Shannon’s Formula & Hartley’s Rule:

Olivier Rioul* José Carlos Magossi†

* Télécom ParisTech † Unicamp
Shannon’s Formula & Hartley’s Rule: A Mathematical Coincidence?
Shannon's Formula & Hartley's Rule: A Mathematical Coincidence?
Shannon’s formula:

\[C = \frac{1}{2} \log_2 \left(1 + \frac{P}{N} \right) \text{ bits/symbol} \]
Shannon’s formula:

\[C = W \log_2 \left(1 + \frac{P}{N} \right) \text{ bits/second} \]
Shannon’s formula:

\[C = \frac{1}{2} \log_2 \left(1 + \frac{P}{N} \right) \]

Shannon’s formula:

\[C = \frac{1}{2} \log_2 \left(1 + \frac{P}{N} \right) \]

Shannon’s formula:

\[C = \frac{1}{2} \log_2 \left(1 + \frac{P}{N} \right) \]

20 years before... in the same journal...
Hartley’s rule:

\[C' = \log_2 \left(1 + \frac{A}{\Delta} \right) \text{ bits/symbol} \]

Ralph Hartley

20 years before... in the same journal...

Hartley’s rule:

\[C' = 2W \log_2 \left(1 + \frac{A}{\Delta} \right) \text{ bits/second} \]

Hartley’s rule:

\[C' = \log_2 \left(1 + \frac{A}{\Delta} \right) \]

Figure 1.1 Distinguishable receiver amplitudes. Hartley considered received pulse amplitudes to be distinguishable only if they lie in different zones of width \(2\Delta \). Thus pulses \(a \) and \(c \) are distinguishable but \(a \) and \(b \) are not. For the case shown, \(A/\Delta = 4 \) and there are five distinguishable zones.

(Wozencraft-Jacobs textbook, 1965)
Hartley’s rule:

\[C' = \log_2 \left(1 + \frac{A}{\Delta} \right) \]

- amplitude “SNR” \(A/\Delta \) (factor 1/2 is missing)
- no coding involved (except quantization)
- zero error

Hartley’s formulation exhibits a simple but somewhat inexact interrelation among the time interval \(T \), the channel bandwidth \(W \), the maximum signal magnitude \(A \), the receiver accuracy \(\Delta \), and the allowable number \(M \) of message alternatives. Communication theory is intimately concerned with the determination of more precise interrelations of this sort.

(Wozencraft-Jacobs textbook, 1965)
Hartley’s $C' = \log_2 \left(1 + \frac{A}{\Delta} \right)$ came 20 years before Shannon
Hartley’s \(C' = \log_2 \left(1 + \frac{A}{\Delta} \right) \) came 20 years before Shannon

Shannon’s \(C = \frac{1}{2} \log_2 \left(1 + \frac{P}{N} \right) \) came unexpected in 1948
Hartley’s $C' = \log_2 \left(1 + \frac{A}{\Delta} \right)$ came 20 years before Shannon

Shannon’s $C = \frac{1}{2} \log_2 \left(1 + \frac{P}{N} \right)$ came unexpected in 1948

Hartley’s rule is inexact: $C' \neq C$
Hartley’s $C' = \log_2 \left(1 + \frac{A}{\Delta} \right)$ came 20 years before Shannon

Shannon’s $C = \frac{1}{2} \log_2 \left(1 + \frac{P}{N} \right)$ came unexpected in 1948

Hartley’s rule is inexact: $C' \neq C$

Besides, C' is not the capacity of a noisy channel
Hartley’s $C' = \log_2 \left(1 + \frac{A}{\Delta} \right)$ came 20 years before Shannon

Shannon’s $C = \frac{1}{2} \log_2 \left(1 + \frac{P}{N} \right)$ came unexpected in 1948

Hartley’s rule is inexact: $C' \neq C$

Besides, C' is not the capacity of a noisy channel

(no question)
Wrong!
This Hartley’s rule $C' = \log_2\left(1 + \frac{A}{\Delta}\right)$ is not Hartley’s.
This Hartley’s rule $C' = \log_2\left(1 + \frac{A}{\Delta}\right)$ is not Hartley’s.

Many authors independently derived $C = \frac{1}{2} \log_2\left(1 + \frac{P}{N}\right)$ in 1948.
This Hartley’s rule $C' = \log_2 \left(1 + \frac{A}{\Delta} \right)$ is not Hartley’s

Many authors independently derived $C = \frac{1}{2} \log_2 \left(1 + \frac{P}{N} \right)$ in 1948.

In fact, $C' = C$ (a coincidence?)
This Hartley’s rule \(C' = \log_2 \left(1 + \frac{A}{\Delta} \right) \) is not Hartley’s

Many authors independently derived \(C = \frac{1}{2} \log_2 \left(1 + \frac{P}{N} \right) \) in 1948.

In fact, \(C' = C \) (a coincidence?)

Besides, \(C' \) is the capacity of the “uniform” channel
This Hartley’s rule \(C' = \log_2 \left(1 + \frac{A}{\Delta} \right) \) is not Hartley’s.

Many authors independently derived \(C = \frac{1}{2} \log_2 \left(1 + \frac{P}{N} \right) \) in 1948.

In fact, \(C' = C \) (a coincidence?)

Besides, \(C' \) is the capacity of the “uniform” channel

(and we can explain)
This Hartley’s rule \(C' = \log_2\left(1 + \frac{A}{\Delta}\right) \) is not Hartley’s.

Many authors independently derived \(C = \frac{1}{2} \log_2\left(1 + \frac{P}{N}\right) \) in 1948.

In fact, \(C' = C \) (a coincidence?)

Besides, \(C' \) is the capacity of the “uniform” channel

(and we can explain)
Quote from Shannon, 1984:

> Even writing the cryptography report, I was coming to realizing some aspects of information theory. I started with information theory, inspired by Hartley’s paper, which was a good paper, but it did not take account of things like noise and best encoding and probabilistic aspects.³

Q: You have said to other people that these were closely

- In Hartley’s paper, no mention of signal vs. noise or A vs. Δ
- Why was $C' = \log_2 \left(1 + \frac{A}{\Delta}\right)$ mistakenly attributed to Hartley?
A HISTORY OF THE THEORY OF INFORMATION

By E. COLIN CHERRY, M.Sc., Associate Member.

(The paper was first received 7th February, and in revised form 28th May, 1951.)

increased. Although not explicitly stated in this form in his paper, Hartley12 has implied that the quantity of information which can be transmitted in a frequency band of width B and necessary to data in a time t, and the vertical the “smallest distinguishable” amplitude change; in practice this smallest step may be taken to equal the noise level, n. Then the quantity of information transmitted may be shown to be proportional to

$$Bt \log \left(1 + \frac{a}{n}\right)$$

where a is the maximum signal amplitude, an expression given by Tuller23 being based upon Hartley’s definition of information.
This Hartley’s rule $C' = \log_2 \left(1 + \frac{A}{A} \right)$ is not Hartley’s.

Many authors independently derived $C = \frac{1}{2} \log_2 \left(1 + \frac{P}{N} \right)$ in 1948.

In fact, $C' = C$ (a coincidence?)

Besides, C' is the capacity of the “uniform” channel

(and we can explain)
And then there were eight

Quote from Shannon, 1948:

Formulas similar to $C = W \log \frac{P + N}{N}$ for the white noise case have been developed independently by several other writers, although with somewhat different interpretations. We may mention the work of N. Wiener, W. G. Tuller, and H. Sullivan in this connection.

And then there were eight

Quote from Shannon, 1948:

Formulas similar to $C = W \log \frac{P + N}{N}$ for the white noise case have been developed independently by several other writers, although with somewhat different interpretations. We may mention the work of N. Wiener, W. G. Tuller, and H. Sullivan in this connection.

And then there were eight

Quote from Shannon, 1948:

Formulas similar to $C = W \log \frac{P + N}{N}$ for the white noise case have been developed independently by several other writers, although with somewhat different interpretations. We may mention the work of Norbert Wiener, William G. Tuller, and H. Sullivan in this connection.

3. H. Sullivan, ?
And then there were eight

Quote from Shannon, 1948:

Formulas similar to $C = W \log \frac{P + N}{N}$ for the white noise case have been developed independently by several other writers, although with somewhat different interpretations. We may mention the work of N. Wiener, W. G. Tuller, and H. Sullivan in this connection.

3. H. Sullivan, ?
4. Jacques Laplume, April 1948
And then there were eight

Quote from Shannon, 1948:

Formulas similar to \(C = W \log \frac{P + N}{N} \) for the white noise case have been developed independently by several other writers, although with somewhat different interpretations. We may mention the work of N. Wiener, W. G. Tuller, and H. Sullivan in this connection.

3. H. Sullivan, ?
4. Jacques Laplume, April 1948
5. Charles W. Earp, June 1948
And then there were eight

Quote from Shannon, 1948:

Formulas similar to $C = W \log \frac{P + N}{N}$ for the white noise case have been developed independently by several other writers, although with somewhat different interpretations. We may mention the work of N. Wiener, W. G. Tuller, and H. Sullivan in this connection.

3. H. Sullivan, ?
4. Jacques Laplume, April 1948
5. Charles W. Earp, June 1948
6. André G. Clavier, December 1948
And then there were eight

Quote from Shannon, 1948:

Formulas similar to $C = W \log \frac{P + N}{N}$ for the white noise case have been developed independently by several other writers, although with somewhat different interpretations. We may mention the work of N. Wiener, W. G. Tuller, and H. Sullivan in this connection.

3. H. Sullivan, ?
4. Jacques Laplume, April 1948
5. Charles W. Earp, June 1948
6. André G. Clavier, December 1948
7. Stanford Goldman, May 1948
And then there were eight

Quote from Shannon, 1948:

Formulas similar to \(C = W \log \frac{P + N}{N} \) for the white noise case have been developed independently by several other writers, although with somewhat different interpretations. We may mention the work of N. Wiener, W. G. Tuller, and H. Sullivan in this connection.

3. H. Sullivan, ?
4. Jacques Laplume, April 1948
5. Charles W. Earp, June 1948
6. André G. Clavier, December 1948
7. Stanford Goldman, May 1948
8. Claude E. Shannon, July 1940 ????
There is a large class of phenomena in which what is observed is a numerical quantity, or a sequence of numerical quantities, dis-

An interesting problem is that of determining the information gained by fixing one or more variables in a problem. For example, let us suppose that a variable u lies between x and $x + dx$ with the

probability $\exp\left(-x^2/2a\right) dx/\sqrt{2\pi a}$, while a variable v lies between the same two limits with a probability $\exp\left(-x^2/2b\right) dx/\sqrt{2\pi b}$. How much information do we gain concerning u if we know that $u + v = w$? In this case, it is clear that $u = w - v$, where w is
The excess of information concerning x when we know w to be that which we have in advance is

\[
\frac{1}{\sqrt{2\pi ab/(a + b)}} \int_{-\infty}^{\infty} \left\{ \exp \left[-\left(x - c_2 \right)^2 \left(\frac{a + b}{2ab} \right) \right] \right\} \times \left[-\frac{1}{2} \log_2 2\pi \left(\frac{ab}{a + b} \right) \right] - (x - c_2)^2 \left[\left(\frac{a + b}{2ab} \right) \right] \log_2 e \right] \, dx

- \frac{1}{\sqrt{2\pi a}} \int_{-\infty}^{\infty} \left[\exp \left(-\frac{x^2}{2a} \right) \right] \left(-\frac{1}{2} \log_2 2\pi a - \frac{x^2}{2a} \log_2 e \right) \, dx

= \frac{1}{2} \log_2 \left(\frac{a + b}{b} \right) \quad (3.091)
\]
The excess of information concerning x when we know w to be that which we have in advance is

$$\frac{1}{\sqrt{2\pi[ab/(a + b)]}} \int_{-\infty}^{\infty} \left\{ \exp \left[-(x - c_2) \left(\frac{a + b}{2ab} \right) \right] \right\}$$

$$\times \left[-\frac{1}{2} \log_2 2\pi \left(\frac{ab}{a + b} \right) \right] - (x - c_2)^2 \left(\frac{a + b}{2ab} \right) \log_2 e \right] dx$$

$$- \frac{1}{\sqrt{2\pi a}} \int_{-\infty}^{\infty} \left[\exp \left(-\frac{x^2}{2a} \right) \right] \left(-\frac{1}{2} \log_2 2\pi a - \frac{x^2}{2a} \log_2 e \right) dx$$

$$= \frac{1}{2} \log_2 \left(\frac{a + b}{b} \right) \quad (3.091)$$

Later...in 1956:

What is Information Theory?

NORBERT WIENER

INFORMATION THEORY has been identified in the public mind to denote the theory of information by bits, as developed by Claude E. Shannon and myself. This notion is certainly impor-
Meanwhile (1948), far away...

PHYSIQUE MATHÉMATIQUE. — Sur le nombre de signaux discernables en présence du bruit erratique dans un système de transmission à bande passante limitée.

Nota de M. Jacques Laplume.

Soit a l’amplitude maximum de $u(t)$, et soit Δa la précision sur l’évaluation de u. Deux signaux $u(t)$ seront discernables s’ils diffèrent de Δa au moins pendant l’un des intervalles Δt. Dans chacun de ces intervalles, le signal peut avoir l’une quelconque des amplitudes discernables 0, Δa, 2Δa, ..., $q\Delta a$, avec $q = (a/\Delta a)$.

Ces amplitudes discernables sont au nombre de $q + 1$. Le nombre total des signaux discernables est donc

$$M = (q + 1)^r,$$

d’où

$$\log M = r \log (q + 1).$$
Relationship Between Rate of Transmission of Information, Frequency Bandwidth, and Signal-to-Noise Ratio*

By C. W. EARP

In each channel, the available power may be used to provide N instantaneous values, this being achieved without ambiguity provided that

$$N < \left(\frac{S_{SSB}}{\rho \sqrt{n}} - 1 \right).$$
Relationship Between Rate of Transmission of Information, Frequency Bandwidth, and Signal-to-Noise Ratio*

By C. W. Earp

In each channel, the available power may be used to provide \(N \) instantaneous values, this being achieved without ambiguity provided that

\[
N < \left(\frac{S_{\text{SSB}}}{\sqrt{n} \cdot \Omega} \right) - 1
\]

* The present paper was written in original form in October, 1946, when the author had no knowledge of any practical development of pulse-code modulation, as the
Evaluation of Transmission Efficiency According to Hartley's Expression of Information Content*

By A. G. CLAVIER

Federal Telecommunication Laboratories, Incorporated, Nutley, New Jersey

small percentage of error due to noise. The total number of distinguishable levels on the ideal line is thus given by

$$\frac{S + \bar{N}\sqrt{2}}{\bar{N}\sqrt{2}} = 1 + \frac{S}{\bar{N}\sqrt{2}},$$

with a reasonable approximation. It follows that the amount of information transmittible on the ideal line is measured by

$$H_{lm} = k_0 \cdot 2f_l \cdot t \cdot \log \left(1 + \frac{S_l}{\bar{N}\sqrt{2}}\right).$$
Evaluation of Transmission Efficiency According to Hartley's Expression of Information Content*

By A. G. CLAVIER

Federal Telecommunication Laboratories, Incorporated, Nutley, New Jersey

* A symposium on "Recent Advances in the Theory of Communication" was presented at the November 12, 1947, meeting of the New York Section of the Institute of Radio Engineers. Four papers were presented by A. G. Clavier, Federal Telecommunication Laboratories; B. D. Loughlin, Hazeltine Electronics Corporation; and J. R. Pierce and C. E. Shannon, both of Bell Telephone Laboratories. The discussion was presented by W. Cary Cope, Bell Telephone Laboratories.
Some Fundamental Considerations Concerning Noise Reduction and Range in Radar and Communication*

STANFORD GOLDMAN†, SENIOR MEMBER, I.R.E.

The number of significant amplitude levels is usually determined by the noise in the system. If the system is of a linear nature, and the maximum signal amplitude is \(S \), while the noise amplitude is \(N \), then the number of significant amplitude levels is essentially

\[
L = (S/N) + 1
\]

where the “1” is due to the fact that the zero signal level can be used.
Some Fundamental Considerations Concerning Noise Reduction and Range in Radar and Communication

STANFORD GOLDMAN†, SENIOR MEMBER, I.R.E.

The number of significant amplitude levels is usually determined by the noise in the system. If the system is of a linear nature, and the maximum signal amplitude is S, while the noise amplitude is N, then the number of significant amplitude levels is essentially

$$ L = \frac{S}{N} + 1 \quad (2) $$

where the “1” is due to the fact that the zero signal level can be used.

Equation (5) has been derived independently by many people, among them W. G. Tuller, from whom the writer first learned about it.
Theoretical Limitations on the Rate of Transmission of Information*

WILLIAM G. TULLER†, SENIOR MEMBER, IRE

recognizable. Then, if \(N \) is the rms amplitude of the noise mixed with the signal, there are \(1 + S/N \) significant values of signal that may be determined. This sets \(s \) in

have from (1) the quantity of information available at the output of the system:

\[
H = kn \log s = k2f_c T \log (1 + S/N). \tag{2}
\]

This is an important expression, to be sure, but gives
Theoretical Limitations on the Rate of Transmission of Information*

WILLIAM G. TULLER†, SENIOR MEMBER, IRE

recognizable. Then, if \(N \) is the rms amplitude of the noise mixed with the signal, there are \(1 + S/N \) significant values of signal that may be determined. This sets \(s \) in

have from (1) the quantity of information available at the output of the system:

\[
H = kn \log s = k2f_c T \log (1 + S/N). \tag{2}
\]

This is an important expression, to be sure, but gives
Communication in the Presence of Noise*

CLAUDE E. SHANNON†, MEMBER, IRE

THEOREM 2: Let P be the average transmitter power, and suppose the noise is white thermal noise of power N in the band W. By sufficiently complicated encoding systems it is possible to transmit binary digits at a rate

$$C = W \log_2 \frac{P + N}{N}$$ \hspace{1cm} (19)

with as small a frequency of errors as desired. It is not pos-
Communication in the Presence of Noise*

CLAUDE E. SHANNON†, MEMBER, IRE

Communication in the Presence of Noise*

CLAUDE E. SHANNON†, MEMBER, IRE

[10] A. Hodges, Alan Turing: The Enigma, New York: Simon and Schuster, 1983. [The following information was obtained from C. E. Shannon on March 3, 1984: “On p. 552, Hodges cites a Shannon manuscript date of 1940, which is, in fact, a typographical error. While results for coding statistical sources into noiseless channels using the plog(p) measure were obtained in 1940–1941 (at the Institute for Advanced Study in Princeton), first submission of this work for formal publication occurred soon after World War II.”]
The “Shannon-Hartley” formula

\[C = \frac{1}{2} \log_2 \left(1 + \frac{P}{N} \right) \]
Who’s formula?

The “Shannon-Hartley” formula

\[C = \frac{1}{2} \log_2 \left(1 + \frac{P}{N} \right) \]

would actually be the

Shannon-Tuller-Wiener-Sullivan-Laplume-Earp-Clavier-Goldman formula
Who’s formula?

The “Shannon-Hartley” formula

\[C = \frac{1}{2} \log_2 \left(1 + \frac{P}{N} \right) \]

would actually be the

Shannon-Tuller-Wiener-Sullivan-Laplume-Earp-Clavier-Goldman formula

or simply the

Shannon-Tuller formula
This Hartley’s rule $C' = \log_2 \left(1 + \frac{A}{\Delta} \right)$ is not Hartley’s

Many authors independently derived $C = \frac{1}{2} \log_2 \left(1 + \frac{P}{N} \right)$ in 1948.

In fact, $C' = C$ (a coincidence?)

Besides, C' is the capacity of the “uniform” channel

(and we can explain)
“Hartley”’s argument

The channel input X is taking $M = 1 + A/\Delta$ equiprobable values in the set \{-A, -$A + 2\Delta$, \ldots, $A - 2\Delta$, A\}:

$$P = \mathbb{E}(X^2) = \frac{1}{M} \sum_{k=0}^{n} (M - 1 - 2k)^2 = \Delta^2 \frac{M^2 - 1}{3}.$$

The input is mixed with additive noise Z with accuracy $\pm \Delta$, i.e. having uniform distribution in $[-\Delta, \Delta]$:

$$N = \mathbb{E}(Z^2) = \frac{1}{2\Delta} \int_{-\Delta}^{\Delta} z^2 \, dz = \frac{\Delta^2}{3}.$$
“Hartley”’s argument

The channel input X is taking $M = 1 + A/\Delta$ equiprobable values in the set $\{-A, -A + 2\Delta, \ldots, A - 2\Delta, A\}$:

$$P = \mathbb{E}(X^2) = \frac{1}{M} \sum_{k=0}^{n} (M - 1 - 2k)^2 = \Delta^2 \frac{M^2 - 1}{3}.$$

The input is mixed with additive noise Z with accuracy $\pm \Delta$, i.e. having uniform distribution in $[-\Delta, \Delta]$:

$$N = \mathbb{E}(Z^2) = \frac{1}{2\Delta} \int_{-\Delta}^{\Delta} z^2 dz = \frac{\Delta^2}{3}.$$

Hence

$$\log_2 \left(1 + \frac{A}{\Delta} \right) = \frac{1}{2} \log_2 \left(1 + M^2 - 1 \right) = \frac{1}{2} \log_2 \left(1 + \frac{3P}{\Delta^2} \right) = \frac{1}{2} \log_2 \left(1 + \frac{P}{N} \right)$$

i.e., $C' = C$. A mathematical coincidence?
This Hartley’s rule $C' = \log_2\left(1 + \frac{A}{A}
ight)$ is not Hartley’s.

Many authors independently derived $C = \frac{1}{2} \log_2\left(1 + \frac{P}{N}\right)$ in 1948.

In fact, $C' = C$ (a coincidence?)

Besides, C' is the capacity of the “uniform” channel

(and we can explain)
The uniform channel

The capacity of $Y = X + Z$ with additive uniform noise Z is

$$\max_{X \text{ s.t. } |X| \leq A} I(X; Y) = \max_{X} h(Y) - h(Y|X)$$

$$= \max_{X} h(Y) - h(Z)$$

$$= \max_{X \text{ s.t. } |Y| \leq A + \Delta} h(Y) - \log_2(2\Delta)$$

Choose X^* to be discrete uniform in $\{-A, -A + 2\Delta, \ldots, A\}$, then $Y = X^* + Z$ has uniform density over $[-A - \Delta, A + \Delta]$, which maximizes differential entropy:

$$= \log_2(2(A + \Delta)) - \log_2(2\Delta)$$

$$= \log_2 \left(1 + \frac{A}{\Delta} \right)$$
What is the worst noise?

Thus \(C' = \log_2 \left(1 + \frac{A}{\Delta} \right) \) is *correct* as the capacity of a communication channel! except that

- the noise is *not* Gaussian, but uniform;
- signal limitation is *not* on the power, but on the amplitude.
What is the worst noise?

Thus $C' = \log_2 \left(1 + \frac{A}{\Delta} \right)$ is *correct* as the capacity of a communication channel! except that

- the noise is *not* Gaussian, but uniform;
- signal limitation is *not* on the power, but on the amplitude.

Further analogy:

Shannon used the entropy power inequality to show that under limited power, Gaussian noise is the worst possible noise one can inflict in the channel:

$$\frac{1}{2} \log_2 \left(1 + \alpha P N \right) \leq C \leq \frac{1}{2} \log_2 \left(1 + P N \right) + \frac{1}{2} \log_2 \alpha,$$

where \(\alpha = N/\tilde{N} \geq 1 \).

We can show: under limited amplitude, uniform noise is the worst possible noise one can inflict in the channel:

$$\log_2 \left(1 + \frac{A}{\Delta} \right) \leq C' \leq \log_2 \left(1 + \frac{A}{\tilde{\Delta}} \right) + \log_2 \alpha,$$

where \(\alpha = \Delta/\tilde{\Delta} \geq 1 \).
What is the worst noise?

Thus \(C' = \log_2 \left(1 + \frac{A}{\Delta}\right) \) is correct as the capacity of a communication channel! except that

- the noise is \textit{not} Gaussian, but uniform;
- signal limitation is \textit{not} on the power, but on the amplitude.

Further analogy:

- Shannon used the entropy power inequality to show that under limited \textit{power}, Gaussian noise is the worst possible noise one can inflict in the channel:

\[
\frac{1}{2} \log_2 \left(1 + \frac{P}{N}\right) \leq C \leq \frac{1}{2} \log_2 \left(1 + \frac{P}{N}\right) + \frac{1}{2} \log_2 \alpha,
\]

where \(\alpha = \frac{N}{\tilde{N}} \geq 1 \)
What is the worst noise?

Thus \(C' = \log_2 \left(1 + \frac{A}{\Delta} \right) \) is correct as the capacity of a communication channel! except that
- the noise is \textit{not} Gaussian, but uniform;
- signal limitation is \textit{not} on the power, but on the amplitude.

Further analogy:
- Shannon used the entropy power inequality to show that under limited \textit{power}, Gaussian noise is the worst possible noise one can inflict in the channel:
 \[
 \frac{1}{2} \log_2 \left(1 + \alpha \frac{P}{N} \right) \leq C \leq \frac{1}{2} \log_2 \left(1 + \frac{P}{N} \right) + \frac{1}{2} \log_2 \alpha,
 \]
 where \(\alpha = \frac{N}{\tilde{N}} \geq 1 \)
- We can show: under limited \textit{amplitude}, \textit{uniform} noise is the worst possible noise one can inflict in the channel:
 \[
 \log_2 \left(1 + \frac{A}{\Delta} \right) \leq C' \leq \log_2 \left(1 + \frac{A}{\Delta} \right) + \log_2 \alpha,
 \]
 where \(\alpha = \frac{\Delta}{\tilde{\Delta}} \geq 1 \).
Why is Shannon’s formula ubiquitous?
Why is Shannon’s formula ubiquitous?

- we can explain the coincidence by deriving necessary and sufficient conditions s.t. \(C = \frac{1}{2} \log_2 \left(1 + \frac{P}{N} \right) \).
Why is Shannon’s formula ubiquitous?

▶ we can explain the coincidence by deriving necessary and sufficient conditions s.t. \(C = \frac{1}{2} \log_2 \left(1 + \frac{P}{N} \right) \).

▶ the uniform (Tuller) and Gaussian (Shannon) channels are not the only examples.
Why is Shannon’s formula ubiquitous?

- we can explain the coincidence by deriving necessary and sufficient conditions s.t. $C = \frac{1}{2} \log_2 \left(1 + \frac{P}{N} \right)$.
- the uniform (Tuller) and Gaussian (Shannon) channels are not the only examples.
- using B-splines, we can construct a sequence of such additive noise channels s.t.

 uniform channel \longrightarrow Gaussian channel
Conclusion

Why is Shannon’s formula ubiquitous?

- we can explain the coincidence by deriving necessary and sufficient conditions s.t. \(C = \frac{1}{2} \log_2 \left(1 + \frac{P}{N} \right) \).
- the uniform (Tuller) and Gaussian (Shannon) channels are not the only examples.
- using B-splines, we can construct a sequence of such additive noise channels s.t.

\[
\text{uniform channel} \quad \longrightarrow \quad \text{Gaussian channel}
\]

“On Shannon’s formula and Hartley’s rule: Beyond the mathematical coincidence,”
http://www.mdpi.com/1099-4300/16/9/4892/
Thank you!
A characterization of $C = \frac{1}{2} \log_2 \left(1 + \frac{P}{N} \right)$

There exists $\alpha > 1$ such that the ratio of characteristic functions

$$\frac{\Phi_Z(\alpha \omega)}{\Phi_Z(\omega)}$$

is itself a characterization function of a r.v. $X^* —$ which attains capacity under an average cost per channel use $\mathbb{E}\{b(X)\} \leq C$, where

$$b(x) = \mathbb{E}\left\{ \log_2 \left(\frac{\alpha p_Z(Z)}{p_Z((x + Z)/\alpha)} \right) \right\}$$
Proof. Since \(p(Z_d(z)) = \frac{1}{2} \cdot d(z) \) is the \((d+1)\)th convolution power of the rectangle function of the interval \([-1, 1]\), the corresponding characteristic function is a \((d+1)\)th power of a cardinal sine:

\[
Z_d = \text{sinc}^{d+1} \cdot d(z).
\]

Let \(M > 0 \) be an integer. From Example 4, we have

\[
Z_d(M!) = \text{sinc}^{d+1} \cdot M \cdot d(z).
\]

This is the characteristic function of the random variable \(X_d = X_{M,0} + \cdots + X_{M,d} \), where the \(X_{M,i} \) are i.i.d. and take \(M \) equiprobable values in the set \(\{(M^1), (M^3), \ldots, (M^9)\} \). Hence, Theorem 7 applies with \(\tau = M \) and cost function (7).

Again for \(d = 0 \) one recovers the case of the uniform channel with input \(X_0 = X_{M,0} \) taking \(M \) equiprobable values in the set \(\{(M^1), (M^3), \ldots, (M^9)\} \) (Figure 1a). In general, the probability distribution of \(X_d \) is the \((d+1)\)th discrete convolution power of the uniform distribution. For \(d = 1 \), the pdf of the noise has a triangular shape and the distribution of \(X_d \) is also triangular (Figure 1b). As \(d \) increases, it becomes closer to a Gaussian shape (Figure 1c, d).