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ABSTRACT

In this work, we consider the problem of blind source separation in the wavelet domain via a Bayesian estima-
tion framework. We use the sparsity and multiresolution properties of the wavelet coefficients to model their
distribution by heavy tailed prior probability laws: the generalized exponential family and the Gaussian mixture
family. Appropriate MCMC algorithms are developped in each case for the estimation purposes and simulation
results are presented for comparaison.
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1. INTRODUCTION

Blind source separation (BSS) is an important field of research in signal processing and data analysis. Independent
compenent analysis (ICA)2 is one solution to the problem. However, in some applications, ICA fails to work
particularly when the observations are too noisy and/or when the instantaneous mixture model is not totally
verfied.

Bayesian estimation has been applied with success to solve the BSS problem.3, 8, 11 It allows to account
for any prior information we may have about the observational process, hence to model any independance or
correlation (temporal and/or spacial) of the sources parameters and mixing matrix.

The BSS problem has been considered either directly in the original domain of observations (time 1D-signal or
pixel 2D-image) or in a transform domain: Fourrier7 or wavelet domain.6, 12 The idea behind transform domains
is that usually an invertible linear transform restructures the signal/image leaving the transform coefficients a
structure easier to model.

Wavelet transform is a particularly interesting representation of (non-stationnary) signals/images. This prop-
erty makes it a powerful tool in many signal processing domains: encoding, compression and signal denoising.
But its application in blind source separation is new6, 12 and it still remains to be more explored.

2. BAYESIAN APPROACH AND BSS

We consider linear and instantaneous mixing model, with noisy obseravtions given by:

xm(t) =

N
∑

n=1

Amnsn(t) + εm(t) for m = 1, . . . ,M (1)

for t = 1, . . . , T . Or in a vector form

x(t) = As(t) + ε(t) (2)

where x(t) represents the noisy observed data vector, A represents the the unknown mixing matrix, s(t) rep-
resents the source vector and ε(t) the noise vector. The index t may be a single index for example the time
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index for time series signals or a composite index for example pixel index for images. Noise models both the
measurement noise and any uncertainty on the obsrvation model (2).

Since the wavelet transform Ψ is, in general, an orthonormal transform (Ψ∗Ψ = I), the model (2) is still valid
and can be written in the transform domain as:

xjm(k) =

N
∑

n=1

Amns
j
n(k) + εjm(k) for m = 1, . . . ,M, j = 1, . . . , J and k = 1, . . . , T/2j (3)

or equivalently

xj(k) = Asj(k) + εj(k) (4)

where {xjm(k), sjn(k) and εjm(k)} represent the kth wavelet coefficients of {xm(t), sn(t) and εm(t)} respectively at
the resolution j (k beeing the dual index of t in the transform domain).

In a Bayesian estimation framework, the joint posterior distribution of the parameters of interest is given by:

p(S,A,θ|X) ∝ p(X|A,θ,S) π(S,A|θ) π(θ) (5)

where S =
{

sj(k)
}

, X =
{

xj(k)
}

, p
(

X|S,A,θ
)

is the likelihood function of the model (4) and π(s,A|θ) is the
prior distribution reflecting (encoding) any prior information we may have about these parameters. π(θ) is the
hyperparameters prior distribution. It may reflect some behaviour of these parameters (positivity of the noise
variance for example). In this work, we assume that the noise ε(t) is centered, temporarly and spacially white
and Gaussian with a covariance matrix Rε = diag

(

σ2
1 , . . . , σ

2
M

)

. Then the likelihood is given by:

p(X|S,A,θ) =
∏

j,k

p
(

xj(k)|sj(k),A,θ
)

(6)

with

p
(

xj(k)|sj(k),A,θ
)

= N
(

xj(k)|Asj(k),Rε

)

(7)

∝ |Rε|
−1/2 exp

(

−
1

2

(

xj(k)−Asj(k)
)∗

Rε

−1
(

xj(k)−Asj(k)
)

)

(8)

The main issue in the Bayesian framework is the appropriate choice of the prior laws π(S,A|θ) and π(θ)
which is developed in the following sections.

3. WAVELET COEFFICIENTS STATISTICAL MODEL

The wavelet transform is an interesting representation of signals, it has some properties that makes it rich for
modeling.5 The wavelet tranform of signals/images is sparse: the wavelet transform of a signal/image (Fig. 1)
results in a large number of small coefficients and a small number of large coefficients. This property makes the
wavelet transform a suitable choice for compression, encoding and signal denoising. We can statistically model
this property by some convenient probability distributions.1, 4

3.1. Heavy tailed distributions

Mallat4 has porposed to assign to the wavelet coefficients a Generalized Exponential (GE) like distribution given
by:

π(x|γ, α) = Exp (x|γ, α) = K exp

(

−
1

2γ
|x|α

)

(9)

where K is a normalisation constant, γ > 0 and 1 ≤ α ≤ 2.



Figure 1. Lena image (left) and its wavelet tansform (right).

Another family of laws that describes well this sparsity are the Gaussian mixture distributions (for example
a two component Gaussian mixture), as adopted by Crouse et al.1:

π(x|p, τ1, τ2) = p N (x|0, τ1) + (1− p) N (x|0, τ2) (10)

where τ1 >> τ2 and 0 ≤ p ≤ 1.

3.2. Independance

The wavelet transform is known to have a decorrelation porperty, we say that the wavelet transform nearly

decorrelates the signal, resulting in uncorrelated coefficients. So we can model the wavelet coefficients distribution
by a separable probablity distrbution:

p
(

S
)

=
∏

j,k

π
(

sj(k)
)

(11)

where S is joint set of the wavelet coefficients at all resolutions and π
(

sj(k)
)

=
∏

n

π
(

sjn(k)
)

, with π
(

sjn(k)
)

given by Equation (9) or Equation (10).

3.3. Inter-scale correlation

The decorrelation property of the wavelet transform is not totally ensured, and in addition to that, decorrelation
is not independance, thus the validity of independant models (11) is not really verified. We can enhance the
statistical description of the wavelet coefficients by taking into account some of their additional properties:

• persistence large/small values of wavelet coefficients tend to propagate across scales.

• locality each wavelet atom is localized simultaneously in time and frequency (scale).

We have presented in Fig. 2, the continuous wavelet transform (in abolute values) of a one dimensional
signal where we observe that if a wavelet coefficient is present at a given reolution, then it tends to propagate
through the coarser resolutions. However, we aleviate the model by assuming that the wavelet coefficients are
independant inside each scale.



Figure 2. A one dimensionnal signal (top) and its continous wavlet transform (in absolute values) (bottom).

The prior probability distribution of the sources coefficients is then given by:

p (S) = π
(

S1
)

J
∏

j=2

π
(

Sj |SP (j)
)

, with π
(

Sj |.
)

=

Tj
∏

k

π
(

sj(k)|.
)

(12)

with SP (j) = {S
P (j)
n } represents the set of the direct ancestors of the coefficients Sj = {Sj

n} (Fig. 3).

Equation (12) and Fig. 3 describes a first order Makov model, where each wavelet coefficient at a given
resolution is independant of the other coefficients at the same resolution, but depends on those at the higher
resolution given by the set of its direct ancestors SP (j).
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Figure 3. Graphical model describing the inter-scale correlation.

In this work, the correlation property is introduced and taken into account only for Generalized Exponential
(GE) models. Correlation property in the Gaussian mixture models needs the definition of what is known as
Hidden Markov Models (HMM) which has not yet been treated.

The prior probability law (12) in the case of GE models, is given more explicitely by:



π
(

sj(k)|SP (j)
)

= Exp
(

sj(k)|SP (j),Rγj , αj

)

=
∏

n

Exp
(

sjn(k)|S
P (j)
n , γjn, αj

)

(13)

where

Exp
(

sjn(k)|S
P (j)
n , γjn, αj

)

= K exp

(

−
1

2γjn

∣

∣

∣sjn(k)− φjn(s
P (j)
n )

∣

∣

∣

αj

)

(14)

where φjn(s
P (j)
n ) is some function of the set of the direct ancestors of sjn(k)

(

φjn(.) can be defined as beeing some

wheighted sum for example
)

, and Rγj= diag
(

γj1, . . . , γ
j
N

)

.

4. MCMC ALGORITHM

As estimates of the coefficients sj(k), the mixing matrix A and the hyperparameters θ = [Rε, Rγj ], we take
their posterior means where:

1. The prior law of the sources coefficients is independant of the mixing matrix and is given either by Equation
(11) (for independant coefficients) or by Equation (12) (for inter-scale correlated coefficients).

2. The elements of the mixing matrix are supposed Gaussian, of mean µA, and of covariance matrix RA:

π(A|µA,RA) = N (A|µA,RA) ,
∏

i,j

N
(

aij |µaij
, σ2

aij

)

(15)

3. The parameters
(

σ2
i , {γ

j
j}
)

are assigned an inverse gamma prior distribution (to encode their positif

character):

π(x|ν, β) = IG(x|ν, β) ∝
e−βx

xν+1
(16)

Indeed, this choice corresponds to the conjugate prior 10 and eliminates the degeneracy of the likelihood
function for the Gaussian mixture model.9

The posterior distribution (Equation (5)) is then given by

p
(

sj(k),A,θ|xj(k), sP (j)
)

∝ N
(

xj(k)|Asj(k),Rε

)

N (A|µA,RA)π
(

sj(k)
)

IG(θ|ν, β) (17)

for j = 1, . . . , J and k = 1, . . . , T/2j .

We make use of an MCMC (Monte Carlo Markov Chain) algorithm to generate samples from the poste-
rior distribution (Equation (17)). In what follows, we present the details of the developped algorithms for the
estimation purposes. However, we essentially classify them into two algorithms, a Gibbs/Gibbs algorithm cor-
responding to an Independant Gaussian Mixture (IGM) prior model, and a hybrid Hastings-Metroplis/Gibbs
algorithm corresponding to a Generalized Exponential (GE) prior model (independant or correlated).

4.1. Gibbs sampling

The sampling step of the sources coefficients sj(k), the mixing matrix A and the parameters θ is done in an
alternate manner according to their conditionnal laws.



At iteration (i)

1. sj(k)
(i)
|{A(i−1),θ(i−1),xj(k)} ∼ N

(

xj(k)|Asj(k),Rε

)

π (S)
Ref. to the source coefficients sampling step (section 4.2).

2. A(i)|{S(i),θ(i−1),X} ∼ N (A|µ,R)
where

µ = R
(

(

R−1
ε
⊗ In

)
∑

j,k Cxs(j, k) + µA

)

, R =
(

∑

j,kR
−1
ε
⊗ Css(j, k) +R

−1
A

)

−1

,

Css(j, k) = sj(k)sj∗(k) and Cxs(j, k) = xj(k)⊗ sj(k).

3. {σ2
m}

(i)|{S(i),A(i),X} ∼ IG
(

ν′, β′(m)
)

where

ν′ = T/2 + ν and β′(m) =
(

1
2

∑

t (xm(t)− [As(t)]m)
2
+ β

)

For the sampling step of the parameters {γj}n, we define two slightly different steps, one corresponding two an
independant model, and two the other two the multi-resolution correlation model.

Independant model:

4. {γjn}
(i)|{S(i),A(i)} ∼ IG

(

ν′(j), β′(n, j)
)

where

ν′(j) = T/2j

αj
+ ν and β′(j, n) =

(

1
2

∑

k

∣

∣sjn(k)
∣

∣

αj
+ β

)

Inter-scale correlation model:

4. {γjn}
(i)|{S(i),A(i)} ∼ IG

(

ν′(j), β′(n, j)
)

where

ν′(j) = T/2j

αj
+ ν and β′(n, j) =

(

1
2

∑

k

∣

∣sjn(k)− δjn(s
P (j))

∣

∣

αj
+ β

)

4.2. Sources coefficients sampling step

a. Independant Gaussian Mixture model (IGM)

When the coefficients are modeled by an independant Gaussian mixture model (Equation (10)), a Gibbs samling
algorithm is used:

To each coefficient sjn(k), we associate a discrete hidden variable zjn(k) ∈ {1, 2}, such that the prior model is
now a conditional model given by:

π
(

sjn(k)
∣

∣zjn(k) = ln
)

= N
(

sjn(k)|0, τl,n
)

, l = 1, 2 (18)

At iteration (i)

1.1 zjn(k)
(i)

∼ M2(1; p, 1− p)

1.2 sj(k)
(i)∣
∣zj(k)

(i)
= l ∼ N

(

sj(k)|µz,Rz

)

where

µz = RzA
∗R−1

ε
xj(k), Rz =

(

A∗R−1
ε
A+R−1

l

)

−1

l = diag (l1, . . . , lN ) and Rl = diag
(

τ2
l,1, . . . , τ

2
l,N

)

.



b. Genralized Exponential model (GE)

When the coefficients are modeled by generalized exponential (GE) prior distibutions, their sampling process is
not straight forward since the conditionnal posterior law of the coefficients is a product of a Gaussian distribution
(Equation (8)) with the GE prior law (Equation (9)). We use then a Hastings-Metropolis step:

First, we approximate the prior generalized exponential law by a Gaussian law:

π
(

sj(k)
)

∼ π̃
(

sj(k)
)

= N
(

sj(k)|µ,Rγj

)

(19)

where µ = Φj(sP (j)) in the correlated case and µ = 0 in the independant case and Φj = diag
(

φj1, . . . , φ
j
N

)

.

The posterior approximate law is then given by:

p̃(sj(k)) ∝ N
(

sj(k)|µ̃, R̃
)

(20)

where, in the correlated case:

R̃ =
(

A∗R−1
ε
A+R−1

γj
+Φj+1∗R−1

γj+1
Φj+1

)

−1

,

µ̃ = R̃
(

A∗R−1
ε
xj(k) +R−1

γj
ΦjsP (j) +Φj+1∗R−1

γj+1

(

sj+1(κ)−Φj+1sN(j)
))

The expressions of µ̃ and R̃ simplifies, in the independant case, to:

R̃ =
(

A∗R−1
ε
A+Rγj

−1
)

−1

and µ̃ = R̃A∗R−1
ε
xj(k)

The Hastings-Metropolis sampling step is given by:

At iteration (i)

1.1 y|{A(i−1),θ(i−1),xj(k)} = Uz + µ̃
where

z ∼

∏

n

exp

(

−
1

2dn
|zn|

)

R̃ = UDU∗,D = diag (d1, . . . , dN )
1.2

sj(k)
(i)

=

{

y with prob. ρ,

sj(k)
(i−1)

with prob. 1− ρ
with

ρ =







1 ∧





p(y)

g(y)

/

p
(

sj(k)
(i−1)

)

g
(

sj(k)
(i−1)

)











p
(

sj(k)|A(i−1),θ(i−1)
)

∝ N
(

xj(k)|Asj(k),Rε

)

Exp
(

sj(k)|γjj , αj
)

g
(

sj(k)
)

∝
∏

n

exp

(

−
1

2dn

∣

∣U∗
(

sj(k)− µ̃
)∣

∣

n

)



5. SIMULATIONS

We have tested the algorithms detailed in the previous section to simulated data. The obtained results are
presented in Fig. 5. Two images (Fig. 4.a) are mixed with a mixing matrix given by:

A =

[

0.875 0.508
0.484 0.861

]

and a noise of 20dB is added to each image to obtain the images in Fig. 4.b. The estimated sources obtained
according to the independant GE model are presented in Fig. 5.a, those obtained by taking into account an
inter-scale correlation with a GE model are presented in Fig. 5.b, and finally, those obtained when the coefficients
are modeled by IGM models are presented in Fig. 5.c.

To quantify the obtained results, we have chosen as a quality measure, a measure of the normed erreur given
by:

Pβ(S̃) =
‖S − S̃‖β
‖S‖β

, 1 ≤ β ≤ 2 (21)

We have presented the numerical results in Table 1. We notice that concerning the sources, it is not easy to
say which model is better than the othe, however concerning the estimation of the mixing matrix, we can say
that the IGM model gives a better result. Even visually (observing the sources), we have tendancy to say the
IGM gives better estimates than the two other models.

a. b.

Figure 4. a. Source images, b. Mixed images



a. b. c.

Figure 5. a. Estimated images in the independant GE case, b. Estimated sources in the correlated GE case, c. Estimated
sources in the IGM case

Table 1. Numrical simulation results

P1(S̃) P2(S̃) P2(Ã)
Source 1 Source 2 Source 1 Source 2

Independant GE model 0.129 0.146 0.148 0.167 0.037

Correlated GE model 0.134 0.147 0.155 0.166 0.021

IGM model 0.139 0.142 0.160 0.157 0.015

6. CONCLUDING REMARKS

In this work, we have proposed a Bayesian approach to BSS by assigning to the wavelet coefficients of the sources
to estimate (signals/images) prior laws that try to encode the sparsity of the latter. In the GE models, we have
even tried to encode some inter-correlation information of the multi-resolution representation of signals. We have
proposed MCMC algorithms adapted to each case and presented the obtained results.

We think that the Gaussian mixture models encode better the sparsity property of the wavelet coefficients,
and even from an algorithmic point of view, algorithms based on such models are more tractable than the
generalized exponential models.

For futur works, we will be interested on Hidden Markov Models (HMM), which are extensions of the In-



dependant Gaussian Mixture models used in this work. The HMM models have the ability to account for the
inter-scale correlation more easily than the generalized exponential models and they have already proven their
performances on treating complex signal problems.
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