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Kähler manifold

Definition

The Kähler manifold is the Hermitian manifold with the closed
Kähler two-form.

In the metric expression,

gij = gī j̄ = 0

∂igj k̄ = ∂jgi k̄ = 0

Any advantages? Let’s discuss later.
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Linear systems and information geometry

Linear systems are described by the transfer function h(w ; ξ)

y(w) = h(w ; ξ)x(w ; ξ)

where input x and output y .

The metric tensor for the filter

gµν(ξ) =
1

2π

∫ π

−π
(∂µ log S)(∂ν log S)dw

where S(w ; ξ) = |h(w ; ξ)|2.
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z-transformation h(z ; ξ) =
∑∞

r=0 hr (ξ)z−r

log h(z ; ξ) = log h0 + log (1 +
∞∑
r=1

hr
h0

z−r ) = log h0 +
∞∑
r=1

ηrz
−r

The metric tensor in terms of transfer function

gµν =
1

2πi

∮
|z|=1

∂µ
(

log h + log h̄
)
∂ν
(

log h + log h̄
)dz
z

where µ, ν run holomorphic and anti-holomorphic indices.
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The metric tensors in holomorphic and anti-holomorphic
coordinates

gij(ξ) =
1

2πi

∮
|z|=1

∂i log h(z ; ξ)∂j log h(z ; ξ)
dz

z

gi j̄(ξ) =
1

2πi

∮
|z|=1

∂i log h(z ; ξ)∂j̄ log h̄(z̄ ; ξ̄)
dz

z

The metric tensor

gij = ∂i log h0∂j log h0

gi j̄ = ∂i log h0∂j̄ log h̄0 +
∞∑
r=1

∂iηr∂j̄ η̄r
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Kähler manifold for signal processing

Theorem

Given a holomorphic transfer function h(z ; ξ), the information
geometry of a signal processing model is Kähler manifold if and
only if h0 is a constant in ξ.

(⇒) If the geometry is Kähler, it should be Hermitian imposing

gij = ∂i log (h0)∂j log (h0) = 0→ h0 constant in ξ

(⇐) If h0 is a constant in ξ, the metric tensor is given in

gij = 0 and gi j̄ =
∞∑
r=1

∂iηr∂j̄ η̄r → Hermitian

The Kähler two-form is closed : Ω = igi j̄dξ
i ∧ d ξ̄j
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Kähler potential for signal processing

On the Kähler manifold, the metric tensor is

gi j̄ = ∂i∂j̄K

where the Kähler potential K.

Corollary

Given Kähler geometry, the Kähler potential of the geometry is the
square of the Hardy norm of the log-transfer function.

K =
1

2πi

∫
|z|=1

(
log h(z ; ξ)

)(
log h(z ; ξ)

)∗ dz
z

= || log h(z ; ξ)||2H2
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Benefits of Kählerian information geometry

1. Calculation of geometric objects is simplified.

gi j̄ = ∂i∂j̄K, Γij ,k̄ = ∂i∂j∂k̄K

R i
jm̄n = ∂m̄Γi

jn,Ri j̄ = −∂i∂j̄ log G

2. Easy α-generalization and linear order correction in α

Γ(α) = Γ + αT ,R(α) = R + α∂T

3. Submanifolds of Kähler is Kähler.
4. Laplace-Beltrami operator:∆ = 2g i j̄∂i∂j̄
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Komaki’s shrinkage prior for Bayesian inference

Komaki (2006): The difference in risk functions is given by

E(DKL(p(y |ξ)||pπJ (y |x (N)))|ξ))− E(DKL(p(y |ξ)||pπI (y |x
(N)))|ξ))

=
1

2N2
g ij∂i log

(πI
πJ

)
∂j log

(πI
πJ

)
− 1

N2

πJ
πI

∆
(πI
πJ

)
+ o(N−2)

If ψ = πI/πJ is superharmonic, pπI outperforms pπJ .
Superharmonic prior πI , Jeffreys prior πJ
Superharmonicity of functions is hard to check.
In particular, in high-dimensional curved geometry!
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Geometric priors

Theorem

On a Kähler manifold, a positive function ψ = Ψ(u∗ − κ(ξ, ξ̄)) is a
superharmonic prior function if κ(ξ, ξ̄) is (sub)harmonic, bounded
above by u∗, and Ψ is concave decreasing: Ψ′(τ) > 0, Ψ′′(τ) < 0.

The ansätze for Ψ:

Ψ1(τ) = τ a,Ψ2(τ) = log (1 + τ a) (τ > 0, 0 < a ≤ 1)

The ansätze for κ:

κ1 = K, κ2 =
∞∑
r=0

ar |hr (ξ)|2, κ3 =
n∑

i=1

bi |ξi |2 (ar > 0, bi > 0)
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Algorithm for geometric priors

The algorithm for finding geometric priors is the following:

1 Check whether the geometry is Kähler.

2 Check the superharmonicity of prior function ψ.

3 If (sub)harmonic, plug it into the theorem to get
superharmonic functions and move to the next step.

4 If superharmonic, multiply the Jeffreys prior and set it as the
shrinkage prior.

5 Do Bayesian inference.
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ARFIMA

The transfer function of ARFIMA:

h(z ; ξ) =
(1− µ1z

−1)(1− µ2z
−1) · · · (1− µqz−1)

(1− λ1z−1)(1− λ2z−1) · · · (1− λpz−1)
(1− z−1)d

The Kähler potential:

K =
∞∑
n=1

∣∣∣d + (µn1 + · · ·+ µnq)− (λn1 + · · ·+ λnp)

n

∣∣∣2
The metric tesnor of ARFIMA:

gi j̄ =


π2

6
1
λ̄j

log (1− λ̄j) − 1
µ̄j

log (1− µ̄j)
1
λi

log (1− λi ) 1
1−λi λ̄j

− 1
1−λi µ̄j

− 1
µi

log (1− µi ) − 1
1−µi λ̄j

1
1−µi µ̄j


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Conclusion

Kähler manifold: information geometry for signal processing

Kähler potential: square of Hardy norm of log-transfer
function

Several computational benefits exist on the Kähler manifold.

In particular, Komaki priors are easy to build.

An algorithm and ansätze for Komaki priors are introduced.
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