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Claude Shannon
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“A Mathematical Theory of Communication,” The Bell System Technical Journal, Vol.

27, pp. 623–656, October, 1948 .
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Ralph Hartley

20 years before... in the same journal...

Hartley’s rule:
“Transmission of Information,” The Bell System Technical Journal, Vol. 7, pp.

535–563, July 1928 .
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Ralph Hartley

Hartley’s rule:

C ′ = log2
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(Wozencraft-Jacobs textbook, 1965)
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Ralph Hartley

Hartley’s rule:

C ′ = log2
(
1 +

A

∆

)

I amplitude “SNR” A/∆ (factor 1/2 is missing)
I no coding involved (except quantization)
I zero error

(Wozencraft-Jacobs textbook, 1965)
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Hartley’s C ′ = log2
(
1 + A
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)
came 20 years before Shannon

Shannon’s C = 1
2 log2

(
1 + P

N

)
came unexpected in 1948

Hartley’s rule is inexact: C ′ 6= C

Besides, C ′ is not the capacity of a noisy channel

(no question)
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Outline

Wrong!
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Outline

This Hartley’s rule C ′ = log2
(
1 + A

∆

)
is not Hartley’s

Many authors independently derived C = 1
2 log2

(
1 + P

N

)
in 1948.

In fact, C ′ = C (a coincidence?)

Besides, C ′ is the capacity of the “uniform” channel

(and we can explain)
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Hartley or not Hartley

Quote from Shannon, 1984:

“I was a great  fan of Edgar Allan Poe’s ‘The Gold Bug’ and  stories like that. 
And 1 used to solve cryptograms  when 1 was a boy.” 

C.S.: That could be. That cryptography  report  is  a  funny 
thing because it contains  a  lot of information  theory  that I 
had  worked  out before, during  the  five  years between 1940 
and 1945. Much of that  work I did  at home. 

R.P.: You did  that  analysis  during the war,  at home? 
Wasn’t that  motivated  by  cryptography? 

C.S.: My  first  getting  at  that  was  information  theory,  and I 
used cryptography as a  way of legitimatizing the work. 

R.P.: Was it an  answer  looking  for  a  problem? You were 
delighted to find  cryptography  coming  along  during  the  war 
as something  that  was needed and  that  was  a  great 
application of your  information  theory? 

C.S.: In  part. I might  say  that  cryptography  was  there and 
it seemed to me that  this  cryptography  problem  was  very 
closely  related to the  communications  problem. The other 
thing  was  that I was  not  yet  ready to write  up  information 
theory. For cryptography  you  could  write  up  anything  in  any 
shape, which I did. 

R.P.: Do you  think, even if  there  had  not been a  war  effort, 
you  would  have been interested  in  the  cryptographic  aspects 
of this? 

C.S.: I probably  would  have been because that’s  the  kind of 
thing  that  attracts me. I was  a  great  fan of  Edgar Allan Poe’s 
“The Gold Bug”  and  stories  like  that.  And I used to solve 
cryptograms  when I was  a  boy. 

R.P.: I read  that  John R. Pierce said  that  cryptography  was 
an  application of information  theory. I was  pretty  sure  that 
that  was  putting  the  cart  before  the  horse. I was  beginning to 
think  that it was  the  other  way  around,  and  that  information 
theory  had come out of cryptography. When I look at  this 
1945 cryptography  report,  it  has  the  phrase  “information 
theory”  and it says  that  you  are  next  going to get around to 
writing  up  information  theory.  This  makes it sound  as  if 
cryptography  gave  you  the  mysterious  “missing  link,”  but 
it’s  now  clear  that  information  theory  did  not  come  out of 
cryptography. 

C.S.: Working on cryptography led back  to  the  good 
aspects of information  theory. I started  with  information 
theory,  inspired  by  Hartley’s paper, which  was  a  good  paper, 
but it did  not  take  account of things  like  noise  and  best 
encoding and  probabilistic  aspect^.^ 

R.P.: You have  said to other people that these were  closely 
intertwined,  and  that  cryptography  was  no mere application 
of information  theory. As you  say,  you  got  stimulus. Could I 
suggest  that  there  is  a  sort of duality  there? The cryptog- 
raphy  problem  is,  in some ways,  the  “mirror  image” of  the 
communications  problem, so you  naturally  got some insights 
out of it. 

3Ed. Note: In later  discussion, Dr. Shannon  also  emphasized  the 
importance  of  Nyquist’s  work  in  the  development of his  thinking  in 
this  area.  Still  later, he introduced  the  editor to  [lo], and  provided 
the  note  accompanying  it  in  the References. 

C.S.:  Yes. I believe  that I made  some remarks  about  that  in 
one  of my  papers. I think  that  all of  these  sciences and 
theories  stimulate each  other to later developments. In  my 
case, I started  with  Hartley’s paper and  worked  at  least  two 
or  three  years  on  the  problems of information  and  communi- 
cations.  That  would be around 1943 or 1944; and  then I 
started  thinking  about  cryptography  and secrecy systems. 
There is  this  close  connection;  they  are  very  similar  things, 
in one  case trying  to  conceal  information,  and  in  the  other 
case trying to transmit it. 

R.P.: That  is  why I see a  duality there. Entropy measures 
can be used in both cases. 

C.S.: When I came  out  with  my  paper  in 1948 [7], part of 
that  was  taken  verbatim  from  the  cryptography  report, 
which  had  not been published  at  that  time. 

Origin of the Entropy Measure in Information  Theory 
R.P.: It has been said  that ‘[John]  Von  Neumann gave  you 

the  word  “entropy,”  saying to use it because you  would  win 
every  time because  no one would  understand it and, 
furthermore, it fitted  plog(p)  perfectly [12,13]. 

I also  heard  a  different  version of this  story:  that  you  had 
independently  arrived  at  the  word  “entropy”  and  were 
thinking of using it but  were  somewhat  dubious,  and  you  got 
reassurances  from people like Von Neumann and people at 
Bell Labs that  “entropy”  could be used. You had  already 
made that  identification and, furthermore,  in  your  cryptog- 
raphy  report of 1945, you use the  word  “entropy”;  you  liken 
it to  statistical  mechanics.  Moreover, I don’t  believe  that you 
were in  contact  with Von  Neumann in 1945. So, it does not 
seem to me that Von  Neumann  suggested  the word  “entropy” 
to you. 

C.S.: No, I don’t  think he did. I’m quite  sure  that it did  not 
happen  between  Von  Neumann and me. 

R.P.: I think  the  fact  that it is  in  your 1945 cryptography 
report  establishes  that  you  did  not  get  the  idea  from  Von 
Neumann. Rather,  you  had made the  plog(p)  identification 
with  entropy  by some  other  means. 

Professor [ I .  J.] Good told me that  [Alan]  Turing  had 
brought  the  entropy measure into  cryptography  in  England 
as  early  as 1940. Good talked  about  this  in  his  book, 
Weighting of Evidence, or some title like  that,  in 1948. But 
Good alluded to it only  very  obliquely because it was  still 
under  super-secrecy,  and it was  not  until 1974 that  this  could 
be talked  about openly. However, the entropy measure was 

“. . . they are very similar  things, in 
one case trying to conceal  information, 
and  in the other case trying to 
transmit it.” 

May 1984-VOI. 22, NO. 5 
IEEE Communications Magazine 124 

I In Hartley’s paper, no mention of signal vs. noise or A vs. ∆

I Why was C ′ = log2
(
1 + A

∆

)
mistakenly attributed to Hartley?
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The first tutorial of information theory!

...

...
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And then there were eight

Quote from Shannon, 1948:

1. Norbert Wiener, Cybernetics, early 1948

2. William G. Tuller, PhD Thesis, June 1948
3. H. Sullivan, ?
4. Jacques Laplume, April 1948
5. Charles W. Earp, June 1948
6. André G. Clavier, December 1948
7. Stanford Goldman, May 1948
8. Claude E. Shannon, .... July 1940 ????
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Norbert Wiener

...
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Norbert Wiener

Later. . . in 1956:
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48 IRE TRANSACTIONS ON INFORMATION THEORY June 

What is Information Theory? 
NORBERT WIENER 

NFORMATION THEORY has been identified 
in the public mind to denote the theory of infor- 
mation by bits, as developed by Claude E. 

Shannon and myself. This notion is certainly impor- 
tant and has proved profitable as a standpoint at 
least, although as Dr. Shannon suggests in his edi- 
torial, “The Bandwagon,” the concept as taken from 
this point of view is beginning to suffer from the 
indiscriminate way in which it has been taken as a 
solution of all informational problems, a sort of 
magic key. I am pleading in this editorial that Infor- 
mation Theory go back of its slogans and return to the 
point of view from which it originated: that of the 
general statistical concept of communication. A mes- 
sage is to be conceived as a sequence of occurrences 
distributed in time to be considered not exclusively 
by itself, but as one of an ensemble of similar se- 
quences. As such it comes under the theory of time 
series which is an important branch of statistical 
theory with a rapidly developing technique and set 
of concepts of its own. This theory is closely allied 
to the ideas of Willard Gibbs in statistical mechanics. 
What I am urging is a return to the concepts of this 
theory in its entirety rather than the exaltation of 
one particular concept of this group, the concept of 
the measure of information into the single dominant 
idea of all. 

I am pleading for this more particularly because 
the Gibbsian point of view is showing an applicability 
and fertility in many branches of science other than 

communication theory and in my opinion in all 
branches of science whatever. It is generally recog- 
nized that the quantum theory which now dominates 
the whole of physics is at root a statistical theory; 
although it is perhaps not yet as generally recognized 
as it should be, the quantum theory is strictly a 
branch of the theory of time series. Professor Armand 
Siegel and I are among those now working in this field. 

What I am here entreating is that communication 
theory be studied as one item in an entire context of 
related theories of a statistical nature, and that it 
should not lose its integrity by becoming a special 
vested interest attached to a certain set of slogans 
and cliches. I hope that these TRANSACTIONS may 
encourage this integrated view of communication 
theory by extending its hospitality to papers which, 
while they bear on communication theory, cross its 
boundaries, and have a scope covering the related 
statistical theories. In my opinion we are in a dan- 
gerous age of overspecialization. To me the danger of 
this period is not primarily that we are studying 
very special problems that the development of science 
has forced us to go into, but rather that we are in 
great danger of finding our outlook so limited that 
we may fail to see the bearing of important ideas 
because they have been formulated in what our 
organization of science has decreed to be alien terri- 
tory. I hope that these TRANSACTIONS may steadily 
set their face against this comminution of the 
intellect. 

,- 

F 
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Norbert Wiener

Later. . . in 1956:
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What I am here entreating is that communication 
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Some Fundamental Considerations Concerning Noise
Reduction and Range in Radar and Communication*

STANFORD GOLDMANt, SENIOR MEMBER, I.R.E.

Summary-A general analysis based upon information theory and
the mathematical theory of probability is used to investigate the fun-
damental principles involved in the transmission of signals through
a background of random noise. Three general theorems governing
the probability relations between signal and noise are proved, and
one is applied to investigate the effect of pulse length and repetition
rate on radar range. The concept of "generalized selectivity" is in-
troduced, and it is shown how and why extra bandwidth can be used
for noise reduction. It is pointed out that most noise-improvement
systems are based upon coherent repetition of the message informa-
tion either in time or in the frequency spectrum. It is also pointed out
why more powerful noise-improvement systems should be possible
than have so far been made.

The general mechanism of noise-improvement thresholds is dis-
cussed, and it is shown how they depend upon the establishment of a
coherence standard. The reason for and the limitation of the apparent
law that the maximum operating range of a communications system,
for a given average power, is independent of the type of modulation
used is then explained. General ways in which improvements in range
of radar and communication systems may be made are also dis-
cussed. The possibility of using extra bandwidth to reduce distortion
is pointed out. Finally, some possible relations of this work to biology
and psychology are described.

I. INFORMATION THEORY
flf HE SIGNALS which are of interest in radio engi-

neering may be represented graphically as func-
tions of time. One such signal is shown in Fig. 1.

In a transmission system having L different significant

T

amplitude levels, any particular signal such as that
shown, having a duration of n significant time intervals,
represents one out of Ln different possible signals of this
duration which could have been transmitted in the
system.' With the foregoing meaning for the various
symbols, we have

number of different possible messages =Ln. (I),2

The number of significant amplitude levels is usually
determined by the noise in the system. If the system is
of a linear nature, and the maximum signal amplitude
is S, while the noise amplitude is N, then the number of
significant amplitude levels is essentially

L = (S/N) + 1 (2)

where the "1" is due to the fact that the zero signal level
can be used.

The duration to of a significant time interval of the
signal is determined by the inherent limited bandwidth
of the signal. It is well known that, if a signal has
passed through a transmission system having more or
less uniform transmission over a frequency bandwidth
B, the smallest time intervals into which we can separate
the portions of the signal such that amplitudes of the
individual intervals shall be separately significant will
have a duration of approximately3

to= 1/2B. (3)

Equation (3) may, in any particular case, be in error
by several per cent. However, it will not be wrong by
an order of magnitude. If the total duration of the signal
is T, then the number of its significant time intervals is

n = T/to = 2TB. (4)

I
- Consequently, a given message of duration T represents

a particular choice of one out of
- L-I2
Fig. 1-Diagram of a signal, showing its significant time intervals

and amplitude levels. This signal is in a system in which there are
both positive and negative levels. With noise also having both
positive and negative levels, the spacing between signal levels
must be the peak-to-peak value of noise, namely, 2N, so that the
number of different significant amplitude levels is still L = (S/N)
+1. (The ideal signal is shown by the broken line. The solid line
shows the same signal after passing through a transmission system
of bandwidth B.)
* Decimal classification: R272.3. Original manuscript received by

the Institute, October 6, 1947; revised manuscript received, January
15, 1948. Presented, National Electronics Conference, November,
1947, Chicago, Ill. This work has been supported in part by the Sig-
nal Corps, the Air Materiel Command, and the Office of Naval Re-
search.

t Research Laboratory of Electronics, Massachusetts Institute of
Technology, Cambridge, Mass.

/ + )2TB
Ln = ( + 11

XN I
(5)4

different possible messages of the same duration which
could have been sent through the system.

I R.V. L. Hartley, "Transmission of information," Bell Sys. Tech.
Jour., vol. 7, pp. 535-563; July, 1928.

2 For example, if there are three amplitude levels, designated as
a, b, and c, and if there are two time intervals, then the 32=9 possible
signals are aa, ab, ac, ba, bb, bc, ca, cb, and cc.

I Stanford Goldman, "Frequency Analysis, Modulation and Noise,"
McGraw-Hill Book Co., New York, N. Y., 1947; chap. IV, especially
Fig. 7c.

4Equation (5) has been derived independently by many people,
among them W. G. Tuller, from whom the writer first learned about
it.
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WILLIAM G. TULLERt, SENIOR MEMBER, IRE

Summary-A review of early work on the theory of the transmis-
sion of information is followed by a critical survey of this work and a

refutation of the point that, in the absence of noise, there is a finite
limit to the rate at which information may be transmitted over a finite
frequency band. A simple theory is then developed which includes,
in a first-order way, the effects of noise. This theory shows that in-
formation may be transmitted over a given circuit according to the
relation

H 2BT log (1 + C/N),

where H is the quantity of information, B the transmission link
bandwidth, T the time of transmission, and C/N the carrier-to-noise
ratio. Certain special cases are considered, and it is shown that there
are two distinctly different types of modulation systems, one trading
bandwidth linearly for signal-to-noise ratio, the other trading band-
width logarithmically for signal-to-noise ratio.

The theory developed is applied to show some of the inefficiencies
of present communication systems. The advantages to be gained by
the removal of internal message correlations and analysis of the
actual information content of a message are pointed out. The discus-
sion is applied to such communication systems as radar relays, tele-
meters, voice conununication systems, servomechanisms, and
computers.

I. INTRODUCTION
r[f HE HISTORY of this investigation goes back at

least to 1922, when Carson,' analyzing narrow-

deviation frequency modulation as a bandwidth-
reduction scheme, wrote "all such schemes are believed
to involve a fundamental fallacy." In 1924, Nyquist2
and Kuipfmiuller,' working independently, showed that
the number of telegraph signals that may be transmit-
ted over a line is directly proportional to its bandwidth.
Hartley,4 writing in 1928, generalized this theory to ap-

ply to speech and general information, concluding that
"the total amount of information which may be trans-
mitted . . is proportional to the product of the fre-
quency range which is transmitted and the time which
is available for the transmission." It is Hartley's work
that is the most direct ancestor of the present paper. In
his paper he introduced the concept of the information
function, the measure of quantity of information, and
the general technique used in this paper. He neglected,

* Decimal classification: 621.38. Original manuscript received
by the Institute, September 7, 1948; revised manuscript received,
February 3, 1949. This paper is based on a thesis submitted in partial
fulfillment of the requirements of the degree of Doctor of Science at
the Massachusetts Institute of Technology. It was supported, in
part, by the Signal Corps, the Air Materiel Command, and the
Office of Naval Research.

t Melpar, Inc., Alexandria, Va.
IJ. R. Carson, "Notes on the theory of modulation," PROC.

I.R.E., vol. 10, p. 57; February, 1922.
2 H. Nyquist, "Certain factors affecting telegraph speed," Bell

Sys. Tech. Jour., vol. 3, p. 324; April, 1924.
3 K. Ktipfmtiller, "Transient phenomena in wave filters," Elek.

Nach. Tech., vol. 1, p. 141; 1924.
4R. V. L. Hartley, "Transmission of information," Bell Sys.

Tech. Jour., vol. 7, p. 535-564; July, 1928.

however, the possibility of the use of the knowledge of
the transient-response characteristics of the circuits in-
volved. He further neglected noise.

In 1946, Gabor5 presented an analysis which broke
through some of the limitations of the Hartley theory
and introduced quantitative analysis into Hartley's
purely qualitative reasoning. However, Gabor also
failed to include noise in his reasoning.
The workers whose papers have so far been discussed

failed to give much thought to the fact that the problem
of transmitting information is in many ways identical
to the problem of analysis of stationary time series. This
point was made in a classical paper by Wiener,6 who did
a searching analysis of that problem which is a large
part of the general one, the problem of the irreducible
noise present in a mixture of signal and noise. Unfortu-
nately, this paper received only a limited circulation,
and this, coupled with the fact that the mathematics
employed were beyond the off-hand capabilities of the
hard-pressed communication engineers engaged in high-
speed wartime developments, has prevented as wide an
application of the theory as its importance deserves.
Associates of Wiener have written simplified versions of
portions of his treatment,7'8 but these also have as yet
been little accepted into the working tools of the com-
munication engineer. Wiener has himself done work
parallel to that presented in this paper, but this work is
as yet unpublished, and its existence was learned of only
after the completion of substantially all the research re-
ported on here. A group at the Bell Telephone Labora-
tories, including C. E. Shannon, has also done similar
work.9'10"11

II. DEFINITIONS OF TERMS FREQUENTLY USED

Certain terms are used in the discussion to follow
which are either so new to the art that accepted defini-
tions for them have not yet been established, or have

5 D. Gabor, "Theory of communication," Jour. I.E.E. (London),
vol. 93, part III, p. 439; November, 1946.

6N. Wiener, "The extrapolation, interpolation and smoothing of
stationary time series," National Defense Research Council, Section
D2 Report, February, 1942.

7 N. Levinson, "The Wiener (RMS) error criterion in filter design
and prediction," Jour. Math. Phys., vol. 25, no. 4, p. 261; 1947.

8 H. M. James, "Ideal frequency response of receiver for square
pulses," Report No. 125 (v-12s), Radiation Laboratory, MIT,
November 1, 1941.

9 C. E. Shannon, "A mathematical theory of communication,"
Bell Sys. Tech. Jour., vol. 27, pp. 379-424 and 623-657; July and
October, 1948.

10 C. E. Shannon, "Communication in the presence of noise,"
PROC. I.R.E., vol. 37, pp. 10-22; January, 1949.

"1 The existence of this work was learned by the author in the
spring of 1946, when the basic work underlying this paper had just
been completed. Details were not known by the author until the
summer of 1948, at which time the work reported here had been
complete for about eight months.
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to the utmost. This does not, however, affect the rate of
transmission of information, the quantity under consid-
eration here.
As a result of the considerations given above, we are

led to the conclusion that the only limits to the rate of
transmission of information on a noise-free circuit are
economic and practical, not theoretical.

VI. TRANSMISSION OF INFORMATION IN THE
PRESENCE OF NOISE

In some ways the discussion of the section immedi-
ately preceding this one represents a digression in the
main argument to be continued below. It may be well,
therefore, to review the main argument at this point,
and to indicate the direction it is to take. So far, Hart-
ley's definition of information has been investigated and
shown adequate.for this analysis. The early theories
of transmission of information have been refuted. In
the portion of the wQrk that follows, a modified version
of the Hartley law applicable to a system in which noise
is present is derived. This is done for the general case
and for two special types of wide-band modulation sys-
tems, uncoded and coded systems. As a result of these
analyses the fundamental relation between rate of trans-
mission of information and transmission facilities is de-
rived.

Since we have shown that intersymbol interference
is unimportant in limiting the rate of transmission of
information, let us assume it absent. Let S be the rms
amplitude of the maximum signal that may be deliv-
ered by the communication system. Let us assume, a
fact very close to the truth, that a signal amplitude
change less than noise amplitude cannot be recognized,
but a signal amplitude change equal to noise is instantly
recognizable.'4 Then, if N is the rms amplitude of the
noise mixed with the signal, there are 1 +S/N significant
values of signal that may be determined. This sets s in
the derivation of (1). Since it is known"3 that the specifi-
cation of an arbitrary wave of duration T and maxi-
mum component f; requires 2fcT measurements, we
have from (1) the quantity of information available at
the output of the system:

H = kn log s = k2_fT log (1 + S/N). (2)

This is an important expression, to be sure, but gives
us no information in itself as to the limits that may be
placed on H. In particular, fJ is the bandwidth of the
over-all communication system, not the bandwidth of
the transmission link connecting transmitter and re-
ceiver. Also, S/N may not at this stage of the analysis
have any relation to C/N, the ratio of the maximum
signal amplitude to the noise amplitude as measured
before such nonlinear processes as demodulation that
may occur in the receiver. It is C/IN that is determined

14This assumption ignores the random nature of noise to a certain
extent, resulting in a theoretical limit about 3 to 8 db above that
actually obtainable. The assumption is believed worth while in view
of the enormous simplification of theory obtained. For a more precise
formulation of the theory,-see footnote references 9 and 10.

by power, attenuation, and noise limitations, not S/N.
Similarly, it is bandwidth in the transmission link that
is scarce and expensive. It is, therefore, necessary to
bring both these quantities into the analysis and go be-
yond (2).
The transmission system assumed for the remainder

of this analysis is shown in block diagram in Fig. 6. The
elements of this system may be considered separately.

OUTPUT
INFORMATION

FUNCTION PLUS
NOISE

Fig. 6-Block diagram of the simplified communication system
used in the analysis.

The transmitter, for example, is simply a device that
operates on the information function in a one-to-one and
reversible manner. The information contained in the in-
formation function is preserved in this transformation.
The receiver is the mathematical inverse of the trans-

mitter; that is, in the absence of noise or other disturb-
ance, the receiver will operate on the output of the
transmitter to produce a signal identical with the origi-
nal information function. The receiver, like the trans-
mitter, need not be linear.

It is assumed throughout the remainder of this analy-
sis, however, that the difference between two carriers of
barely discernible amplitude difference is N, regardless
of carrier amplitude. This corresponds to an assump-
tion of over-all receiver linearity, but does not rule out
the presence of nonlinear elements within the receiver.
This assumption is convenient but not essential. If it
does not hold, the usual method of assuming linearity
over a small range of operation and cascading these
small ranges to form the whole range may be used in an
entirely analogous analysis with essentially no change
in method and only a slight change in definition of C/N
and S/N, here assumed to be amplitude-insensitive.
The filter at the output of the receiver is assumed to

set the response characteristic of the transmission sys-
system. (It should be noted that, when "transmission
system" is referred to, all the elements shown in Fig.
6 are included. "Transmission link" refers only to those
elements between the output of the transmitter and the
input to the receiver.) The transmission characteristics
of this filter are, therefore, those previously given for the
over-all transmission system. Coming now to the ele-
ments of the transmission link, consider first the filter
which sets the link's transmission characteristics. The
phase shift of this filter is assumed to be linear with re-
spect to frequency for all frequencies from minus to plus
infinity. The over-all attenuation is assumed to be zero
decibels at all frequencies less than B, and is assumed
to be so large for all frequencies above B that energy
passing through the system at these frequencies is small
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Theoretical Limitations on the Rate of

Transmission of Information*
WILLIAM G. TULLERt, SENIOR MEMBER, IRE

Summary-A review of early work on the theory of the transmis-
sion of information is followed by a critical survey of this work and a

refutation of the point that, in the absence of noise, there is a finite
limit to the rate at which information may be transmitted over a finite
frequency band. A simple theory is then developed which includes,
in a first-order way, the effects of noise. This theory shows that in-
formation may be transmitted over a given circuit according to the
relation

H 2BT log (1 + C/N),

where H is the quantity of information, B the transmission link
bandwidth, T the time of transmission, and C/N the carrier-to-noise
ratio. Certain special cases are considered, and it is shown that there
are two distinctly different types of modulation systems, one trading
bandwidth linearly for signal-to-noise ratio, the other trading band-
width logarithmically for signal-to-noise ratio.

The theory developed is applied to show some of the inefficiencies
of present communication systems. The advantages to be gained by
the removal of internal message correlations and analysis of the
actual information content of a message are pointed out. The discus-
sion is applied to such communication systems as radar relays, tele-
meters, voice conununication systems, servomechanisms, and
computers.

I. INTRODUCTION
r[f HE HISTORY of this investigation goes back at

least to 1922, when Carson,' analyzing narrow-

deviation frequency modulation as a bandwidth-
reduction scheme, wrote "all such schemes are believed
to involve a fundamental fallacy." In 1924, Nyquist2
and Kuipfmiuller,' working independently, showed that
the number of telegraph signals that may be transmit-
ted over a line is directly proportional to its bandwidth.
Hartley,4 writing in 1928, generalized this theory to ap-

ply to speech and general information, concluding that
"the total amount of information which may be trans-
mitted . . is proportional to the product of the fre-
quency range which is transmitted and the time which
is available for the transmission." It is Hartley's work
that is the most direct ancestor of the present paper. In
his paper he introduced the concept of the information
function, the measure of quantity of information, and
the general technique used in this paper. He neglected,

* Decimal classification: 621.38. Original manuscript received
by the Institute, September 7, 1948; revised manuscript received,
February 3, 1949. This paper is based on a thesis submitted in partial
fulfillment of the requirements of the degree of Doctor of Science at
the Massachusetts Institute of Technology. It was supported, in
part, by the Signal Corps, the Air Materiel Command, and the
Office of Naval Research.

t Melpar, Inc., Alexandria, Va.
IJ. R. Carson, "Notes on the theory of modulation," PROC.

I.R.E., vol. 10, p. 57; February, 1922.
2 H. Nyquist, "Certain factors affecting telegraph speed," Bell

Sys. Tech. Jour., vol. 3, p. 324; April, 1924.
3 K. Ktipfmtiller, "Transient phenomena in wave filters," Elek.

Nach. Tech., vol. 1, p. 141; 1924.
4R. V. L. Hartley, "Transmission of information," Bell Sys.

Tech. Jour., vol. 7, p. 535-564; July, 1928.

however, the possibility of the use of the knowledge of
the transient-response characteristics of the circuits in-
volved. He further neglected noise.

In 1946, Gabor5 presented an analysis which broke
through some of the limitations of the Hartley theory
and introduced quantitative analysis into Hartley's
purely qualitative reasoning. However, Gabor also
failed to include noise in his reasoning.
The workers whose papers have so far been discussed

failed to give much thought to the fact that the problem
of transmitting information is in many ways identical
to the problem of analysis of stationary time series. This
point was made in a classical paper by Wiener,6 who did
a searching analysis of that problem which is a large
part of the general one, the problem of the irreducible
noise present in a mixture of signal and noise. Unfortu-
nately, this paper received only a limited circulation,
and this, coupled with the fact that the mathematics
employed were beyond the off-hand capabilities of the
hard-pressed communication engineers engaged in high-
speed wartime developments, has prevented as wide an
application of the theory as its importance deserves.
Associates of Wiener have written simplified versions of
portions of his treatment,7'8 but these also have as yet
been little accepted into the working tools of the com-
munication engineer. Wiener has himself done work
parallel to that presented in this paper, but this work is
as yet unpublished, and its existence was learned of only
after the completion of substantially all the research re-
ported on here. A group at the Bell Telephone Labora-
tories, including C. E. Shannon, has also done similar
work.9'10"11

II. DEFINITIONS OF TERMS FREQUENTLY USED

Certain terms are used in the discussion to follow
which are either so new to the art that accepted defini-
tions for them have not yet been established, or have

5 D. Gabor, "Theory of communication," Jour. I.E.E. (London),
vol. 93, part III, p. 439; November, 1946.

6N. Wiener, "The extrapolation, interpolation and smoothing of
stationary time series," National Defense Research Council, Section
D2 Report, February, 1942.

7 N. Levinson, "The Wiener (RMS) error criterion in filter design
and prediction," Jour. Math. Phys., vol. 25, no. 4, p. 261; 1947.

8 H. M. James, "Ideal frequency response of receiver for square
pulses," Report No. 125 (v-12s), Radiation Laboratory, MIT,
November 1, 1941.

9 C. E. Shannon, "A mathematical theory of communication,"
Bell Sys. Tech. Jour., vol. 27, pp. 379-424 and 623-657; July and
October, 1948.

10 C. E. Shannon, "Communication in the presence of noise,"
PROC. I.R.E., vol. 37, pp. 10-22; January, 1949.

"1 The existence of this work was learned by the author in the
spring of 1946, when the basic work underlying this paper had just
been completed. Details were not known by the author until the
summer of 1948, at which time the work reported here had been
complete for about eight months.
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to the utmost. This does not, however, affect the rate of
transmission of information, the quantity under consid-
eration here.
As a result of the considerations given above, we are

led to the conclusion that the only limits to the rate of
transmission of information on a noise-free circuit are
economic and practical, not theoretical.

VI. TRANSMISSION OF INFORMATION IN THE
PRESENCE OF NOISE

In some ways the discussion of the section immedi-
ately preceding this one represents a digression in the
main argument to be continued below. It may be well,
therefore, to review the main argument at this point,
and to indicate the direction it is to take. So far, Hart-
ley's definition of information has been investigated and
shown adequate.for this analysis. The early theories
of transmission of information have been refuted. In
the portion of the wQrk that follows, a modified version
of the Hartley law applicable to a system in which noise
is present is derived. This is done for the general case
and for two special types of wide-band modulation sys-
tems, uncoded and coded systems. As a result of these
analyses the fundamental relation between rate of trans-
mission of information and transmission facilities is de-
rived.

Since we have shown that intersymbol interference
is unimportant in limiting the rate of transmission of
information, let us assume it absent. Let S be the rms
amplitude of the maximum signal that may be deliv-
ered by the communication system. Let us assume, a
fact very close to the truth, that a signal amplitude
change less than noise amplitude cannot be recognized,
but a signal amplitude change equal to noise is instantly
recognizable.'4 Then, if N is the rms amplitude of the
noise mixed with the signal, there are 1 +S/N significant
values of signal that may be determined. This sets s in
the derivation of (1). Since it is known"3 that the specifi-
cation of an arbitrary wave of duration T and maxi-
mum component f; requires 2fcT measurements, we
have from (1) the quantity of information available at
the output of the system:

H = kn log s = k2_fT log (1 + S/N). (2)

This is an important expression, to be sure, but gives
us no information in itself as to the limits that may be
placed on H. In particular, fJ is the bandwidth of the
over-all communication system, not the bandwidth of
the transmission link connecting transmitter and re-
ceiver. Also, S/N may not at this stage of the analysis
have any relation to C/N, the ratio of the maximum
signal amplitude to the noise amplitude as measured
before such nonlinear processes as demodulation that
may occur in the receiver. It is C/IN that is determined

14This assumption ignores the random nature of noise to a certain
extent, resulting in a theoretical limit about 3 to 8 db above that
actually obtainable. The assumption is believed worth while in view
of the enormous simplification of theory obtained. For a more precise
formulation of the theory,-see footnote references 9 and 10.

by power, attenuation, and noise limitations, not S/N.
Similarly, it is bandwidth in the transmission link that
is scarce and expensive. It is, therefore, necessary to
bring both these quantities into the analysis and go be-
yond (2).
The transmission system assumed for the remainder

of this analysis is shown in block diagram in Fig. 6. The
elements of this system may be considered separately.

OUTPUT
INFORMATION

FUNCTION PLUS
NOISE

Fig. 6-Block diagram of the simplified communication system
used in the analysis.

The transmitter, for example, is simply a device that
operates on the information function in a one-to-one and
reversible manner. The information contained in the in-
formation function is preserved in this transformation.
The receiver is the mathematical inverse of the trans-

mitter; that is, in the absence of noise or other disturb-
ance, the receiver will operate on the output of the
transmitter to produce a signal identical with the origi-
nal information function. The receiver, like the trans-
mitter, need not be linear.

It is assumed throughout the remainder of this analy-
sis, however, that the difference between two carriers of
barely discernible amplitude difference is N, regardless
of carrier amplitude. This corresponds to an assump-
tion of over-all receiver linearity, but does not rule out
the presence of nonlinear elements within the receiver.
This assumption is convenient but not essential. If it
does not hold, the usual method of assuming linearity
over a small range of operation and cascading these
small ranges to form the whole range may be used in an
entirely analogous analysis with essentially no change
in method and only a slight change in definition of C/N
and S/N, here assumed to be amplitude-insensitive.
The filter at the output of the receiver is assumed to

set the response characteristic of the transmission sys-
system. (It should be noted that, when "transmission
system" is referred to, all the elements shown in Fig.
6 are included. "Transmission link" refers only to those
elements between the output of the transmitter and the
input to the receiver.) The transmission characteristics
of this filter are, therefore, those previously given for the
over-all transmission system. Coming now to the ele-
ments of the transmission link, consider first the filter
which sets the link's transmission characteristics. The
phase shift of this filter is assumed to be linear with re-
spect to frequency for all frequencies from minus to plus
infinity. The over-all attenuation is assumed to be zero
decibels at all frequencies less than B, and is assumed
to be so large for all frequencies above B that energy
passing through the system at these frequencies is small
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through the attenuator to the receiver. In this manner,
the gain versus the cathode-potential-difference curve of
Fig. 17 was obtained. This figure corresponds rather
closely with the theoretical curve of propagation con-
stant versus the inhomogeneity factor, shown in Fig. 1.
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Fig. 17-Gain versus cathode-potential-difference characteristics
of the two-velocity-type electron-wave tube.

At a frequency of 3000 Mc and a total current of 15 ma,
a net gain of 46 db was obtained, even though no at-
tempt was made to match either the input or output
circuits. The lack of appropriate match is responsible
for the fact that the gain curve assumes negative values
when the electronic gain is not sufficient to overcome the
losses due to mismatch. At the peak of the curve, it is
estimated that the electronic gain is of the order of 80
db.
The curves of output voltage versus the potential of

the drift tube were shown in Figs. 8 and 9. Fig. 9 shows
this characteristic for the electron-wave tube of the

space-charge type illustrated in Fig. 5. The shape of this
curve corresponds rather closely with the shape of the
theoretical curve given in Fig. 7. Fig. 8 shows the output
voltage versus drift-potential characteristic for the two-
velocity-type electron-wave tube. When the drift-tube
voltage is high, the tube behaves like the two-cavity
klystron amplifier. As the drift voltage is lowered the
gain gradually increases, due to the space-charge inter-
action effect, and achieves a maximum which is ap-
proximately 60 db higher than the output achieved with
klystron operation. With further reduction of the drift-
tube potential the output drops rather rapidly, because
the space-charge conditions become unfavorable; that is,
the inhomogeneity factor becomes too large.
The electronic bandwidth was measured by measur-

ing the gain of the tube over a frequency range from
2000 to 3000 Mc and retuning the input and output cir-
cuits for each frequency. It was observed that the gain
of the tube was essentially constant over this frequency
range, thus confirming the theoretical prediction of
electronic bandwidth of over 30 per cent at the gain of
80 db.
The electron-wave tube, because of its remarkable

property of achieving energy amplification without the
use of any resonant or waveguiding structures in the
amplifying region of the tube, promises to offer a satis-
factory solution to the problem of generation and
amplification of energy at millimeter wavelengths, and
thus will aid in expediting the exploitation of that por-
tion of the electromagnetic spectrum.
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Communication in the Presence of Noise*
CLAUDE E. SHANNONt, MEMBER, IRE

Summary-A method is developed for representing any com-
munication system geometrically. Messages and the corresponding
signals are points in two "function spaces," and the modulation
process is a mapping of one space into the other. Using this repre-
sentation, a number of results in communication theory are deduced
concerning expansion and compression of bandwidth and the
threshold effect. Formulas are found for the maxmum rate of trans-
mission of binary digits over a system when the signal is perturbed
by various types of noise. Some of the properties of "ideal" systems
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This discussion is relevant to the well-known "Hartley
Law," which states that " . . . an upper limit to the
amount of information which may be transmitted is set
by the sum for the various available lines of the product
of the line-frequency range of each by the tifie during
which it is available for use."2 There is a sense in which
this statement is true, and another sense in which it is
false. It is not possible to map the message space into
the signal space in a one-to-one, continuous manner
(this is known mathematically as a topological mapping)
unless the two spaces have the same dimensionality;
i.e., unless D =2TW. Hence, if we limit the transmitter
and receiver to continuous one-to-one operations, there
is a lower bound to the product TW in the channel.
This lower bound is determined, not by the product
W1Tj of message bandwidth and time, but by the num-
ber of essential dimension D, as indicated in Section IV.
There is, however, no good reason for limiting the trans-
mitter and receiver to topological mappings. In fact,
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continuous and come very close to the type of mapping
given by (14) and (15). It is desirable, then, to find
limits for what can be done with no restrictions on the
type of transmitter and receiver operations. These
limits, which will be derived in the following sections,
depend on the amount and nature of the noise in the
channel, and on the transmitter power, as well as on
the bandwidth-time product.

It is evident that any system, either to compress TW,
or to expand it and make full use of the additional vol-
ume, must be highly nonlinear in character and fairly
complex because of the peculiar nature of the mappings
involved.

VII. THE CAPACITY OF A CHANNEL IN THE
PRESENCE OF WHITE THERMAL NOISE

It is not difficult to set up certain quantitative rela-
tions that must hold when we change the product TW.
Let us assume, for the present, that the noise in the sys-
tem is a white thermal-noise band limited to the band
W, and that it is added to the transmitted signal to pro-
duce the received signal. A white thermal noise has the
property that each sample is perturbed independently of
all the others, and the distribution of each amplitude is
Gaussian with standard deviation o =,\N where N is
the average noise power. How many different signals can
be distinguished at the receiving point in spite of the
perturbations due to noise? A crude estimate can be ob-
tained as follows. If the signal has a power P, then the
perturbed signal will have a power P+N. The number
of amplitudes that can be reasonably well distinguished
is

K /+N (16)

where K is a small constant in the neighborhood of unity
depending on how the phrase "reasonably well" is inter-
preted. If we require very good separation, K will be
small, while toleration of occasional errors allows K to

be larger. Since in time T there are 2TW independent
amplitudes, the total number of reasonably distinct sig-
nals is

_P+Nyn2TW
M= K (17)

The number of bits that can be sent in this time is
log2 M, and the rate of transmission is

log2 M _P±Nl
= W log2 K2 (bits per second). (18)

The difficulty with this argument, apart from its
general approximate character, lies in the tacit assump-
tion that for two signals to be distinguishable they must
differ at some sampling point by more than the expected
noise. The argument presupposes that PCM, or some-
thing very similar to PCM, is the best method of en-
coding binary digits into signals. Actually, two signals
can be reliably distinguished if they differ by only a
small amount, provided this difference is sustained over
a long period of time. Each sample of the received signal
then gives a small amount of statistical information
concerning the transmitted signal; in combination,
these statistical indications result in near certainty.
This possibility allows an improvement of about 8 db
in power over (18) with a reasonable definition of re-
liable resolution of signals, as will appear later. We will
now make use of the geometrical representation to de-
termine the exact capacity of a noisy channel.
THEOREM 2: Let P be the average transmitter power, and

suppose the noise is white thermal noise of power N in the
band W. By sufficiently complicated encoding systems it is
possible to transmit binary digits at a rate

P+N
C = Wlog21N9(N

with as small a frequency of errors as desired. It is not pos-
sible by any encoding method to send at a higher rate and
have an arbitrarily low frequency of errors.

This shows that the rate W log (P+N)/N measures in
a sharply defined way the capacity of the channel for
transmitting information. It is a rather surprising result,
since one would expect that reducing the frequency of
errors would require reducing the rate of transmission,
and that the rate must approach zero as the error fre-
quency does. Actually, we can send at the rate C but
reduce errors byusing more involvedencoding and longer
delays at the transmitter and receiver. The transmitter
will take long sequences of binary digits and represent
this entire sequence by a particular signal function of
long duration. The delay is required because the trans-
mitter must wait for the full sequence before the signal
is determined. Similarly, the receiver must wait for the
full signal function before decoding into binary digits.
We new prove Theorem 2. In the geometrical repre-

sentation each signal point is surrounded by a small re-
gion of uncertainty due to noise. With white thermal
noise, the perturbations of the different samples (or co-
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through the attenuator to the receiver. In this manner,
the gain versus the cathode-potential-difference curve of
Fig. 17 was obtained. This figure corresponds rather
closely with the theoretical curve of propagation con-
stant versus the inhomogeneity factor, shown in Fig. 1.
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Fig. 17-Gain versus cathode-potential-difference characteristics
of the two-velocity-type electron-wave tube.

At a frequency of 3000 Mc and a total current of 15 ma,
a net gain of 46 db was obtained, even though no at-
tempt was made to match either the input or output
circuits. The lack of appropriate match is responsible
for the fact that the gain curve assumes negative values
when the electronic gain is not sufficient to overcome the
losses due to mismatch. At the peak of the curve, it is
estimated that the electronic gain is of the order of 80
db.
The curves of output voltage versus the potential of

the drift tube were shown in Figs. 8 and 9. Fig. 9 shows
this characteristic for the electron-wave tube of the

space-charge type illustrated in Fig. 5. The shape of this
curve corresponds rather closely with the shape of the
theoretical curve given in Fig. 7. Fig. 8 shows the output
voltage versus drift-potential characteristic for the two-
velocity-type electron-wave tube. When the drift-tube
voltage is high, the tube behaves like the two-cavity
klystron amplifier. As the drift voltage is lowered the
gain gradually increases, due to the space-charge inter-
action effect, and achieves a maximum which is ap-
proximately 60 db higher than the output achieved with
klystron operation. With further reduction of the drift-
tube potential the output drops rather rapidly, because
the space-charge conditions become unfavorable; that is,
the inhomogeneity factor becomes too large.
The electronic bandwidth was measured by measur-

ing the gain of the tube over a frequency range from
2000 to 3000 Mc and retuning the input and output cir-
cuits for each frequency. It was observed that the gain
of the tube was essentially constant over this frequency
range, thus confirming the theoretical prediction of
electronic bandwidth of over 30 per cent at the gain of
80 db.
The electron-wave tube, because of its remarkable

property of achieving energy amplification without the
use of any resonant or waveguiding structures in the
amplifying region of the tube, promises to offer a satis-
factory solution to the problem of generation and
amplification of energy at millimeter wavelengths, and
thus will aid in expediting the exploitation of that por-
tion of the electromagnetic spectrum.
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Who’s formula?

The “Shannon-Hartley” formula

C = 1
2 log2

(
1 +

P

N

)

would actually be the

Shannon-Tuller-Wiener-Sullivan-Laplume-Earp-Clavier-Goldman formula

or simply the
Shannon-Tuller formula
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Outline

This Hartley’s rule C ′ = log2
(
1 + A

∆

)
is not Hartley’s

Many authors independently derived C = 1
2 log2

(
1 + P

N

)
in 1948.

In fact, C ′ = C (a coincidence?)

Besides, C ′ is the capacity of the “uniform” channel

(and we can explain)
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“Hartley” ’s argument
The channel input X is taking M = 1 + A/∆ equiprobable values in
the set {−A,−A + 2∆, . . . ,A− 2∆,A}:

P = E(X 2) =
1
M

n∑

k=0

(M − 1− 2k)2 = ∆2M
2 − 1
3

.

The input is mixed with additive noise Z with accuracy ±∆, i.e.
having uniform distribution in [−∆,∆]:

N = E(Z 2) =
1
2∆

∫ ∆

−∆
z2dz =

∆2

3
.

Hence

log2
(
1+

A

∆

)
= 1

2 log2(1+M2−1) = 1
2 log2

(
1+

3P
∆2

)
= 1

2 log2
(
1+

P

N

)

i.e., C ′ = C . A mathematical coïncidence?
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The uniform channel

The capacity of Y = X + Z with additive uniform noise Z is

max
X s.t. |X |≤A

I (X ;Y ) = max
X

h(Y )− h(Y |X )

= max
X

h(Y )− h(Z )

= max
X s.t. |Y |≤A+∆

h(Y )− log2(2∆)

Choose X ∗ to be discrete uniform in {−A,−A + 2∆, . . . ,A}, then
Y = X ∗ + Z has uniform density over [−A−∆,A + ∆], which
maximizes differential entropy:

= log2(2(A + ∆))− log2(2∆)

= log2
(
1 +

A

∆

)
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What is the worst noise?
Thus C ′ = log2

(
1 + A

∆

)
is correct as the capacity of a

communication channel! except that
I the noise is not Gaussian, but uniform;
I signal limitation is not on the power, but on the amplitude.

Further analogy:

I Shannon used the entropy power inequality to show that under
limited power, Gaussian noise is the worst possible noise one
can inflict in the channel:

1
2 log2

(
1 + α

P

N

)
≤ C ≤ 1

2 log2
(
1 +

P

N

)
+ 1

2 log2 α,

where α = N/Ñ ≥ 1
I We can show: under limited amplitude, uniform noise is the

worst possible noise one can inflict in the channel:

log2
(
1 +

A

∆

)
≤ C ′ ≤ log2

(
1 +

A

∆

)
+ log2 α,

where α = ∆/∆̃ ≥ 1.
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Conclusion

Why is Shannon’s formula ubiquitous?

I we can explain the coincidence by deriving necessary and
sufficient conditions s.t. C = 1

2 log2
(
1 + P

N

)
.

I the uniform (Tuller) and Gaussian (Shannon) channels are not
the only examples.

I using B-splines, we can construct a sequence of such additive
noise channels s.t.

uniform channel −−−−−−−−−−−−−−→ Gaussian channel
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“On Shannon’s formula and Hartley’s rule: Beyond the
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Thank you!
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A characterization of C = 1
2 log2

(
1 + P

N

)

There exists α > 1 such that the ratio of characteristic functions

ΦZ (αω)

ΦZ (ω)

is itself a characterization function of a r.v. X ∗ — which attains
capacity under an average cost per channel use E{b(X )} ≤ C ,
where

b(x) = E
{
log2

( αpZ (Z )

pZ ((x + Z )/α)

)}
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B-splines channels

Entropy 2014, 16 4906

Proof. Since pZd
(z) = 1

2�
· �d

�
z

2�

�
is the (d + 1)th convolution power of the rectangle function of the

interval [��,�], the corresponding characteristic function is a (d + 1)th power of a cardinal sine:

�Zd
(!) = sincd+1(� · !).

Let M > 0 be an integer. From Example 4, we have

�Zd
(M!)

�Zd
(!)

=
sincd+1(M� · !)

sincd+1(� · !)
=

⇣ sin(M� · !)

M sin(� · !)

⌘d+1

=
⇣ 1

M

�
e�i(M�1)!� + e�i(M�3)!� + · · · + ei(M�1)!�

�⌘d+1

.

This is the characteristic function of the random variable

Xd = XM,0 + · · · + XM,d,

where the XM,i are i.i.d. and take M equiprobable values in the set {�(M � 1)�,�(M � 3)�, . . . ,

(M � 3)�, (M � 1)�}. Hence, Theorem 7 applies with ↵ = M and cost function (7).

Again for d = 0 one recovers the case of the uniform channel with input X0 = XM,0 taking M

equiprobable values in the set {�(M � 1)�,�(M � 3)�, . . . , (M � 3)�, (M � 1)�} (Figure 1a). In
general, the probability distribution of Xd is the (d + 1)th discrete convolution power of the uniform
distribution. For d = 1, the pdf of the noise has a triangular shape and the distribution of Xd is also
triangular (Figure 1b). As d increases, it becomes closer to a Gaussian shape (Figure 1c,d).

Figure 1. Discrete plots of input probability distributions (of Xd) that attain capacity for
M = 15 and different values of d.

(a) d = 0 (rectangular) (b) d = 1 (triangular)

(c) d = 2 (d) d = 3

6.3. Convergence as d ! +1

To determine the limit behavior as d ! +1, we need to apply some normalization on the probability
distributions. Since the pdf of Zd is obtained by successive convolutions of rectangles of length 2�, its
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	This Hartley's rule C'= log2 (to1.5. 1+ A )to1.5. is not Hartley's
	Many authors independently derived C=  frame12 log2 (to1.5. 1+ PN )to1.5. in 1948.
	In fact, C'=C (a coincidence?) 
	Besides, C' is the capacity of the ``uniform'' channel
	(and we can explain)

