barycentrically associated maps and isometries of \((X, g)\)
4. Poisson kernel
5. Quasi-isometries and quasi-geodesics
§1 Barycenter and barycenter map

Let \((X, g)\) be an Hadamard manifold, i.e., a simply connected, complete Riemannian manifold of curvature \(K \leq 0\), and \(\partial X\) the ideal boundary of \((X, g)\) by taking quotient

\[\partial X = \mathcal{R}_X / \sim,\]

where \(\mathcal{R}_X\) : the set of all geodesic rays on \(X\),
$\gamma, \sigma \in \mathcal{R}_X$ are asymp.equiv. ($\gamma \sim \sigma$) if

$$d(\gamma(t), \sigma(t)) < D \text{ for } t \geq 0.$$

For $\forall x \in X$ and $\theta \in \partial X \ \exists \gamma \in \mathcal{R}_X$ s.t.

$$\gamma(0) = x, \ [\gamma] = \theta$$

For $o \in X$, an arbitrary fixed point

$$S_oX \equiv \partial X; \ \ U \mapsto [\gamma], \ \gamma(t) = \exp_x tU,$$

$$S_oX := \{U \in T_oX \mid \|U\| = 1\}$$
\(\overline{X} := X \cup \partial X \) admits a cone topology, so \(\overline{X} \) is homeo to a unit closed ball.

\(d\theta \): the can.volume measure on \(\partial X \) via \(\partial X \equiv S_0X \).

- Let \(\mathcal{P}^+ (\partial X) = \mathcal{P}^+ (\partial X, d\theta) \) be the space of probability measures on \(\partial X \);

\[\mathcal{P}^+ (\partial X) = \{ \mu = f(\theta)d\theta \ll d\theta ; \; f \in C^0(\partial X) > 0 \} \]

abs.conti.w.r.t.\(d\theta \) and having conti.positive density function. So any \(\mu \in \mathcal{P}^+ (\partial X) \) is
written as

\[\mu(\theta) = f(\theta) d\theta, \theta \in \partial X, f(\theta) > 0. \]

Def. 1.1. Normalized Busemann function

\[B_\theta(x) = \lim_{t \to \infty} \{ d(x, \gamma(t)) - t \}, \quad x \in X \]

is defined on \(X \) assoc.to \(\theta \in \partial X \);
where \(\gamma = \gamma(t) : \) the geodesic, \(\gamma(0) = o, [\gamma] = \theta. \)

Note 1.1. \(B_\theta(o) = 0. \quad B_\theta(\gamma(t)) = -t, \forall t. \)
\(|(\nabla B_\theta)_x| = 1, \forall x. \quad B_\theta \) is \(C^2 \)-convex \Rightarrow
Hessian $\nabla dB_\theta \geq 0$, $\forall \theta \in \partial X$.

Ex. 1.1. $(X, g) = \mathbb{R}H^n$, $n \geq 2$; the real hyperbolic space of curv.$\equiv 1$. From Poincaré unit ball model $\partial X \cong S^{n-1}(1)$. o: origin

$$B_\theta(x) = \log \frac{|x - \theta|^2}{1 - |x|^2}, \quad B_\theta(o) = 0,$$

$$\nabla dB_\theta(U, V) = \langle U, V \rangle - \langle U, \nabla B_\theta \rangle \langle V, \nabla B_\theta \rangle.$$

- Barycenter: Following the idea of
[DouadyE’86] and [Besson et al.’95],[Besson et al.’96] we have

DEF.1.2. Let $\mu \in \mathcal{P}^+(\partial X)$. A point $y \in X$ is called a **barycenter** of μ,

if the μ-average Busemann function

$B_\mu : X \to \mathbb{R}$;

$$B_\mu(x) = \int_{\theta \in \partial X} B_\theta(x) d\mu(\theta)$$ \hspace{1cm} (1)

is critical at y.
• \(B_\mu(\cdot) \) is convex and \(B_\mu(o) = 0 \).

Theorem 1.1 (Existence and Uniqueness)

Let \((X, g)\) be an Hadamard manifold.

(i) Assume that \((X, g)\) satisfies the axiom of **visibility** and Busemann function \(B_\theta(x) \) is conti.w.r.t. \(\theta \in \partial X \).

Then any \(\mu \in \mathcal{P}^+(\partial X) \) admits a barycenter.

(ii) Assume some \(\mu_o \in \mathcal{P}^+(\partial X) \) the \(\mu \)-**average**

Hessian \(\nabla dB_{\mu_o} > 0 \).

Then, for any \(\mu \in \mathcal{P}^+(\partial X) \) the existence of
barycenter is unique. Here

\[
(\nabla dB_\mu)_x(U, V) := \int_{\partial X} (\nabla dB_\theta)_x(U, V) d\mu(\theta)
\]

DEF. 1.3 (EberleinO’Neil’73)

An Hadamard manifold \((X, g)\) satisfies **axiom of visibility**, if, for any \(\theta, \theta_1 \in \partial X, \theta \neq \theta_1\), there exists a geodesic \(\gamma : (-\infty, +\infty)\) such that \([\gamma] = \theta, [\gamma^-] = \theta_1\). The axiom of visibility is
equiv. to

$$B_\theta(x) = +\infty, \text{ when } x \to \theta_1 \neq \theta$$

([Ballmann et al.’91])

Remark. Theorem 1.1 is a generalization of [Besson et al.’95, Appendice A].

We have thus a map, called **barycenter map**

$$\text{bar} : \mathcal{P}^+(\partial X, d\theta) \to X; \mu \mapsto y,$$

when y is a barycenter of μ.
Remark. [Besson et al.’95] use barycenter to assert the Mostow rigidity of hyperbolic manifolds.

§2 Barycenter Map and Fisher Inf. Metric

The barycenter map induces a fibre space projection

\[\mathcal{P}^+ (\partial X) \downarrow \text{bar} \]

\[X \]
provided \((X, g)\) carries the Busemann-Poisson kernel \(P(x, \theta) = \exp\{-QB_\theta(x)\}\) \((Q > 0 : \text{volume entropy of } (X, g))\)

The fibre over \(x \in X\):

\[\overline{\mu}^{-1}(x) = \{\mu \in \mathcal{P}^+(\partial X), \overline{\mu}(\mu) = x\} .\]

The tangent space \(T_\mu \overline{\mu}^{-1}(x)\) is characterized;
\(\{ \tau \in T_\mu \mathcal{P}^+(\partial X), \int_{\partial X} (dB_\theta)_x(U) d\tau(\theta) = 0, \forall U \in T_x \mathcal{X} \} \)

and also as

\(\{ \tau \in T_\mu \mathcal{P}^+(\partial X), G_\mu(\tau, N^\mu_x(U)) = 0, \forall U \in T_x \mathcal{X} \} \).

Here \(G \) is the **Fisher inf. metric** on \(\mathcal{P}^+(\partial X) \);

\[
G_\mu(\tau, \tau_1) := \int_{\theta \in \partial X} \frac{d\tau}{d\mu}(\theta) \frac{d\tau_1}{d\mu}(\theta) \ d\mu(\theta),
\]

\(\tau, \tau_1 \in T_\mu \mathcal{P}^+(\partial X) \).
\[
\frac{d\tau}{d\mu}(\theta) = \frac{h(\theta)}{f(\theta)}
\] is the Radon-Nikodym derivative of \(\tau = h(\theta)d\theta\) w.r.t. \(\mu = f(\theta)d\theta\) and

\[
N^\mu_x : T_x X \rightarrow T_\mu \mathcal{P}^+(\partial X)
\]

\[
U \mapsto (dB_\theta)_x(U)d\mu(\theta)
\]

is an assoc.linear map.

Prop. 2.1 The tangent space \(T_\mu \mathcal{P}^+(\partial X)\) admits an orthogonal direct sum w.r.t. \(G\);

\[
T_\mu \mathcal{P}^+(\partial X) = T_\mu \text{bar}^{-1}(x) \oplus \text{Im} N^\mu_x, \ x = \text{bar}(\mu),
\]
\[(\dim \text{Im} N_x^\mu = \dim X)\]
\[T_\mu \bar{a}r^{-1}(x): \text{vert. subsp.} \quad \text{Im} N_x^\mu: \]
\[\text{hor. subsp. (contributing the normal bundle of the subspace } \bar{a}r^{-1}(x)\text{).}\]

- Geometric properties of the Fisher inf.metric G
Prop. 2.2 (Friedrich’91). Levi-Civita connection is
\[\nabla^G_{\tau_1} \tau = -\frac{1}{2} \left(\frac{d\tau_1}{d\mu}(\theta) \frac{d\tau}{d\mu}(\theta) - \int_{\partial X} \frac{d\tau_1}{d\mu} \frac{d\tau}{d\mu} d\mu \right) \mu \]
for constant vector fields \(\tau, \tau_1 \) on \(\mathcal{P}^+(\partial X) \).

Theorem 2.1 (Friedrich’91). \((\mathcal{P}^+(\partial X), G) \) is a space form of constant curvature \(\frac{1}{4} \), but not geodesically complete.
Theorem 2.2 (I-Satoh’14-1). Let $\mu(t)$ be a geodesic in t, of $\mu(0) = \mu$ and $\dot{\mu}(0) = \tau$ a unit vector. Then $\mu(t)$ is written as

$$
\mu(t) = \left\{ \cos \frac{t}{2} + \sin \frac{t}{2} \frac{d\tau}{d\mu}(\theta) \right\}^2 d\mu(\theta).
$$

So, every geodesic is periodic (period 2π). The length ℓ of a geodesic seg. joining μ, μ_1:

$$
\cos \frac{\ell}{2} \leq \int_{\partial X} \sqrt{\frac{d\mu_1}{d\mu}(\theta)} d\mu(\theta) =: D_f(\mu \| \mu_1)
$$
: the f-divergence, $f(u) = \sqrt{u}$ ([A-N’00]).

Theorem 2.3 (I-Satoh’14-1). Let

$\mu \in \bar{bar}^{-1}(x)$ and $\tau \in T_\mu \bar{bar}^{-1}(x)$ unit tangent vector. Then the geodesic $\mu(t) = \exp_\mu t\tau$ belongs entirely to $\bar{bar}^{-1}(x)$ if and only if $H_\mu(\tau, \tau) = 0$, where H_μ is the second fundamental form of the submanifold $\bar{bar}^{-1}(x)$ at μ.

Theorem 2.4 (I-Satoh’14-2) For any μ, $\mu_1 \in \mathcal{P}^+(\partial X)$, $\mu \neq \mu_1$ there exists a unique
geodesic $\mu(t)$ s.t. $\mu(0) = \mu$, $\mu(d) = \mu_1$, d is defined by \(\cos \frac{d}{2} = \int \sqrt{\frac{d\mu_1}{d\mu}} d\mu(\theta) = D_f(\mu || \mu_1) \).

- For a homeo $\Phi : \partial X \rightarrow \partial X$ its push-forward $\Phi_\# : \mathcal{P}^+(\partial X) \rightarrow \mathcal{P}^+(\partial X)$ is defined by

\[
(\Phi_\# \mu)(A) := \mu(\Phi^{-1} A)
\]

for any Borel set A of ∂X, or

\[
\int_{\theta \in \partial X} h(\theta) d(\Phi_\# \mu)(\theta) := \int_{\theta \in \partial X} h(\Phi(\theta)) d\mu(\theta)
\]
for any measurable function $h = h(\theta)$. See [Villani’03].

Theorem 2.5 (Friedrich’91). Every push-forward $\Phi^\#$ is an isometry w.r.t. G;

$$G_{\Phi^\#\mu}(\Phi^\#\tau, \Phi^\#\tau_1) = G_\mu(\tau, \tau_1), \tau, \tau_1 \in T_\mu\mathcal{P}^+(\partial X).$$

§3 **Barycentrically assoc.maps and isometries of** (X, g)

Prop.3.1 Let φ be an isometry of (X, g). Then

$$\text{bar}(\hat{\varphi}^\#\mu) = \varphi(\text{bar}(\mu)), \forall \mu$$
Busemann cocycle formula w.r.t. a Riemannian isometry φ of (X, g)

$$B_\theta(\varphi x) = B_{\hat{\varphi}^{-1}\theta}(x) + B_\theta(\varphi o) \quad \forall (x, \theta) \in X \times \partial X$$

See [Givarchi et al.'97]. Here $\hat{\varphi}: \partial X \to \partial X$ is an extension of φ;

$$\hat{\varphi}(\theta) := [\varphi \circ \gamma], \quad \gamma(0) = o, \quad [\gamma] = \theta \quad \text{and then}$$

$$B_\mu(\varphi x) = B_{\hat{\varphi}^{-1}_\mu}(x) + B_\mu(\varphi o)$$

$$\forall (x, \mu) \in X \times \mathcal{P}^+(\partial X).$$
So one gets Prop. 3.1.

We consider the **following situation:**

Let Φ be a homeo of ∂X. The push-forward $\Phi_\#$ yields a bijective map $\varphi : X \to X$ satisfying

$$\bar{\varphi} \circ \Phi_\# = \varphi \circ \bar{\psi}$$
We call such a \(\varphi \) a map, **barycentrically associated** to \(\Phi \).

Lemma 3.1. The composition \(\varphi \circ \varphi_1 \) of maps \(\varphi, \varphi_1 \) barycentrically assoc.to \(\Phi, \Phi_1 \), resp. is also barycentrically assoc.to \(\Phi \circ \Phi_1 \). \(\varphi^{-1} \) is barycentrically assoc.to \(\Phi^{-1} \).
§4 Poisson kernel
Consider the Dirichlet problem at the ∂X:

$$\Delta u = 0 \quad \text{in } X, \quad u|_{\partial X} = f,$$

$$f = f(\theta) \in C(\partial X) : \text{ a given data}$$

Def. 4.1. A function $P(x, \theta)$ of (x, θ) $\in X \times \partial X$ is called Poisson kernel, when (i) it is the fundamental solution of the Dirichlet
problem at the ∂X s.t. the u is described as

$$u = u(x) = \int_{\partial X} P(x, \theta) f(\theta) d\theta$$

(ii) **(Positivity and normalization)** $P(x, \theta) > 0$ for any (x, θ) and $P(o, \theta) = 1$ for any θ (iii) $\lim_{x \to \theta_1} P(x, \theta) = 0$, $\forall \theta, \theta_1 \in \partial X, \theta_1 \neq \theta$. See [SchoenYau’94].

Remark 4.1. Damek-Ricci spaces (including rank one symmetric spaces of non-cpt type)
admit a Poisson kernel described specifically as

\[P(x, \theta) = \exp\{-QB_\theta(x)\}. \]

in terms of the Busemann function and the volume entropy \(Q > 0 \), See [Besson et al.'95], [I-Satoh’10], [I-Satoh’11], [I-Satoh’14], [I-Satoh’14-1]. We call such a Poisson kernel as **Busemann-Poisson kernel**, a fusion of harmonic measure and Patterson-Sullivan measure.
Remark 4.2. An Hadamard manifold admitting Busemann-Poisson kernel must be asymptotically harmonic, that is, $\Delta B_\theta = -Q$, (see [Ledrappier’90]) so B_θ and B_μ turn out to be a smooth function on X by elliptic regularity.

Example 4.1. $(X, g) = \mathbb{R}H^n$, $n \geq 2$.

$$P(x, \theta) = \left(\frac{1 - |x|^2}{|x - \theta|^2} \right)^{n-1}$$
Lemma 4.1. Let \((X, g)\) admit Busemann-Poisson kernel. Then, with the assumptions in Th.1.1. we have

(i) \(\mu_x := P(x, \theta) d\theta \in \mathcal{P}^+(\partial X)\) is a probability measure, parametrized in \(x\) for which \(\bar{\text{ar}}(\mu_x) = x\). See [Besson et al.'95].

(ii) For any \(\mu = \mu_x\), the \(\mu\)-average Hessian \(\nabla dB_\mu(\cdot, \cdot)\) is positive definite everywhere on \(X\)

\[
\nabla dB_{\mu_x}(\cdot, \cdot) = Q \ G_{\mu_x}(N_{x}^{\mu_x}(\cdot), N_{x}^{\mu_x}(\cdot)).
\]
• From Th.1.1 the uniqueness of barycenter is guaranteed.

• Let \(\Theta : X \to \mathcal{P}^+(\partial X) ; x \mapsto \mu_x \) be the canonical map, called **Poisson kernel map**.

 It holds \(\text{bar} \circ \Theta = \text{id}_X \).

So, \(\Theta : X \to \mathcal{P}^+(\partial X) \) enjoys a cross section of the fibration \(\mathcal{P}^+(\partial X) \to X \).

Theorem 4.1 (I-Satoh’14, I-Satoh’14-1). Let \((X, g) \) admit Busemann-Poisson kernel. With
the assumptions in Th.1.1.

Let \(\varphi : X \to X \) be a barycentrically assoc. to a homeo \(\Phi : \partial X \to \partial X \) \((\bar{\text{bar}} \circ \Phi^\# = \varphi \circ \bar{\text{bar}}) \). If \(\varphi \) is of \(C^1 \) and moreover satisfies

\[
\Phi^\# \circ \Theta = \Theta \circ \varphi;
\]

\[
P^+(\partial X) \xrightarrow{\Phi^\#} P^+(\partial X)
\]

(3)
then φ is a Riemannian isometry of (X, g) whose ∂X-extension $\hat{\varphi} = \Phi$.

Theorem 4.2 (ItohSatoh’14-1) Let (X, g) be with the assumptions in Th.1.1 and admit Busemann-Poisson kernel.

Let Φ be a homeo of ∂X and $\varphi : X \to X$ be a C^1-bijective map with surjective $d\varphi_x$ at $\forall x \in X$.

Then $\Phi^\# \circ \Theta = \Theta \circ \varphi$ implies $\bar{\text{bar}} \circ \Phi^\# = \varphi \circ \bar{\text{bar}}$.
§5 Quasi-isometries and quasi-geodesics

Theorem 5.1.
Let \((X_0, g_0)\) be a Damek-Ricci space. Let \((X, g)\) be an Hadamard manifold which is quasi-isometric to \((X_0, g_0)\). Then, an arbitrary isometry \(\psi\) of \((X_0, g_0)\) induces a homeo \(\Phi\) of the ideal boundary \(\partial X\) of \((X, g)\).

Refer to [Berndt et al.'91] for definition and geometric properties of Damek-Ricci spaces.
Definition 5.1 Let \((X_1, d_1), (X_2, d_2)\) be metric spaces. A map \(f : X_1 \to X_2\) is a \((\lambda, k)\)-quasi-isometric map (or, simply, quasi-isometric map), if \(\exists \lambda \geq 1, k \geq 0\) s.t.

\[
\frac{1}{\lambda} d_1(x, x') - k \leq d_2(fx, fx') \leq \lambda d_1(x, x') + k
\]

A quasi-isometric map is a generalization of an isometric, or homothetic map.

- A curve \(c : \mathbb{R} \to X\) is a quasi-geodesic, if \(c\) is a quasi-isometric map. A geodesic is
quasi-geodesic. A quasi-isometric map \(f : (X_o, g_o) \to (X, g) \) maps a geodesic \(\gamma : \mathbb{R} \to X_o \) into a quasi-geodesic \(f \circ \gamma : \mathbb{R} \to X \). Moreover, it holds that let \(\varphi : X \to X \) be a quasi-isometric and \(\gamma : \mathbb{R} \to X \) be a quasi-geodesic. Then the curve \(\varphi \circ \gamma : \mathbb{R} \to X \) is quasi-geodesic.

Definition 5.2 Let \((X, d)\) be a metric space. A geod.triangle \(\Delta = [xyz] \) in \(X \) is called \(\delta\)-**thin**,

for a $\delta \geq 0$, if for any point p on the side $[xy]$

$$d(p, [xz] \cup [yz]) < \delta.$$

We call (X, d) δ-hyperbolic, or Gromov-hyperbolic, if for a $\delta \geq 0$ all geod. triangles are δ-thin. [Bourdon’95], [Coornaert et al.’80].

Example 5.1. $(X, g) = RH^n, n \geq 2$ is δ-hyperbolic with $\delta = \log 3$. See [Coornaert et al.’80].
Example 5.2. A Damek-Ricci space is δ-hyperbolic with certain δ. This is from [Knieper’12] and [Anker et al.’96].

References

[AmariNaga’00] S.Amari and H.Nagaoka, Methods
1980.

[Guivarc’h et al.’97] Y.Guivarc’h, L.Ji and

