Optimum Operating Conditions for Two-Phase Flows in Pore Networks: Conceptual /Numerical Justification Based on the MEP principle (43)

M.S. Valavanides⁽¹⁾ and T. Daras⁽²⁾

(1) Dept. of Civil Eng., TEI Athens, Greece, marval@teiath.gr(2) School of Environmental Eng., TU Crete, Greece, tdaras@isc.tuc.gr

MaxEnt 2014

34th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering

Amboise, France, September 2014

MaxEnt 2014, Amboise, France, 9/2014 M.S.Valavanides "Optimum Operarting Conds. for 2ph Flow in Pore Network – MEP Justification"

1 / 30

3ΕΛ ,∰.* Εν	olutio	n of <i>DePr</i>	oF the	ory for (S	ste 5S2	ady-s 2φFPI	tat M)	e 2pha	ise flow i	n porou	s media
,	Time- &	scale-wise e	volution	of researc	ch le	eading 1	to th	e develo	opment of t	he <i>DeProl</i>	7 theory
Monte-Carlo simulation of the fate of	Ganglion	medietical and semi-	Theoretical			Me		Aechanistic Model of SS2@FPM	DeProF: mechanistic model of	DeProF prediction of optimum operating	aSaPP:
solitary oil ganglia during immiscible μ-displacement in p.m.	dynamics & Population Balance Ed	Immiscible µ- displacement and ganglion dynamics in s p.m.	Network models for 2@FPM	model of collision- coalescence of oil ganglia.	Ne sim	etwork nulation of 20FPM	based on ganglion dynamics (GD) Num. solution of PBEs Valavanides et al, 1998 Mesoscale		SS2¢FPM - decomposition in prototype flows Valavanides & Payatakes, 1998, 2000 & 2001 Pore-to- macroscale	conditions (OOC) for SS2φFPM Valavanides & Payatakes, 2003 Pore-to- statistical thermodynamics scale	conceptual justification of the existence of OOC in SS2¢FPM Valavanides, 2010 Statistical thermodynamics
Payatakes <i>et al</i> , 1981 Pore-to- mesoscale	Payatakes, 1982 Meso-to- macroscale	Payatakes & Dias, 1984 Pore-to- mesoscale	Dias & Payatakes, 1986 (a&b)	Constantinides & Payatakes, 1991	Cons & P	stantinides Payatakes, 1996					
Experimental works ga				SS2φ flov planar a m. non-plar model network Avraam et 1994	vin Flow regir & & relpern lar during SS2φFPM S Avraam & ral, Payatake: 1995		nes ns M & \$,	Flow regim & relperm during SS2φFPM strong wettabilit Avraam &	es s / y	e	Reveal of latent experimental evidence on the xistence of OOC for SS2φFPM Valavanides, 2011
1980				1990			Payatakes, 1999		2000	2000	
# pores: 1	10	10 ³		106				109			+ ∞
p.m. scale: Por	re		network /	core						field	
Study scales: microscale mesoscopic macros					copic	opic statistical thermodynamics					

RED ROANNA	DeProF equations 8 equations for (I _{max} +6) unknowns										
		$U^{o,CPF} = \frac{1}{\kappa r} x$	$\{ Darcy's law in CPF \}$ (1)								
	Macroscopic	$(1-\beta)U^{w,DOF} = 1$	{Total water mass balance } (2)								
	scale	$\beta U^{o,CPF} + (1\!-\!\beta) U^{o,DOF} = 1$	$\{ Total oil mass balance \}$ (3)								
		$\beta + (1 - \beta) \left[\omega S^{o,G} + (1 - \omega) S^{o,D} \right] = 1 - S^w$	$\left\{\begin{array}{c} \text{Total oil (or water) mass} \\ \text{arrangement condition} \end{array}\right\} (4)$								
	Macro-micro scale consistency	$\sum_{i=1}^{I_{max}} n_i^G N_i^G = 2N_d$	$ \left\{\begin{array}{c} \text{Oil ganglion volume}\\ \text{normalization condition} \end{array}\right\} (5) $								
		$\frac{1}{2}\sum_{i=l}^{I_{max}}n_i^GV_i^G=S^{o,G}$	$ \left\{\begin{array}{c} GD \text{ oil saturation in terms of} \\ ganglion volume distribution \end{array}\right\} (6) $								
		$\sum_{i=l}^{I_{max}} in_i^G m_i^G u_i^G = 2r \mathbf{U}^{o,\text{DOF}}$	$ \left\{ \begin{array}{c} \text{Oil ganglion} \\ \text{mass balance in DOF} \end{array} \right\} $ (7)								
	Effective Medium Theory in DOF	$\begin{split} &\sum_{a,b,i} P_{a,i}^b(x) \frac{k\kappa(l+r) - k\beta x - \kappa(l-\beta) x g_{a,i}^b(x)}{k[\kappa(l+r) - \beta x] + \kappa(l-\beta) x g_{a,i}^b(x)} + \\ &+ (1-\omega) \sum_{a,b} P_a^b(x) \frac{k\kappa(l+r) - k\beta x - \kappa(l-\beta) x g_a^b(x)}{k[\kappa(l+r) - \beta x] + \kappa(l-\beta) x g_a^b(x)} \end{split}$	$ = 0 \begin{cases} EMT equation for \\ "Equivalent Water" \\ Flow in DOF \end{cases} $ (8)								
MaxEnt 2014	Effective Medium Theory in DOF 4, Amboise, France, 9/20	$ \sum_{a,b,i} P_{a,i}^{b}(x) \frac{k\kappa(1+r) - k\beta x - \kappa(1-\beta)xg_{a,i}^{b}(x)}{k[\kappa(1+r) - \beta x] + \kappa(1-\beta)xg_{a,i}^{b}(x)} + \\ + (1-\omega)\sum_{a,b} P_{a}^{b}(x) \frac{k\kappa(1+r) - k\beta x - \kappa(1-\beta)xg_{a}^{b}(x)}{k[\kappa(1+r) - \beta x] + \kappa(1-\beta)xg_{a}^{b}(x)} $ 14 MS.Valavanides "Optimum Operarting Conds. for 2ptimum operating Conds. for 2pti	$\frac{1}{2} = 0 \begin{cases} \text{EMT equation for} \\ \text{"Equivalent Water"} \\ \text{Flow in DOF} \end{cases} $ (8) h Flow in Pore Network – MEP Justification"								

< [] **Retro-examined rel-perm diagrams** POHNAL Allen, F.R., Pucket, D.A. (1986) SPE10972, AEE Maloney D., Doggett K., Brinkmeyer, A. (1993) NIPER 648 Winfrith, Dorset, U.K. Masalmeh, S.K. (2003) JPSE 39 Rijswijk, The Netherlands, Avraam, D.G., Payatakes, A.C. (1995) J. Fluid Mech. 2003 293 Nordtvedt, J.E., Urkedal, H., Watson, A.T., Ebeloft, E., Kolltveit, K., Langaas, K., Oxnevad, I.E.I. (1994) SCA 9418 Avraam, D.G., Payatakes, A.C. (1999) Industrial & Engineering Chemistry Research 38. Oak M.J., Baker L.E., Thomas, D.C. (1990) Journal of Bentsen, R.G. (2005) Journal of Petroleum Science & Petroleum Technology 42 Technology 23 Ramstad, T., Idowu, N., Nardi, C., Oren, P.E. (2012) Braun, E.M., Blackwell, R.J. (1981) SPE 10155 Transport in Porous Media 94. Eleri, O.O., Graue A., Skauge, A. (1995) SPE 30764, Shafer, J.L., Braun, E.M., Wood, A.C., Wooten, J.M. (1990) University of Bergen, Norway SCA 9009, Houston, Texas Fulcher, Jr R.A., Ertekin, T., Stahl, C.D. (1985) Journal Virnovsky, G.A., Guo, Y., Skjaeveland, S.M., Ingsoy, P. of Petroleum Technology 37 (1995) SCA 9502 Lai, B., Miskimins, J. (2010) SPE 134501, ATCE2010, Virnovsky, G.A., Vatne, K.O., Skjaeveland, S.M., Lohne, A. (1998) SPE 49321, New Orleans, Louisiana Florence, Italy Lo, H.Y., Mungan, N. (1973) SPE 4505 Dallas, Teas Wang, F.H.L. (1988) SPERE 15019 Longeron, D.G., Cuiec L., Yahya, F.A. (1993) SCA 9324 Details of retrospective rel-perm study users.teiath.gr/marval/ArchIII/retrorelperm.pdf Free download the SS Rel-Perm Data Transformer users.teiath.gr/marval/ArchIII/relpermtrans.xls. Your lab study is not included? Join the effort in building a rel-perm Data Base ! --> marval@teiath.gr MaxEnt 2014, Amboise, France, 9/2014 M.S.Valavanides "Optimum Operarting Conds. for 2ph Flow in Pore Network - MEP Justification" 36 / 30

