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MaxEnt 2006 Program Information

Saturday July 8, 2006: Welcome reception (Cité Internationale de Paris)

14:00 16:00 Registration 

16:00 18h00 Welcome reception 

Sunday July 9, 2006, Tutorial day (Cité Internationale de Paris)

09h00 10h00 Registration and Coffee

10h00 11h00 Tutorial 1: Ali Mohammad-Djafari: Maximum Entropy and
Bayesian inference: Where do we stand and where do we go ? 

11h00 12h00 Tutorial 2: Bruno Lecoutre: And if you were a Bayesian without
knowing it ? 

12h00 14h00 Lunch

14h00 15h00
Tutorial 3: Andrew Pohorille: Exploring the connection between
sampling problems in Bayesian inference and statistical
mechanics

15h00 16h00 Tutorial 4: Carlton Caves: Introduction to quantum computation

16h00 16h15 Break

16h15 17h00 Tutorial 5: A. Caticha: Updating probabilities

17h00 17h45 Tutorial 6: Mihai Datcu: Information theory based inference in the
Bayesian context: applications for semantic image coding

18h00 22h00 Footbal World cup: Walk around Paris coffees and share the
footbal excitings. 

Monday July 10, 2006, (CNRS,  Paris)

8h00 8h30 Registration

8h30 9h00 Opening and official talks

Oral session 1: Information, Probability, Quantum systems (Chair: C. Caves)

09h00 09h45 Invited talk 1: A. Pohorille: A Bayesian approach to calculating
free energies of chemical and biological systems

09h45 10h15 A. Caticha From objective amplitudes to Bayesian probabilities

10h15 10h45 L.F. Lemmens Probability assignment in a quantum statistical
model 

10h45 11h15 Break

Oral session 2: Bayesian Probability, Quantum systems (Chair: A. Caticha)

11h15 12h00 Invited Talk 2: C. Caves Why We Should Think of Quantum
Probabilities as Bayesian Probabilities 

12h00 12h30 A. Vourdas : Phase space methods in continuous tensor products
of Hilbert spaces 

12h30 13h00 One minute Poster Session 1 presentation (Chair: U.V.
Toussaint)

13h00 14h00 Lunch

26-th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering
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14h00 15h00

Poster session 1: (Chair: U.V. Toussaint)
003_Bityukov, 004_Barkova, 042_Lin, 046_Gadjiev,
050_Bastami, 065_Yanez, 079_Amiri-Sazi, 095_Olmos,
096_Lopez-Rosa, 019_Mohtashami, 041_Finn, 053_Yari,
090_Pappalardo. 

Oral session 3: Source Separation (Chair: Ch. Jutten)

15h00 15h30 C.F. Caiafa : A minimax entropy method for blind separation of
dependent components in astrophysical images

15h30 16h00 Y. Nishimori : Riemannian optimization method on the
generalized flag manifold for complex and subspace ICA

16h00 16h30 F. Vrins : Electrode selection for non-invasive Fetal
Electrocardiogram Extraction using Mutual Information Criteria

16h30 17h00 Break

Oral session 4: Source Separation (Chair: K. Knuth)

17h00 17h30 Sh. Hosseini: Maximum likelihood separation of spatially
auto-correlated images using a Markov model

17h30 18h00 S. Moussaoui Mars Hyperspectral Data Processing using ICA and
Bayesian Positive Source Separation

18h00 18h30 M. Babaie-zadeh A fast method for sparse component analysis
based on iterative detection-projection

Tuesday July 11, 2006: (CNRS,  Paris)

Oral session 5: Information Geometry and Bayesian nets (Chair: H. Snoussi)

8h30 9h15 Invited talk 3: S. Fiori: Extrinsic geometrical methods for neural
blind deconvolution 

9h15 9h45 C. Rodriguez : Data, Virtual Data, and Anti-Data

9h45 10h15 A. Ramer : GraphMaxEnt

10h15 10h45 Break

Oral session 6: Information Geometry - Bayesian nets (Chair: C. Rodriguez)

10h45 11h15 N. Caticha : The evolution of learning systems: to Bayes or not to
be 

11h15 11h45
D.E. Holmes : Determining Missing Constraint Values in Bayesian
Networks with Maximum Entropy: A First Step Towards a
Generalized Bayesian Network 

11h45 12h15 E. Bjornemo : Sensor network node scheduling for estimation of a
continuous field

12h30 13h00 One minute Poster Session 2 presentation (Chair: R. Fischer)

13h00 14h00 Lunch

14h00 15h00

Poster session 2: (Chair: R. Fischer)
002_Borges, 007_Dobrzynski, 011_Barbaresco, 016_Center,
022_Bercher, 025_Dautremer, 026_Niven, 031_Alamino,
034_Neisy, 043_Cafaro, 044_Dodt, 045_Dreier, 047_Krajsek,
061_Mohammad-Djafari, 063_Bjornemo, 073_Sahmoodi,
077_Costache, 078_Esmer, 080_Kiss, 084_Roy, 084_Karimi, 
091_Snoussi.

26-th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering



MaxEnt 2006 — CNRS, Paris, France, July 8-13, 2006 7 / 205
MaxEnt 2006 Program file:///home/giovannelli/Tex/Art/MaxEnt06/DiversPDF/program.htm

3 sur 4 27.06.2006 17:09

Oral session 7: Inverse problems (Chair: R. Preuss)

15h00 15h30 K.M. Hanson : Probing the covariance matrix

15h30 16h00 R. Fischer : Integrated data analysis: non-parametric profile
gradient estimation 

16h00 16h30 U.V. Toussaint : Parameter estimation of ellipsometry
measurements

16h30 17h00 Break

Oral session 8: Inverse problems (Chair: K. Hanson)

17h00 17h30 R. Preuss Bayesian analysis on plasma confinement data bases

17h30 18h00
V. Mazet, D. Brie and J. Idier : Decomposition of a chemical
spectrum using a marked point process and a constant dimension
model 

19h30 23h30 Conference Dinner 

Wednesday July 12, 2006, (CNRS,  Paris)

Oral session 9: Bayesian inference and Image processing (Chair: J. Center)

8h30 9h15 Invited talk 4: Z. Ghahramani A Bayesian approach to information
retrieval from sets of items 

9h15 9h45 K. Knuth Clearing up the mysteries: computing on hypothesis
spaces 

9h45 10h15 J. Skilling: Calibration and interpolation

10h15 10h45 Break

Oral session 10: Bayesian inference - Image processing (Chair: J. Skilling)

10h45 11h15 W. Pieczynski : Unsupervised segmentation of hidden
semi-Markov non stationary chains

11h15 11h45 G. Deylon : Minimal stochastic complexity image partionning with
non parametric statistical model

11h45 12h15 M. Soccorsi : Space-Variant Model Fitting and Selection for
Image Denoising and Information Extraction

12h15 13h00 One minute Poster Session 3 presentation (Chair: Z. Gharamani)

13h00 14h00 Lunch

14h00 15h00

Poster session 3: (Chair: Z. Gharamani)
001_Kyo, 005_Khireddine, 008_Zarpak, 013_Gueguen,
014_Chaabouni, 020_Jalobeanu, 028_Roemer, 030_Goggens,
040_Desbouvries, 054_Amintoosi, 062_Aronsson,
069_Aminghafari, 070_Mehmood, 071_Verdoolaege, 
086_Abrishami, 097_Mohammadpour.

15h00 15h30 Group Photo (Chair: R. Bontekoe)

15h30 16h30 Committee meeting (Chair: K. Knuth)
Free time 

Thursday July 13, 2006, (CNRS,  Paris)

Oral session 11: Entropy and Data Processing (Chair: M. Grendar)

26-th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering
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8h45 9h15 V. Girardin : Entropy and semi-Markov processes

9h15 9h45 J.F. Bercher : An amended MaxEnt formulation for deriving Tsallis
factors, and associated issues

9h45 10h15 E.V. Vakarin : Maximum entropy approach to characterization of
random media 

10h15 10h45 Break

Oral session 12: Entropy and Data Processing (Chair: V. Girardin)

10h45 11h15 A. Zarzo : The minimum cross-entropy method: a general
algorithm for one-dimensional problems

11h15 11h45 A. Solana-Ortega : Entropic inference for assigning probabilities:
some difficulties in axiomatics and applications 

11h45 12h15 M. Grendar : Empirical maximum entropy methods

12h15 12h45 P.L.N Inverardi : A New Bound for Discrete Distributions based on
Maximum Entropy 

13h00 14h00 Lunch

Oral session 13: Entropy, Bayes and Applications (Chair: E. Barrat)

14h00 14h30 J.M. Stern : The Full Bayesian Significance Test for Separate
Hypotheses 

14h30 15h00 J. Welch : Comparing Class Scores in GCSE Modular Science

15h00 15h30 M. Johansson : Competitive bidding in a certain class of auctions

15h30 16h00 Break

Oral session 14: Entropy, Bayes and Applications (Chair: J.M. Stern)

16h00 16h30 E. Barat : Nonparametric Bayesian estimation of x/gamma-ray
spectra using a hierarchical Polya tree -- Dirichlet mixture model

16h30 17h00 F. Desbouvries : Entropy computation in partially observed
Markov chains

17h00 17h30 Tj. R. Bontekoe : Scheduling of schools

17h30 18h30 Ending session (Chair: Local organizers)

26-th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering
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BAYESIAN ANALYSIS OF CROSS-PREFECTURE
PRODUCTION FUNCTION WITH TIME

VARYING STRUCTURE IN JAPAN

Koki Kyo∗ and Hideo Noda

Asahikawa University
3-23 Nagayama, Asahikawa, Hokkaido 079-8501, Japan

Abstract
The objective of this paper is to examine the performance of post-war Japanese
economy using a production function of economic growth model. The basic frame-
work is a variation of aggregate production function used by Solow (1956), Mankiw,
Romer, and Weil (1992), etc. We consider the Cobb=Douglas production func-
tion with private capital, public capital, human capital and labour as inputs, so
production for prefecture i at time t is represented by

Qi(t) = Ki(t)αiGi(t)βiHi(t)γi [Ai(t)Li(t)]1−αi−βi−γi (i = 1, 2, . . . ,m),

where Qi(t) is output, Ki(t) is the stock of private capital, Gi(t) is the stock of
public capital, Hi(t) is the stock of human capital, Li(t) is the size of the labour
force and Ai(t) is a productivity index which summarizes the level of technology.
The above model can be expressed in a form of linear model under the logarithmic
tranformation. A set of Bayesian models is constructed by using smoothness priors
for values related to Ai(t) and non-informative priors for the parameters αi, βi and
γi. Furthermore, Monte Carlo filter and smoother approach is applied to estimate
the parameters. We show the effects of the private capital, the public capital and
the human capital on output by analyzing the values of these parameters. The
related result was firstly reported by Kyo and Noda (2005).

References:
[1] K. Kyo, and H. Noda (2005), Statistical analysis of cross-prefecture pro-

duction function with dynamic structure in Japan, Paper Presented at Interna-
tional Symposium: Intersection, Fusion and Development of Multi-Fields, Chinese
Academy of Science and Engineering in Japan.

[2] Mankiw, N. G., D. Romer, and D. Weil (1992), A Contribution to the Em-
pirics of Economic Growth, Quarterly Journal of Economics, Vol.107, pp.407-437.

[3] Solow, R. M. (1956), A Contribution to the Theory of Economic Growth,
Quarterly Journal of Economics, Vol.70, pp.65-94.

Key Words: PRODUCTION FUNCTION, SMOOTHNESS PRIORS, MONTE
CARLO FILTER AND SMOOTHER
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FBST: Compositionality

Wagner Borges∗ and Julio M. Stern†

∗Mackenzie Presbiterian University, wborges@mackenzie.com.br
†University of São Paulo, jstern@ime.usp.br

Abstract. In this paper, the relationship between the credibility of a complex hypothesis,H, and
those of its constituent elementary hypotheses,H j , j = 1. . .k, is analyzed, in the independent setup,
under the Full Bayesian Significance Testing (FBST) mathematical apparatus.
Key words: Bayesian models; Complex hypotheses; Compositionality; Mellin convolution; Possi-
bilistic and probabilistic reasoning; Significance tests; Truth values, functions and operations.

INTRODUCTION

The Full Bayesian Significance Test (FBST) has been introduced by Pereira and Stern
(1999), as a coherent Bayesian significance test for sharp hypotheses. For detailed
definitions, interpretations, implementation and applications, see the authors’ previous
articles, including two papers in this conference series, [9], [17].

In this paper we analyze the relationship between the credibility, or truth value, of a
complex hypothesis,H, and those of its elementary constituents,H j , j = 1. . .k. This
problem is known as the question ofCompositionality, which plays a central role in
analytical philosophy, see [3].

According to Wittgenstein [22], (2.0201, 5.0, 5.32):
- Every complex statement can be analyzed from its elementary constituents.
- Truth values of elementary statement are the results of those statements’ truth-

functions (Wahrheitsfunktionen).
- All truth-function are results of successive applications to elementary constituents

of a finite number of truth-operations (Wahrheitsoperationen).
The compositionality question also plays a central role in far more concrete contexts,

like that of reliability engineering, see [1] and [2], (1.4):
“One of the main purposes of a mathematical theory of reliability is to develop

means by which one can evaluate the reliability of a structure when the reliability
of its components are known. The present study will be concerned with this kind of
mathematical development. It will be necessary for this purpose to rephrase our intuitive
concepts of structure, component, reliability, etc. in more formal language, to restate
carefully our assumptions, and to introduce an appropriate mathematical apparatus.”

When brought into a parametric statistical hypothesis testing context, a com-
plex hypothetical scenario or complex hypothesis is a statement,H, concerning
θ = (θ 1, . . . ,θ k) ∈ Θ = (Θ1× . . .×Θk) which is equivalent to a logical composition of
statements,H1, . . . ,Hk, concerning the elementary components,θ 1 ∈ Θ1, . . . ,θ k ∈ Θk,
respectively. Within this setting, means to evaluate the credibility ofH, as well as that of
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WIENER  FILTER IN TWO DIMENSIONNAL CASE
APPLIED TO RESTORDED IMAGES

A/khireddine1, K/Benmahammed2

                                                          

1 Faculty of sciences, University of Bejaia(06000), Algeria
2 Faculty of sciences, University of Setif(19000), Algeria

ABSTRACT :

    In high frequency propagation, the design of a two-dimensional Wiener filter is based on the principle of orthogonality, while
being based on three following assumptions:
1. the filter used is linear and invariant.

 2. the desired exit and input signal X(m,n) Z(m,n) are jointly stationary.
3. the criterion of minimization used is that of the minimal average quadratic error between the desired exit Z(m,n) and the current
exit Y(m,n).
The filter of two-dimensional Wiener is a generalization of the filter of unidimensional Wiener.
Modern digital technology has made it possible to manipulate multi-dimensional signals with systems that range from simple digital
circuits to advanced parallel computers[1,2]. The theory of Wiener gives the filter which minimizes the residual error (difference
between the real exit and the desired exit), thus, the filter of Wiener 2D gives a solution to many problems of two-dimensional signal
processing such as the restoration of degraded images.  However, since the determination of this filter implies the solution of a linear
equations system with great dimension, fast algorithms are necessary.  The effort of calculation for the determination of the
coefficients of this filter depends primarily on the statistical nature of the input signal.
Further, we will restrict ourselves to two-dimensional (2D) image processing although most of the concepts and techniques that are to
be described can be extended easily to three or more dimensions. The Wiener filter is a solution to the restoration problem based
upon the hypothesized use of a linear filter and the minimum mean-square (or mms) error criterion. In the example given below the
image a[m,n] was distorted by a bandpass filter and then white noise was added to achieve an Signal/noise ratio equal to 30 dB[3,4].

KEY WORDS :
Digital images, Fourier transform, sampling, Wiener filter, noise.
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 Determining Missing Constraint Values in

Bayesian Networks with Maximum Entropy: A

First Step Towards a Generalized Bayesian

Network 

Dawn E. Holmes

Department of Statistics and Applied Probability, South Hall, 

University of California, Santa Barbara,

 CA 93106, USA.

Abstract. The author’s past work in this area has  shown that the probability of a state of a

Bayesian  network,  found  using  the  standard  Bayesian  techniques,  could  be  equated  to  the
Maximum  Entropy  solution  and  that  this  result  enabled  us  to  find  minimally  prejudiced
estimates of missing information in Bayesian networks. In this paper we show that in the class
of Bayesian networks  known as Bayesian trees, we are  able to determine  missing constraint
values optimally  without the use of  Bayesian techniques,  using only the Maximum Entropy
Formalism. We also show that it is possible to produce a generalized Bayesian network, which
is specified entirely within the Maximum Entropy formalism.

Keywords: Bayesian networks, Maximum entropy, d-separation. 

PACS: 02.50.Cw, 89.70.+c , 05.70.–a, 65.40.Gr
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RECONSTRUCTION OF HYPERFINE FIELDS

DISTRIBUTIONS BY THE MAXIMUM ENTROPY

METHOD

Ludwik Dobrzynski1,2, Dariusz Satuna1, Krzysztof Szymanski1

(1) Institute of Experimental Physics,

University of Bialystok, Lipowa 41, 15-424 Bialystok, Poland
(2) The Soltan Institute for Nuclear Studies,

05-400 Otwock-Swierk, Poland

Abstract

The reconstruction of the hyperfine field distributions from the Mossbauer spec-
tra is a difficult task because one tries to retrieve information about a 2- or 3-
dimensional object from a single one-dimensional spectrum. In conventionally ac-
cepted procedures one has to make many simplifying assumptions in order to get
this kind of information. In particular one has to assume the existence of cer-
tain correlations between the parameters: the intensity of the hyperfine field, B,
quadrupole splitting, QS, and isomer shift, IS. In our paper [1] it was shown that
one can successfully obtain the (B,IS) distributions even when a uniform prior is
used. However, as demonstrated hereafter, this task turns out to be more difficult in
the case of paramagnets, for which QS and IS distributions only can be considered.
In this case one deals with a great many possible solutions and MaxEnt algorithm
is not selecting the intuitively expected one. This so-called ambiguity problem can
be solved only when a non-uniform prior is used. This same necessity of a using
non-uniform prior exists when retrieving 3-dimensional, i.e. (B,QS,IS) distributions,
but we show in the present work that in both considered cases one can devise an
efficient strategy and achieve physically valuable results.

1.L.Dobrzy?ski, K.Szyma?ski, D.Satu?a, ”Maximum Entropy Method in Mss-
bauer Spectroscopy”, Nukleonika 49, Suppl. 3 (2004) S89

Key Words: Entropy measures, Blind Source Separation (BSS), astrophysical im-
ages.
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IMAGE SEGMENTATION USING GAUSSIAN
MIXTURE MODELS

Rahman.Farnoosh, Gholamhossein.Yari, Behnam.Zarpak

Department of Applied Mathematics
University of Science and Technology

16844, Narmak, Tehran, Iran
{rfarnoosh, yari, zarpak}@iust.ac.ir

Abstract

Recently stochastic models such as mixture models, graphical models, Markov ran-
dom fields and hidden Markov models are key role in probabilistic data analysis.
Gaussian mixture model as generalized normal distribution is also an important
tool in image data analysis. Also image segmentation means to divide one picture
into different types of classes or regions, for example a picture of nature has some
classes like ’sky’,’mountains’, ’trees’,’river’ and so on. Therefore we can suppose
that each class has normal distribution with specify mean,variance and generally a
picture has Gaussian mixture model. This is independent identically distribution
(i.i.d) case which is well known. In this paper we have learned Gaussian mixture
model to the pixels of an image as training data and the parameters of the model
are learned by EM-algorithm. Meanwhile pixel labeling corresponded to each pixel
of true image is done by Bayes rule. This hidden Markov image is the form of Potts
Markov random field, So we can automatically classify an image with this hidden
or labeled image. In addition it is natural to assume that Markov property of upper
orders holds in each regions. It means that data in each class are close together
with uniform means, low variations and high correlations. Thus we can do Gaus-
sian mixture models in spatial domain that is if each class has Gaussian Markov
random field so the general image is a Gaussian mixture Markov random field. We
then show some experiments.

Key Words: Gaussian Mixture Model (GMM), Image Segmentation, Bayes Rule,
Expectation-Maximization (EM)Algorithm, Potts Markov Random Field (PMRF),
Gaussian Markov Random Field (GMRF), Gaussian Mixture Markov Random Field
(GMMRF).
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A NEW BOUND FOR DISCRETE
DISTRIBUTIONS BASED ON MAXIMUM

ENTROPY

Henryk Gzyl1, Pier Luigi Novi Inverardi2, Aldo Tagliani2

(1) Dept. of Statistics - USB

AP 890000 Caracas 1080-A (Venezuela)
(e-mail: hgzyl@reacciun.ve - Ph: +58 212 29063386)

(2) Dept. of Computer and Management Sciences - University of Trento

via Inama, 1 - 38100 Trento (Italy)
(e-mail: PierLuigi.NoviInverardi@unitn.it - Fax: +39 461 882124)

(e-mail: Aldo.Tagliani@unitn.it - Fax: +39 461 882124)

Abstract

In this paper we compare some classical and well known bounds (as Chernoff’s bound
or moment bounds) for nonnegative integer-valued random variables for estimating
the survival probability and a new tighter bound stemming from Maximum Entropy
technique constrained by fractional moments given by E(Xα), α ∈ R+.

Because the classical bounds are usually given in terms of integer moments or
in terms of moment generating function, they may be able to exploit only partially
the information contained in the data: for this reason these bounds are not very
tight although they can be easily calculated.

We exploit a result of Lin (1992) which supports the characterization of a dis-
tribution through its fractional moments and we show (Novi Inverardi and Tagliani

(2003)) that the Maximum Entropy probability mass function P
(fm)
M recovered in-

volving M fractional moments converges in entropy to the true probability mass
function P . This last result means that if we are interested in approximating a dis-
crete distribution and/or some its characteristic constants (think to expected values,

tails, probabilities or other) the equivalent counterparts evaluated on P
(fm)
M are as

close as we like to the true values and the closeness depends on the (increasing)
value of M .

But usually the available knowledge on a distribution is expressed by integer
moments and not by fractional moments. This means that we need a link between
moment generating function and/or integer moments and fractional moments.

Traditionally the moment generating function of a random variable X is used
to generate positive integer moments of X . But it is clear that the moment gen-
erating function also contains a wealth of knowledge about arbitrary real moments
and hence, on fractional moments. Taking this into account, to obtain fractional

1
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A MINIMAX ENTROPY METHOD FOR BLIND
SEPARATION OF DEPENDENT COMPONENTS

IN ASTROPHYSICAL IMAGES

Cesar F. Caiafa1, Ercan E. Kuruoğlu2 and Araceli N. Proto1,3

(1) Lab. de Sistemas Complejos. Fac. de Ingeniería (UBA), Buenos Aires, Argentina

(2) Istituto di Scienza e Tecnologie dell’Informazione - CNR, Pisa, Italy

(3) Comisión de Inv. Científicas de la Prov. de Buenos Aires, Buenos Aires, Argentina

(e-mail: ccaiafa@fi.uba.ar, ercan.kuruoglu@isti.cnr.it and aproto@fi.uba.ar)

Abstract

We develop a new technique for the blind separation of potentially non indepen-
dent components in astrophysical images. Given a set of linearly mixed images,
corresponding to different measurement channels, we estimate the original elec-
tromagnetic radiation sources in a blind fashion. Specifically, we investigate the
separation of cosmic microwave background (CMB), thermal dust and galactic syn-
chrotron emissions without imposing any assumption on the mixing matrix. In our
approach, we use the Gaussian and non-Gaussian features of astrophysical sources
and we assume that CMB-dust and CMB-synchrotron are uncorrelated pairs while
dust and synchrotron are correlated which is in agreement with theory. These as-
sumptions allow us to develop an algorithm which associates the Minimum Entropy
solutions with the non-Gaussian sources (thermal dust and galactic synchrotron
emissions) and the Maximum Entropy solution as the only Gaussian source which
is the CMB. This new method is more appropriate than ICA algorithms because
independence between sources is not imposed which is a more realistic situation.
We investigate several measures associated with entropy and we compare them. Fi-
nally, we present an example of separation using the Euclidean distance between
the Gaussian probability density function (pdf) and a Parzen based estimation of
the pdf associated with the data. For the validation of our approach we present
experimental results using a database that simulates de one expected from the in-
struments that will operate onboard ESA’s Planck Surveyor Satellite to measure
the CMB anisotropies all over the celestial sphere.

Key Words: Entropy measures, Blind Source Separation (BSS), astrophysical im-
ages.
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MaxEnt’06, Paris , July 2006 
Information Intrinsic Geometric Flows : 

Kähler-Ricci & Calabi Flows on Siegel & Hyper-Abelian Metrics of Complex 
Autoregressive Models 

 
Frédéric BARBARESCO, Thales Air Defence, 7/9 rue des Mathurins F-92223 Bagneux, France 

E-mail : frederic.barbaresco@fr.thalesgroup.com  ,  Phone : 33.(0)1.40.84.20.04  

1. Preambule 
   Geometric Flow Theory is cross fertilized by diverse elements coming from Pure Mathematic (geometry, 
algebra, analyse, PDE) and Mathematical Physic (calculus of variations, General Relativity, Einstein 
Manifold, String Theory), but its foundation is mainly based on Riemannian Geometry, as explained by M. 
Berger in a recent panoramic view of this discipline [Berger], its extension to complex manifolds, the Erich 
Kähler’s Geometry [Kähler1], vaunted for its unabated vitality by J.P. Bourguignon [Bourguignon] in 
[Kähler2], and Minimal Surface Theory recently synthetized by F. Hélein [Helein]. This paper would like to 
initiate seminal studies for applying intrinsic geometric flows in the framework of  information geometry 
theory. More specifically, after having introduced Information metric deduced for Complex Auto-Regressive 
(CAR) models from Fisher Matrix (Siegel Metric and Hyper-Abelian Metric from Entropic Kähler Potential), 
we study asymptotic behaviour of PARCOR parameters (reflexion coefficients of CAR models) driven by 
intrinsic Information geometric Kähler-Ricci and Calabi flows. These Information geometric flows can be 
used in different contexts to define distance between CAR models interpreted as geodesics of Entropy 
Manifold (e.g : distance between plane curves parametrized by CAR models).  

2. Siegel Metric for Complex Autoregressive Model 
   Chentsov has defined main axioms of Information Geometry. In this Theory, we consider families of 
parametric density functions { }Θ∈=Θ θθ :)/(.pG  with , from which we can define a 
Riemannian Manifold Structure by meam of Fisher Information matrix 

[ T
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This metric can also be naturally introduced by a Taylor expansion of Kullback Divergence : 
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We demonstrate easily that this Fisher metric is equivalent to the Siegel metric, introduced by Siegel in the 
60’s in the framework of Symplectic Geometry. Indeed, if we consider a Complex Multivariate Gaussian Law 
: 
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n
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it is well-known that the Fisher Information matrix is given by : ( ) [ ] njnninjni mRmRRTr ∂∂∂∂θ ... 11
ij

−+− +−=g  
In the following, we will only consider random process with zero mean , and so if we apply 
the following relation , the Fisher matrix is reduced to : 
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We can then observe that it is completely equivalent with Siegel Metric : ( )[ ]212 .ds −= nn dRRTr  introduced by 
Karl Ludwig Siegel in his book « Symplectic Geometry ».  This metric is invariant under the action of the 
following group  : , and geodesics are given by : ( )),.(CGLn )(  W,  .. n CGLWRWR nnnnn ∈→ +
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SPACE-VARIANT MODEL FITTING AND
SELECTION FOR IMAGE DE-NOISING AND

INFORMATION EXTRACTION

Marco Quartulli1, Matteo Soccorsi2, Mihai Datcu2

(1) Advanced Computer System, 00139 Rome, Italy
(2) German Aerospace Center, 82234 Oberpfaffenhofen, Germany

Abstract

With the growing importance of model-based signal analysis methods, the depen-
dence of their performance on the choice of the models needs to be addressed.
Bayesian theory incorporates model selection in a natural and direct way: we apply
it to the space-variant choice of the best model in a given reference class in the
framework of parameter estimation from noisy data. In particular, we introduce
an algorithm for image information extraction and de-noising that is based on a
two-level model and estimates local texture Gauss-Markov Random Field (GMRF)
parameters and local GMRF model order for incomplete data. Since model selec-
tion is based on an approximate numerical computation of the evidence integral,
we propose a further selection criterion based on Rate Distortion theory for a cross
validation of the results. The link between Bayesian model selection and Rate Dis-
tortion is explained. Results are presented on Synthetic Aperture Radar (SAR)
images.

Key Words: GMRF, Model Selection, Parameter Estimation, Rate Distortion
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Analysis of Satellite Image Time Series Based on

Information Bottleneck

Lionel Gueguen1,3, Camille Lemen1,3, Mihai Datcu2,1

(1) Get-Télécom Paris, TSI dept.
46 rue Barrault, 75013 Paris, France

(2) German Aerospace Center DLR, IMF
Oberpfaffenhofen, D-82234 Wessling, Germany

(3) CNES
18 avenue Edouard Belin, 31401 Toulouse, France

Abstract

Derived from Information theory, the Information Bottleneck principle[3] enables to
quantify and qualify the information contained in a signal. This paper presents an
algorithm based on the Information Bottleneck principle to analyze Satellite Image
Time Series (SITS). The entropic method includes a parameters estimation and a
model selection. This method has been applied to textural and radiometric para-
metric models[1, 2]. Thus, textural and radiometric information contained in SITS
has been quantified. This paper presents a method to take into account the geom-
etry information. Two approaches are presented. On one hand, each image of the
SITS is segmented and the obtained regions are described by radiometric, textural
and geometric models. Using the Information Bottleneck method on these models,
this approach leads to a spatio-temporal characterization of the spatial regions of
the SITS. On the other hand, the geometrical information is extracted first from a
segmentation , then the radiometric and textural information is extracted through
the Information Bottleneck method. This approach leads to a temporal characteri-
zation of the spatial regions of the SITS.

References

[1] M. Datcu, K. Seidel, and M. Walessa. Spatial Information Retrieval from
Remote-Sensing Images. i. Information Theoritical Perspectives. IEEE Trans-

actions on Geoscience and Remote Sensing, 36(5):1431–1445, Sept. 1998.
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RELEVANT SCATTERS CHARACTERIZATION IN
SAR IMAGES

Houda Chaabouni1, Céline Tison2, Florence Tupin3, Mihai Datcu1

(1) German Aerospace Center, Oberpfaffenhofen, D-82234 Wessling, Germany
(2) Centre National d’Etudes Spatiales, 31401 Toulouse, France

(3) Ecole Nationale Supérieure des Télécommunications, 75013 Paris, France

Abstract

Recognizing scenes in a single look meter resolution Synthetic Aperture Radar
(SAR) images, requires the capability to identify relevant signal signatures in con-
dition of variable image acquisition geometry, arbitrary objects poses and config-
urations. Among the methods to detect relevant scatterers in SAR images comes
the internal coherence. The SAR spectrum splitted in azimuth generates a series
of images which preserve high coherence only for particular object scattering. The
detection of relevant scatterers can be done by correlation study or Independent
Component Analysis (ICA) methods. The present article presents the state of the
art for SAR internal correlation analysis and proposes further extensions using ele-
ments of inference based on information theory applied to complex valued signals.
The set of azimuth looks images is analyzed using mutual information measures
and an equivalent channel capacity is derived. The localization of the target re-
quires analysis in a small image window, thus resulting in imprecise estimation of
the second order statistics of the signal. For better precision, a parametric model
is inferred. The method is applied to detect and characterize relevant objects in
urban areas.

Key Words: SAR, Relevant Scatters, Internal Correlation, Mutual Information,
Information Theory, Parametric Model
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The evolution of learning systems: to Bayes or not to
be

Nestor Caticha
Instituto de F́ısica Universidade de São Paulo,

Caixa Postal 66318 CEP 05315-970 São Paulo, Brazil

Abstract

Bayesian algorithms pose a limit to the performance learning algorithms can achieve.
Natural selection should guide the evolution of information processing systems to-
wards those limits. What can we learn from this evolution and what properties
do the intermediate stages have? While this question is too general to permit any
answer, progress can be made by restricting the class of information processing sys-
tems under study. We present analytical and numerical results for the evolution of
on-line algorithms for learning from examples for neural network classifiers, which
might include or not a hidden layer. The analytical results are obtained by solving
a variational problem to determine the learning algorithm that leads to maximum
generalization ability. Simulations using evolutionary programming, for programs
that implement learning algorithms, confirm and expand the results.

The principal result is not just that the evolution is towards a Bayesian limit
and that indeed it is essentially reached. In addition we find that evolution is
driven by the discovery of useful structures or combinations of variables and oper-
ators. In different runs the temporal order of the discovery of such combinations is
unique. The main result is that combinations that signal the surprise brought by an
example arise always before combinations that serve to gauge the performance of
the learning algorithm. This latter structures can be used to implement annealing
schedules. The temporal ordering can be understood analytically as well by doing
the functional optimization in restricted functional spaces. We also show that there
is data suggesting that the appearance of these traits also follows the same temporal
ordering in biological systems.
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LEARNING COMPLEX CLASSIFICATION
MODELS FROM LARGE DATA SETS

Julian L. Center, Jr.
Creative Research Corporation, 385 High Plain Rd., Andover, MA 01810

(e-mail: jcenter@ieee.org)

Abstract

Taking a Bayesian approach to designing a classi�cation algorithm, we start with
a general model form with adjustable parameters and learn a posterior probability
distribution for the model parameters based on a set of data samples. In many
applications, classi�cation models can become quite complex. For example, an im-
age recognition algorithm can be based on a mixture model with many components,
each with many parameters.
Unfortunately, the computations needed to determine the posterior probability

distribution often become overwhelming. Since we are considering models with a
large number of parameters, a large number of samples is needed to narrow the
range of probable models. Because the model is complex and there are many
samples, computing the likelihood of a particular model takes signi�cant computer
time. Therefore, exploring the large model-parameter space in detail becomes an
intractable problem.
Of course, if the data set is large enough, the information gain will narrow the

range of probable models to a very small subset of the parameter space. If we can
�nd this subspace quickly, we can employ our computational power to adequately
explore this region. However, searching for this small region can prove di¢ cult
because it is so small and because evaluating each point in the search requires
evaluating the complete likelihood function.
We present a computationally feasible solution to this problem based on breaking

the large data set into several smaller data subsets. We use Bayesian theory to design
an algorithm for processing the subsets in stages.
For each stage, we combine a new data subset with a prior distribution that

summarizes previous stages. We employ nested sampling to focus our exploration
of the parameter space on high probability areas and use slice sampling to draw
candidate parameter values from the prior distribution. We then use variational
methods to approximate the resulting distribution on the parameter space. This
approximation summarizes the results and becomes the prior distribution for the
next stage.
The end result is a discrete probability distribution on model parameter space.

This leads to a classi�cation algorithm that is a "mixture of experts" combining the
classi�cation probabilities of the best models.
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DECOMPOSITION OF A CHEMICAL SPECTRUM

USING A MARKED POINT PROCESS AND A

CONSTANT DIMENSION MODEL
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(e-mail: jerome.idier@irccyn.ec-nantes.fr)

Abstract

We consider the problem of estimating the peak parameters in a chemical spectrum,
i.e. their locations, amplitudes and widths. The spectrum y is modelled as a noisy
sum of K positive Lorentzian peaks f : y =

∑
K

k=1
f(tk,ak, sk)+e where tk, ak and

sk stand respectively for the location, amplitude and width of the peak k, and e

denotes the noise and model errors. A non-supervised Bayesian approach coupled
with MCMC methods is retained to solve the problem.

A marked point process provides a suitable representation for this phenomenon:
it is a a finite set of objects (i.e. a configuration of points with some marks) lying
in a bounded space, corresponding in our application to the observation space while
the objects model the peaks, characterized by their locations and marks (amplitude
and widths). A stochastic model for these quantities is then proposed.

But the peak number is also unknown. Numerous MCMC methods for model
uncertainty have been proposed, such as the RJMCMC algorithm. Nevertheless, we
propose in this paper an approach in which the dimension model is constant. Thus,
the use of a Gibbs sampler is possible and natural due to the hierarchical structure
of the model. The idea consists in considering an upper bound for peak number and
modelling the peak occurrence by a Bernoulli distribution. However, the estimation
is not straightforward because of the label switching phenomenon; we then propose
a label switching method adapted to the proposed approach.

In conclusion, this approach performs better than a classical deconvolution ap-
proach where the peaks have inevitably the same width. Moreover, the input is
generally modelled as a Bernoulli-Gaussian process of N points (N being the length
of y) though we consider only a signal with length K, and, obviously, K < N (the
peak number is less than the signal length). Therefore, there is less variables to
estimate, so the estimation is better and the method faster.
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Abstract
The concepts of weighted distributions have been introduced by Rao (1965,1985).

A weighted function will be denoted by w(x) and g(x, θ) = w(x)f(x,θ)
E(w(X) where Eθ(w(X)) =∫

D
w(x)dF (x), and f(., θ) is the distribution of random variable X and g is the pdf of the

weighted distribution.
Characterization results for the residual information measures are given here in view of

the weighted distributions. We also derive relationship among residual information measures
and reliability measures such as hazard rate.The residual divergence between two positive
random variables are studied and finding link results relevant to information theory and
reliability theory. Some examples that lead us to results related to information measures are
derived for order statistics, record value, proportional hazard, proportional reversed hazard,
Lorenz curve and hazard rate as special cases of weighted families.

Ebrahimi and Kirmani(1996) defined the uncertainty of residual lifetime distributions,
then Asadi et. al. (2005, 2004) obtained some results related to minimum dynamic discrim-
ination information and maximum dynamic entropy models.We obtain results concerning
their relations with life distributions and information measures and give some examples for
weighted families.

Some inequalities, relations and partial ordering for weighted reliability measures are also
presented. A new measure of information called cumulative residual entropy in view of M
Rao et. al. (2004) is defined, examples and some of its properties are obtained at the end of
this paper.
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Abstract

We consider data fusion as the reconstruction of a single model from multiple data
sources. The model is to be inferred from a number of blurred and noisy obser-
vations, possibly from different sensors under various conditions. It is all about
recovering a compound object (signal+uncertainties) that best relates to the obser-
vations and contains all the useful information from the initial data set.

We wish to provide a flexible framework for bandlimited signal reconstruction
from multiple data. In this paper, we focus on a general approach involving forward
modeling (prior model, data acquisition) and Bayesian inference. The proposed
method is valid for n-D objects (signals, images or volumes) with multidimensional
spatial elements. However, for clarity reasons, both formalism and test results will
be shown in 1D for single band signals. The main originality lies in seeking an object
with a prescribed point spread function (psf), for which we choose a B-spline. This
ensures an optimal sampling in both signal and frequency spaces, and allows for a
shift invariant processing.

The model resolution, the geometric distortions, the psf and the regularity of
the sampling grid can be arbitrary for each sensor. The method was designed to
handle realistic Gauss+Poisson noise. Although a simple Gaussian Markov chain
was used for regularization, any efficient prior model could be employed instead.

We obtained promising results in reconstructing a super-resolved signal from two
blurred and noisy shifted observations. Practical applications are under develop-
ment within the SpaceFusion1 project. In astronomical imaging, we aim at a sharp,
well-sampled, noise-free and possibly super-resolved image. Virtual Observatories
could benefit from such a way to combine large numbers of multispectral images
from various sources. In planetary imaging or remote sensing, the 3D image forma-
tion model has to be taken into account even for flat terrains. Nevertheless, this
can be addressed within the same framework.

Key Words: Model-based data fusion, reconstruction, generative models, uncer-
tainties, B-splines, super-resolution

1ANR grant “Projet jeunes chercheurs 2005”
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In the classical hidden Markov chain model we have a hidden chain X, which is a Markov 
one, and an observed chain Y. Hidden Markov chains are widely used in numerous problems; 
however, in some situations they have to replaced by the more general “hidden semi-Markov 
chains” [1, 3], which can be seen as particular “triplet Markov chains” T=(X, U, Y), where the 
auxiliary chain U models the fact that X is semi-Markov [5]. Otherwise, it has been showed 
that a non stationary classical hidden Markov chain can also be considered as a triplet Markov 
stationary chain with, as a consequence, the possibility of parameters estimation [2]. 
The aim of this paper is to use the both properties simultaneously. We first consider a triplet 
Markov chain T1=(X, U1, Y), which is equivalent to a hidden semi-Markov chain. We then 
consider that T1 is not stationary, which is modelled by an another stationary triplet Markov 
chain T2=(X, U1, U2, Y) (in T2 the auxiliary chain is U=(U1, U2)). Finally, T2 is used to 
estimate the hidden semi-Markov non stationary chain in an unsupervised manner. 
“Unsupervised” means that all the model parameters are estimated from the only observed 
data by an original estimator, which is a new variant of the general “iterative conditional 
estimation” (ICE) method [5]. 
We present different experiments showing the interest of the new model and related 
processing with respect to the classical stationary hidden semi-Markov chains.   
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There is now a large amount of genomic data available in databases for researchers. Computational methods are
yet available for data retrieval and analysis, including sequences similarity searches, structural and functionnal
predictions. Computationnal detection of genes has received an important interest and many accurate methods
are available. However, other functionnal sites are more difficult to characterize.
In this work, we examine the potential of entropy and bayesian tools for promoter localization in human DNA
sequences. Promoters are regulatory regions (at least one for each gene, located near the first exon) that governs
the expression of genes, and their prediction is reputed difficult, so that this issue is still open.
To process DNA sequences it is useful to convert them using numerical representation that preserve their sta-
tistical properties. We choose the Chaos Game representation (CGR) [Jeffrey1990] of DNA sequences which
has interesting properties: the source sequence can be recovered uniquely from the CGR transcription and the
distance between CGR position measures similarity between corresponding sequences. This representation is
applied to sequences of “words” of variable length (number of elementary bases). Typically we used words
from 1 to 6 nucleotides. Using this CGR we have put in evidence the non stationarity of the genome: coding,
promoter or genomic regions of DNA result in different CGR matrices. In particular we observe the fractal
depletion in CG for genomic regions (that is under-representation of CG words) and CG "islands" in about 80%
of promoters.
In order to analyse DNA sequences, references probabilities of the genomic, coding and promoters background
are built using data from public databases. We also estimate “local” probability distribution functions, using a
sliding window, and a forgetting factor.
We built a naïve bayesian classifier for promoter detection, by testing the likelihood ratio promoter/genomic
or promoter/coding of the sequence at hand. Results show that performance is interesting when the window is
located near the TSS –Transcription Start Site, and the window length is less than 200 bases. Such a classifier
has already be useful for classifying species as in [Sandberg2001].
Local probabilities were used to evaluate (i) the local entropy of the sequence, (ii) the Kullback divergence to
the background (with respect to the hypothesis on the nature – genomic or promoter, of the background). Again,
our experiments showed that these indicators clearly reveal the core-promoter and TSS positions in many cases.
However, we also noticed, as was already pointed in the litterature [Hannenhalli2001,Zhang2003], that the set
of promoters can be divided in (at least) two classes, the first one (with high CG ratio) being relatively easy to
predict, while the second (that may in fact be divided in more subclasses) gives more mitigated results.
An interesting point is that a promoter prediction tool can assess or infirm the bioinformatic prediction of a
gene. Such examples will be presented at the conference.
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An amended MaxEnt formulation for deriving Tsallis factors, and
associated issues
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The formalism of nonextensive statistical mechanics [1, 2] leads to a generalized Boltzmann factor in the form of a Tsallis
distribution (or factor) that depends on an entropic index and recovers the classical Boltzmann factor as a special limit case
[1]. This distribution may behave as a power law. In a wide variety of fields, experiments, numerical results and analytical
derivations fairly agree with the description by a Tsallis distribution.
Tsallis’ distributions (sometimes called Levy distributions) are derived by maximization of Tsallis entropy [3], under suitable
constraints. However, these distributions do not coincide with those derived for the classical MaxEnt and consequently will
not be justified from a probabilistic point of view, because of the uniqueness of the rate function in the large deviations theory
[4, 5]. In view of the success of nonextensive statistics, there should exist a probabilistic setting that provides a justification
for the maximization of Tsallis entropy. There are now several indications that results of nonextensive statistics are physi-
cally relevant for partially equilibrated or nonequilibrated systems, with a stationary state characterized by fluctuations of an
intensive parameter [6, 7].

In this work I propose an amended MaxEnt formulation for systems with a displaced equilibrium, find that the relevant entropy
in this setting is the Rényi entropy, interpret the mean constraints, derive the correct form of solutions, propose numerical
procedures for estimating the parameters of the Tsallis factor and characterize the associated entropies.
I show that a Tsallis-like distribution can be derived as the minimizer of the Kullback-Leibler information divergence with
respect to a reference distributionQ (or equivalently as the maximizer of ShannonQ-entropy), where the minimization is
carried under a mean log-likelihood constraint and a (mean) observation constraint. The mean log-likelihood constraint
characterizes the ‘displacement’ from the conventional equilibrium. This corresponds to an amended MaxEnt formulation,
where one looks for an intermediate distribution between two referencesP1 andQ; with an additional constraint that tunes
the new equilibrium. The solutionP � is analog to the escort distribution, that appears quite arbitrary [4, 5] in non-extensive
statistics.
Then I present two scenarii for the mean observation constraint: the observable is taken as the mean underP1; the distribution
of a “subsystem”, or underP �; the apparent distribution of the system. In the two cases, I show that the amended MaxEnt
formulation leads to the maximization of the Rényi� Q-entropy, subject to the corresponding mean constraint. So doing, we
recover two of the classical choices of constraint in the nonextensive literature. These two scenarii lead to two Tsallis-like
distributions with opposite exponents, and the entropic index� appears to be simply the Lagrange parameter associated to
the log-likelihood constraint.
A difficulty comes from the determination of the parameter of the Tsallis-like distributions, that are self-referential. In order
to identify the value of their natural parameter, I propose two ‘alternate’ (but effectively computable) dual functions, whose
maximizations enable to exhibit the optimum parameters.
In the conference, I will illustrate these results for several referencesQ(x) present the results of numerical evaluations, and
recover some well-known entropy functionals in the classical Gibbs-Boltzmann-Shannon limit. We will also give further
results concerning symmetry and duality between the solutions associated with classical and generalized mean constraint,
and between entropy functionals. Finally I will discuss the underlying Legendre structure of generalized thermodynamics
associated to this setting.
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NONPARAMETRIC BAYESIAN ESTIMATION OF
X/γ-RAY SPECTRA USING A HIERARCHICAL
POLYA TREE – DIRICHLET MIXTURE MODEL
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Abstract
We address the problem of X/γ-ray spectra estimation in the fields of nuclear physics
and astrophysics. Bayesian estimation of experimental backgrounds has been stud-
ied in [1] involving splines. Since Dirichlet Processes (DP) sit on discrete measures,
they provide an appealing prior for photopeaks. On the other hand, in order to
tackle the complexity of experimental backgrounds, we consider a Polya Tree Mix-
ture (PTM) – with suitable parameters yielding distribution continuity – for which
predictive densities exhibit better smoothness properties than a single Polya Tree.
Furthermore, it is easy to introduce some physical Compton line approximation
formula (e.g. Klein-Nishina) in the base measure of the Polya Tree, or some phys-
ically driven local modifications of the PTM prior parameters. As backgrounds
depend on photopeaks locations, we propose a hierarchical model where the PTM
is conditioned on the DP. We use a beta prior for the mixing proportion between
the DP and the PTM. Energies are not directly observed due to detection devices
noises which introduce a convolution of both discrete and continuous measures by
an assumed gaussian kernel whose variance is an unknown linear function of energy.
Thus, the proposed semiparametric model for experimental data becomes a hier-
archical Polya Tree–Dirichlet mixture of normal kernels. The quantities of interest
for physicists are usually posterior functionals of the DP mixing distribution. This
implies an inverse problem which is carried out in the framework of finite stick-
breaking representation. To allow finite representation of PTM, we assume infinite
prior parameters after a certain stage. The blocked Gibbs sampler of [2] is extended
to update simultaneously the hidden allocation variables either from a DP compo-
nent or from a set of the PTM latest informative partition. Thanks to conjugacy and
conditioning on the hidden allocation variables, draws from the posterior DP and
PTM are easily obtained. With minor modifications the algorithm can deal with
binned data which turns out to be computationally attractive for huge datasets.

References:
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61, 1152–1160 (2000).
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NONPARAMETRIC BAYESIAN ESTIMATION OF
CENSORED COUNTERS INTENSITY FROM THE

INDICATOR DATA

T. Dautremer1, É. Barat1, T. Trigano2

(1) DeTeCS, CEA Saclay, France
(2) Department of statistics, Hebrew University of Jerusalem, Israel

Abstract

Physical counting devices are usually imperfect in the sense that they are unable
to record all particles present at their input. After a particle is registered, the
counter is inhibited for a positive duration. This censoring period is referred to
as dead time (or busy period). Following [1], we denote by N(t) the number of
recorded particles at t and M(t) the input poisson process with intensity function
λt, then N(t) =

∫ t
0 Y (s) dM(s) where Y (t) = I(t ≥ SN(t−) +CN(t−)), Si is the time

of the ith recorded particle and Ci the corresponding dead time. We thus consider
the problem of estimating λt given a sample path of the indicator data Y . Since
it might be cumbersome to infer from the busy distribution, we propose a bayesian
nonparametric method leaning only on idle periods. For all t where Y (t) = 0, we
define the lifetime t? = t−

∑N(t−)
j=1 Cj . A Polya tree [2] prior defined over the lifetime

space is used for the normalized intensity. Due to the data-dependent partition, the
problem leads to a nonhomogeneous poisson intensity λ?t? estimation. With a gamma
prior for the integrated intensity, the posterior remains the product of a Polya tree
and a gamma distribution. The intensity for the idle periods is then achieved by
setting λt = λ?t? . For busy periods, an interpolation scheme can be used. For
application purposes involving an open-ended stream, we propose an estimator of
the intensity based on the posterior expectation of a shifted polya trees finite mixture
which leads to a finite response nonlinear filter. Assuming small λt variations during
the busy periods, this method is suitable for various kinds of censoring mechanism
because no assumption is made about the dead time distribution.

For the usual case of type-II counter [3], formally an Mt/G/∞ queue, Y (t) =
I(Q(t) > 0) with Q(t) the number of clients in the queue, we improve the method
by using additional information from the distribution of the number of particles
participating to a busy period conditionally to its length.

References:
[1] Y. Kim, Annals of statistics 27, 562-588 (1999).
[2] M. Lavine, Annals of statistics 20, 1222-1235 (1992).
[3] R. Pyke, Annals of Mathematical Statistics 29, 737-754 (1958).

Key Words: Bayesian nonparametrics, Type-II counter, Mt/G/∞, Polya tree.
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MaxEnt Velocity Profiles in Laminar to Turbulent Flow 
Robert K. Niven 

School of Aerospace, Civil and Mechanical Engineering 
The University of New South Wales at ADFA 

Northcott Drive, Canberra, ACT, 2600, Australia.   
Email: r.niven@adfa.edu.au 

28 February 2006 
 
Abstract 
 
This work applies the differential equation method developed by Chiu and co-workers1 - 
based on Jaynes’ maximum entropy method2 - to determine the “most probable” steady-state 
velocity profile u(y) in three systems of “classical” fluid mechanics: (i) axial flow in a 
cylindrical pipe (Poiseuille flow) (previously examined by Chiu1); (ii) flow between 
stationary parallel plates; and (iii) flow between moving parallel plates (Couette flow).  In 
each case, the analysis yields an analytical solution for the velocity profile over the complete 
spectrum of laminar to turbulent flow.  The profiles are obtained as functions of the maximum 
velocity 

 
u

m
 and parameter 

  
M = !u

m
"

1
, where 

 
!

1
 is the Lagrangian multiplier for the 

conservation of mass constraint.  M can be interpreted as a “temperature of turbulence”, with 
M=0 indicating laminar flow and  M !"  complete turbulence. The main elements of this 
analysis, which have been presented briefly3, are reproduced here. 
 
For the axial flow system, the predicted profiles and their moments reduce to the well-known 
laminar solution at M=0. For M>0, the resulting solution can be used in place of existing 
semi-empirical correlations for the velocity profile in axial flow1,4.  For the plane parallel 
flows, in order to match both the laminar profiles and higher order moments at M=0, it is 
necessary to make use of the relative entropy (Kullback-Liebler cross-entropy) function, 
incorporating a different Bayesian prior (Jaynes’ invariant) distribution. A method to 
determine this prior distribution is described. 
 
The analysis is then used to derive a new maximum-entropy laminar-turbulent boundary layer 
theory, for the velocity profile in steady flow along a flat plate.  For M=0, this reduces to the 
laminar boundary layer theory given in some texts4, which approximates the Prandtl-Blasius 
solution to the Navier-Stokes equation5. For turbulent flow, it yields a previously unreported 
solution. 
 
Keywords: MaxEnt; fluid mechanics; velocity profile; turbulent flow; boundary layers. 
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Bayesian Methods in Ground Penetrating Radar
Louis Roemer and David Cowling

Abstract:  A low frequency interferometer is used to collect data on subsurface obstacles.
A simple model for the near-field reflection allows computation of the probability of the
target location.  The antennas of the interferometer are orthogonally polarized, and a
balancing mechanism allows minimizing direct transmission of signals.  Thus, the
interferometer shows, mainly, reflections from changes in the geometry.

Applications tested were  land mine location and utility pipe location.  An added benefit
is that reflections from layers of soil, due to the constant reflection from the layer, do not
appear as distracting false targets.  
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Scheduling of schools

Tj. Romke Bontekoe1, Do Kester2, John Skilling3

(1) Bontekoe Research, Rooseveltstraat 4-d, 2321 BM Leiden,
The Netherlands

(2) SRON, Postbus 800, 9700 AV Groningen, The Netherlands
(3) Killaha East, Kenmare, Kerry, Ireland

(e-mail: romke@bontekoe.nl)

Abstract

The scheduling of schools where students, teachers, rooms and their lessons accord-
ing the curriculum is a large combinatorial optimization problem. It appears that
there many solutions for a medium sized Dutch secondary school (1200 students,
100 teachers, 50 rooms). Therefore one can optimize, i.e. select a better solution
from the lot. We have developed a computational method to find such solutions.

We distinguish between “hard wishes” and “soft wishes”. In order to have a
valid schedule all hard wishes must be fulfilled, such as the lessons table, student
clusterings, teacher availability, room restrictions, etc. Even if a only single lesson
cannot be placed, the schedule is invalid.

In fact, very many valid school schedules are computed and as many “soft wishes”
as possible are fulfilled. The main soft wish is minimization of idle hours for students.
There are many more soft wishes for which the relative importance can be adjusted.
We find solutions which comply with all hard wishes and a balanced compromise
between the soft wishes.

Key Words: Combinatorics, Optimization, School, Schedule
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Electromagnetic Induction Landmine Detection using
Bayesian Model Comparison

Paul M. Goggans and Ying Chi
The University of Mississippi

Electrical Engineering Department
University, MS 38677

Electromagnetic induction (EMI) landmine detection can be cast as a Bayesian
model comparison problem. The models used for low metallic-content mine detec-
tion are based on the equivalent electrical circuit representation of the EMI detection
system. The EMI detection system is characterized and modeled by the impulse re-
sponse of its equivalent circuit. The analytically derived transfer function between
the transmitter coil and receiver coil demonstrates that the EMI detection system
is a third order system in the absence of a mine and that the presence of a mine
adds an additional pole that makes the detection system fourth order. The value
of the additional pole is determined by the equivalent inductance and resistance
of the mine and is unique for each mine. This change in system order suggests
that measured system impulse responses can be used in conjunction with impulse
response models to infer the presence or absence of a landmine. The difficulty of
this techniques is that the amplitude of the term added to the the system impulse
response by the landmine is small compared to the impulse response of the system
alone. To test the feasibility of Bayesian inference based EMI landmine detection,
an EMI detection system experiment was designed and built. In the experiment the
EMI detection system was driven by a broadband maximal-length sequence (MLS)
in order to obtain sufficient dynamic range in the measured impulse responses. This
paper discusses the development of parameterized impulse response models for the
detections system with and without a landmine present and the assignment of ap-
propriate priors for the parameters of these models. This paper also presents the
ratios of computed posterior probabilities for the mine and no mine models based on
data obtained from the experimental EMI landmine detection system. These odds
ratios demonstrate the potential of Bayesian EMI landmine detection.
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Online Learning in Discrete Hidden Markov Models

Roberto C. Alamino1, Nestor Caticha2

(1) Aston University, Birmingham, UK
(2) University of Sao Paulo, Sao Paulo, Brazil

Abstract

We present and analyze three different online algorithms for learning in discrete
Hidden Markov Models (HMMs) and compare their performance with the Baldi-
Chauvin Algorithm. Using the Kullback-Leibler divergence as a measure of the
generalization error we draw learning curves in simplified situations and compare
the results. The performance for learning drift concepts of one of the presented
algorithms is analyzed and compared with the Baldi-Chauvin algorithm in the same
situations. A brief discussion about learning and symmetry breaking based on our
results is also presented. Key Words: HMM, Online Algorithm, Generalization

Error, Bayesian Algorithm.
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A BAYESIAN APPROACH TO CALCULATING
FREE ENERGIES OF CHEMICAL AND

BIOLOGICAL SYSTEMS

Andrew Pohorille
NASA-Ames Research Center, USA

(e-mail: pohorill@max.arc.nasa.gov, fax: 650-604-1088)

Abstract
A common objective of molecular simulations in chemistry and biology is to calcu-
late the free energy difference, ∆A, between states of a system of interest. Impor-
tant examples are protein-drug interactions, protein folding and ionization states of
chemical groups. However, accurate determination of ∆A from simulations is not
simple. This can be seen by representing ∆A in terms of a one-dimensional inte-
gral of exp(−∆E/kBT ) × P (∆E) over ∆E. In this expression, ∆E is the energy
difference between two states of the system, P (∆E) is the probability distribution
of ∆E, kB is the Boltzmann constant and T is temperature. For finite systems,
P (∆E) is a distorted Gaussian. Note that the exponential factor weights heavily
the low ∆E tail of P (∆E), which is usually known with low statistical precision.

One way to improve estimates of ∆A is to model P (∆E). Generally, this ap-
proach is rarely successful. Here, however, we take advantage of the “Gaussian-
like” shape of P (∆E). As is known in physics, such a function can be conveniently
represented by the square of a “wave function” which is a linear combination of
Gram-Charlier polynomials. The number of terms, N, in this expansion supported
by the data must be determined separately. This is done by calculating the posterior
probability, P (N/∆E), where ∆E stands for all sampled values of ∆E. In brief,
the dependence of the likelihood function on the coefficients of the expansion, CN

is marginalized by determining their optimal values using Lagrange multipliers, and
then expanding P (∆E)/CN,N) around the optimal solution. Special care needs
to be taken to ensure convergence of this expansion. As expected, the maximum
likelihood solution consists of two terms. One is related to the optimal values of CN

and always increases with N . The second term is an “Ockham’s Razor” penalty. It
involves a multivariate Gaussian integral on the N-dimensional hypersphere, which
arises due to mormalization. This integral cannot be calculated analytically, but
accurate approximations, which properly account for problem symmetries, can be
obtained.

The method offers the largest improvements over conventional approaches when
P (∆E) is broad and sample size is relatively small. This makes is particularly
suitable for computer aided drug design, in which the goal is to screen rapidly a
large number of potential drugs for binding with the protein target.
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EXPLORING THE CONNECTION BETWEEN
SAMPLING PROBLEMS IN BAYESIAN

INFERENCE AND STATISTICAL MECHANICS

Andrew Pohorille
NASA-Ames Research Center, USA

(e-mail: pohorill@max.arc.nasa.gov, fax: 650-604-1088)

Abstract

The Bayesian and statistical mechanical communities often share the same objec-
tive in their work – estimating and integrating probability distribution functions
(pdfs) describing stochastic systems, models or processes. Frequently, these pdfs
are complex functions of random variables exhibiting multiple, well separated local
minima. Conventional strategies for sampling such pdfs are inefficient, sometimes
leading to an apparent non-ergodic behavior. Several recently developed techniques
for hadling this problem have been successfully applied in statistical mechanics.

In the multicanonical and Wang-Landau Monte Carlo (MC) methods, the cor-
rect pdfs are recovered from uniform sampling of the parameter space by iteratively
establishing proper weighting factors connecting these distributions. Trivial gener-
alizations allow for sampling from any chosen pdf. The closely related transition
matrix method relies on estimating transition probabilities between different states.
All these methods proved to generate estimates of pdfs with high statistical ac-
curacy. In another MC technique, parallel tempering, several random walks, each
corresponding to a different value of a parameter (e.g. “temperature”), are gener-
ated and occasionally exchanged using the Metropolis criterion. This method can
be considered as a statistically correct version of simulated anneling.

An alternative approach is to represent the set of independent variables as a
Hamiltonian system. Considerable progress has been made in understanding how
to ensure that the system obeys the equipartition theorem or, equivalently, that
coupling between the variables is correctly described. Then a host of techniques
developed for dynamical systems can be used. Among them, probably the most
powerful is the Adaptive Biasing Force method, in which thermodynamic integration
and biased sampling are combined to yield very efficient estimates of pdfs.

The third class of methods deals with transitions between states described by
rate constants. These problems are isomorphic with chemical kinetics problems.
Recently, several efficient techniques for this purpose have been developed based on
the approach originally proposed by Gillespie.

Although the utility of the techniques mentioned above for Bayesian problems
has not been determined, further research along these lines is warranted.
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Inverse Problem For Estimating Heat Source
                                        A. Neisy

Department of Mathematics and Statistics , Faculty of Economics, Allameh
Tabatabaie University. Dr. Beheshti Ave., Tehran, Iran. 

    Abstract: This paper considers, a two-dimensional inverse heat

conduction problem. The direct problem will be solved by an application of the heat
fundamental solution, and the heat source to be estimated by using least-square
method.

Key Words: two-dimensional problem, direct and inverse heat conduction  

problem, overposed data. 
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Title: Data, Virtual Data, and Anti-Data.

Author: Carlos C. Rodriguez

Abstract

\delta-priors optimize natural notions of ignorance.
When the likelihood is in the exponential family the
0-priors become the standard cojugate priors relative
to the information volume. In this case prior information
is equivalent to having \alpha > 0 extra virtual
observations. On the other hand 1-priors are not conjugate
and where the 0-priors add the \alpha virtual observations
to the actual n sample points, the 1-priors subtract
the \alpha from the n. I call this "anti-data" since
\alpha of these points annihilate \alpha of the observations
leaving us with a total of n-\alpha. Thus, 1-priors are
more ignorant than 0-priors. True ignorance, that claims
only the model and the observed data, has a price.
To build the prior we must spend some of the information
cash in hand. No free lunches.
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ENTROPY AND SEMI-MARKOV PROCESSES

Valerie Girardin,
LMNO Université de Caen, BP5186, 14032 Caen, France

(e-mail: girardin@math.unicaen.fr)

Abstract

Entropy and Markov processes are linked since the first version of the asymptotic
equirepartition property (AEP) stated by Shannon in 1948 for Markov chains. We
define explicitely the entropy rate for semi-Markov processes and extend the AEP
or ergodic theorem of information theory to these nonstationary processes.

Among a given collection of functions satisfying constraints, selecting the one
with the maximum entropy is equivalent to adding the less of information possible
to the considered problem. The definition of an explicit entropy rate for processes
allows one to extend the maximum entropy method to this case. We study different
problems for Markov and semi-Markov processes, illustrated in reliability, queueing
theory, sismology...

References:
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Key Words: asymptotic equirepartition property, entropy rate, Markov chains,
Markov processes, maximum of entropy, semi-Markov processes, Shannon-McMillan-
Breiman theorems.
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ENTROPY COMPUTATION IN PARTIALLY
OBSERVED MARKOV CHAINS

François Desbouvries
Institut National des Télécommunications, Evry, France

e-mail: Francois.Desbouvries@int-evry.fr

Abstract

Hidden Markov Chains (HMC) [1] are widely used in speech recognition, image
processing or protein sequence analysis, due to early availability of efficient Bayesian
restoration (Forward-Backward, Viterbi) or parameter estimation (Baum Welch)
algorithms. More recently, the problem of computing in an HMC the entropy of
the possible hidden state sequences that may have produced a given sequence of
observations has been addressed, and an efficient (i.e., linear in the number of
observations) algorithm has been proposed [2].

Among possible extensions of HMC, Pairwise (PMC) [3] and Triplet [4] Markov
Chains (TMC) have been introduced recently. In a TMC we assume that t =
(x, r, y), where x is the hidden process, y the observation and r a latent process, is a
Markov chain (MC). So a TMC can be seen as a vector MC, in which one observes
some component y and one wants to restore some part of the remaining components.
In a TMC the marginal process (x, r) is not necessarily an MC, but the conditional
law of (x, r) given the observations y is an MC; as in HMC, this key computational
property enables the development of efficient restoration or parameter estimation
algorithms. In this paper, we extend to TMC the entropy computation algorithm
of [2]. The resulting algorithm remains linear in the number of observations.
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BAYESIAN SMOOTHING ALGORITHMS IN
PARTIALLY OBSERVED MARKOV CHAINS

Boujemaa Ait-el-Fquih and François Desbouvries
Institut National des Télécommunications, Evry, France

e-mail: Francois.Desbouvries@int-evry.fr

Abstract

An important problem in signal processing consists in estimating an unobserv-
able process x from an observed process y. In Hidden Markov Chains (HMC),
efficient Bayesian smoothing restoration algorithms have been proposed in the dis-
crete [1] as well as in the Gaussian case [2] [3].

Among other extensions of HMC, Triplet Markov Chains (TMC) have been
introduced recently (see e.g. [4]). In a TMC we assume that the triplet (x, r, y) (in
which r is some additional process) is a Markov Chain (MC). So a TMC can be seen
as a vector MC, in which one observes some components y and one wants to restore
some part of the remaining components. In a TMC the marginal process (x, r) is
not necessarily an MC, but the conditional law of (x, r) given the observations y
is an MC; as in HMC, this key computational property enables the development
of efficient restoration or parameter estimation algorithms. This paper addresses
fixed-interval smoothing algorithms in TMC and is a continuation of the work of
[5]. In particular, we extend to Gaussian TMC the Bryson and Frazier algorithm,
the backward-forward RTS algorithm, the Fraser and Potter algorithm and the
backward-forward RTS algorithm of Desai et al.
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Title: Applications of Maximum Entropy in Gravitational Wave Astronomy

Author: Lee Samuel Finn 
Institution: 
    Center for Gravitational Wave Physics, 
    The Pennsylvania State University 
Abstract: 
    Large gravitational wave detectors in the United States (LIGO)
and  Europe (GEO and Virgo) have just now reached a sensitivity that
makes  them sensitive to gravitational wave emission from
astronomical  phenomena. In the next decade, ESA and NASA plan to
place an even  more sensitive detector (LISA) into space. Sources that
these  detectors have the capability of observing include the
formation of  the black holes that are thought to power gamma-ray
bursts, the  stellar core collapses that power type II supernovae, the
coalescence  of supermassive black holes that follows the collision of
their host  galaxies, and the myriad of compact binary white dwarf
binary systems  that populate our galaxy. The first detection of
gravitational waves  by these detectors will usher in the era of
gravitational wave  astronomy: the use of gravitational waves as a
tool of astronomical  discovery. 
    Gravitational wave detectors are not imaging instruments and 
individual gravitational wave detectors lack the ability to localize 
a source on the sky. From a network of detectors we can synthesize a 
beam and thus determine the position of a source and the radiation 
amplitude and phase in each gravitational wave polarization. 
Alternatively, the signal acquired from a detector that is moving 
with respect to a source will be phase and amplitude modulated in a 
manner that depends on the source's sky location, the signal in each 
polarization, and the detector's changing position and orientation 
with respect to the source. From this information and models of the 
radiation expected from different sources we can test general 
relativity and learn about the sources we are observing. Here we 
describe the development and use of maximum entropy based tools to 
recover the gravitational wave signal amplitude and phase in each 
polarization, and the sky location of one or more sources whose 
radiation is incident on an array of detectors or a moving detector. 
These tools are being used now for the analysis of data from the 
United States LIGO detector and will likely play an important role in 
the analysis of data from the LISA detector. 
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Gibbs Paradox and the Higher Similarity - Higher
Entropy Relationship

Shu-Kun Lin
Molecular Diversity Preservation International (MDPI),

Matthaeusstrasse 11, CH-4057 Basel, Switzerland
(e-mail: lin@mdpi.org, http://www.mdpi.org/lin)

Abstract

There are three kinds of correlation of the entropy of mixing with similarity. The
Gibbs paradox statement, which has been regarded as a very fundamental assump-
tion in statistical mechanics, says that the entropy of mixing or assembling to form
solid assemblages, liquid and gas mixtures or any other analogous assemblages such
as quantum states, decreases discontinuously with the increase in the property simi-
larity of the composing individuals. Most authors accept this relastionship (e.g. [1]).
Some authors revised the Gibbs paradox statement and argued that the entropy of
mixing decreases continuously with the increase in the property similarity of the
individual components [2]. A higher similarity - higher entropy relationship and a
new theory has been constructed: entropy of mixing or assembling increases con-
tinuously with the increase in the similarity. Similarity Z can be easily understood
when two items A and B are compared: if A and B are distinguishable (minimal
similarity), Z=0. If they are indistinguishable (maximal similarity), Z=1.
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AN APPLICATION OF ENTROPIC DYNAMICS ON
CURVED STATISTICAL MANIFOLDS

Carlo Cafaro, S. A. Ali, A. Gi¢ n
Department of Physics, University at Albany-SUNY,
1400 Washington Avenue, Albany, NY 12222, USA

(e-mail: carlocafaro2000@yahoo.it)

Abstract

Any attempt to unify the classical theory of gravity with quantum theories of electromagnetic,
weak and strong forces in a single uni�ed theory has been unsuccessful so far. Entropic
Dynamics (ED), namely the combination of principles of inductive inference (Maximum
Entropy Methods) and methods of Information Geometry (IG), is a theoretical framework
constructed to explore the possibility that laws of physics, either classical or quantum, might
be laws of inference rather than laws of nature. The ultimate goal of such an ED concerns the
derivation of Einstein�s theory of gravity from an underlying �statistical geometrodynamics�
[1].
Our objective here is to show explicitly all the steps needed to derive an ED model and

to underline the most delicate aspects of it. The �rst step is to identify the appropriate
variables describing the system, and thus the corresponding space of macrostates. This is by
far the most di¢ cult step because there does not exist any systematic way to search for the
right macro variables; it is a matter of taste and intuition, trial and error. In the ED model
here presented we do not specify the nature of our system, it might be a thermal system or
something else. We will make connections to conventional physical systems only later in the
formulation of the ED model. We only assume that the space of microstates is 2D and that
all the relevant information to study the dynamical evolution of such a system is contained
in a 3D space of macrostates. The second step is to de�ne a quantitative measure of change
from one macrostate to another. Maximum Entropy Methods lead to the assignment of a
probability distribution to each macrostate, while methods of IG lead to the assignment of
the Fisher-Rao information metric quantifying the extent to which one distribution can be
distinguished from another. The ED is de�ned on the space of probability distributionsMs.
The geometric structure ofMs is studied in detail. We show thatMs is a 3D pseudosphere
with constant negative Ricci scalar curvature, R = �1. The �nal step concerns the study
of irreversible and reversible aspects of such ED on Ms. In the former case, we study the
evolution of the system from a given macrostate to an unknown �nal macrostate. This
study is used to show that the microstates of the model undergo an irreversible di¤usion
process. In the latter, we study the evolution of the system from a given initial macrostate
to a given �nal state. The trajectories of the system are shown to be hyperbolic curves
onMs, and the surface of evolution of the statistical parameters describingMs is plotted.
Finally, similarities and possible connections between ED methods and established physics
are highlighted.
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[1] A. Caticha: �The Information Geometry of Space and Time�, Presented at Max-

Ent2005, the 25th International Workshop on Bayesian Inference and Maximum Entropy
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Reconstruction of the Electron Energy Distribution

Function from Optical Emission Spectroscopic

Measurements

Dirk Dodt1, Andreas Dinklage1, Rainer Fischer2

(1) Institut für Plasma Physik, Teilinstitut Greifswald

(2) Institut für Plasma Physik, Teilinstitut Garching
(e-mail: ddodt@ipp.mpg.de)

Abstract

The properties of a low temperature plasma (as for example used in energy saving
light bulbs) are mainly determined by the energy distribution of the free electrons.
This distribution is described by the so-called electron energy distribution function
(EEDF). A well established method to obtain the EEDF is to measure the current-
voltage characteristics of a plasma using a small wire in contact with the plasma
(probe). The approach presented here is motivated by the idea to utilise the light
emitted by excited gas atoms, in order to get rid of the perturbing probe brought
into the plasma.

The inference of the EEDF from the measured intensities is an example of an
ill-posed inversion problem, because of the high sensitivity of the reconstruction on
small errors of the line intensities.

The forward calculation consists of a so-called stationary collisional-radiative
model which is describing the interaction of atoms and ions with the free electrons
and the discharge device.

The systematic uncertainties in the model parameters, namely the different
atomic data that enter the calculation, have to be considered with particular care.

First results are shown for the spectrum of a neon discharge lamp. The radially
averaged EEDF is reconstructed. The applicability of different functional forms of
the EEDF is assessed. In a first step Maxwell and Druyvenstein distributions which
are having only a small number of parameters are considered.

Key Words: Plasma Physics, Applied Bayesian Data Analysis
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OPTIMIZATION OF PLASMA DIAGNOSTICS
USING BAYESIAN PROBABILITY THEORY

H. Dreier1, A. Dinklage1, R. Fischer2, M. Hirsch1, P. Kornejew
Max–Planck–Institut für Plasmaphysik, EURATOM Association,

1 Teilinstitut Greifswald, D–17491 Greifswald, Germany
2 D–85748 Garching, Germany
(e-mail: hdreier@ipp.mpg.de)

Abstract

The Wendelstein 7-X stellarator will be a magnetic fusion device and is presently
under construction. Its diagnostic set-up is currently in the design process to op-
timize the outcome under given technical constraints. In general, the preparation
of diagnostics for magnetic fusion devices requires a physical model of the measure-
ment which relates the physical effect to the measured data (forward function), and
a diagnostics model which describes the error statistics.

The approach presented here bases on maximization of an information measure
(Kullback-Leibler entropy, see ref. [1]). Bayesian probability theory allows one to
link measures from information theory with the model for the fusion diagnostics.
The approach can be considered as the implementation of a virtual diagnostic which
generates data from a range of parameters. The virtual diagnostic employs the
forward function and accounts for the error statistics. Then, optimization means
maximization of the expected utility with respect to the design parameters. It
allows for extensive design studies of effects due to physical input and possible
benefits due to technical elements. Comparisons with other information measures
and approximation methods for the prior predictive value are discussed.

The reconstruction of density profiles by means of a multichannel infrared inter-
ferometer at W7-X is investigated in detail. The influence of different error statistics
and the robustness of the result are discussed. In addition, the impact of technical
boundary conditions is shown.
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On the theory of phase transition Landau 
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We consider close-packed structure with defects, which undergoes structural phase 
transition, and we research dependence of critical exponents on concrete kind of defects 
distribution. The analysis shows, that the connectivity distribution function of defects in 
structure can be presented by the generalized Boltzmann factor, as it is done in superstatistics. 
Namely, the distribution of defects in close-packed structure can be considered as the process 
of homogeneous growth. Using a maximum entropy principle it is possible to show, that in 
this case we have an exponential distribution of defects connectivity. If the spatial distribution 
of defects in structure is random, then, generally, the number of entering links will be random 
variable. For example, if this distribution is gamma distribution we obtain the analogue of 
Tsallis distributions. Other spatial distributions of defects generate infinite number different 
distributions.   For a statistical mechanical foundation we use a maximum entropy principle, 
which allows to obtain the generalized Boltzmann factor that allows to obtain the concrete 
distribution links of defects. Namely from a entropy functional on which the constraints we 
are imposed and we define the distribution function of defects in the system. The maximum 
entropy principle, which was used in no extensive statistical mechanics, allows derive the 
generalized Boltzmann factor. It allows to obtain various distribution functions connectivity 
of defects in structure by a unified way.  

For the analysis of defects distribution dependence critical exponents we introduce a 
free energy functional, which depends on an order parameter and on connectivity distribution 
of defects of structure. The symmetry of an order parameter is defined by an irreducible 
representation of a space group of structure. After the procedure an average of a free energy 
functional on connectivity of defects (practically it implies calculation a moments of the 
distribution) we obtain, that the critical behaviour strongly depends on the form of the 
distribution function and can essentially differ from of the mean-field behaviour. The analysis 
of experimental results shows, that such situation is characteristic for doped layered crystals 
(system with competing interaction).  
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MARGINALIZED MAXIMUM A POSTERIORI
HYPER-PARAMETER ESTIMATION FOR
GLOBAL OPTICAL FLOW TECHNIQUES
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Abstract

Global optical flow estimation methods contain a regularization parameter (or prior
and likelihood hyper-parameters if we consider the statistical point of view) which
control the tradeoff between the different constraints on the optical flow field. Al-
though experiments (see e.g. Ng et al. [2]) indicate the importance of the optimal
choice of the hyper-parameters, only little attention has been focused on the opti-
mal choice of these parameters in global motion estimation techniques in literature
so far (the authors are only aware of one contribution [2] which attempts to esti-
mate only the prior hyper-parameter whereas the likelihood hyper-parameter needs
to be known). We adapted the marginalized maximum a posteriori (MMAP) esti-
mator developed in [1] to simultaneously estimating hyper-parameters and optical
flow for global motion estimation techniques. The optimal hyper-parameters are
strongly determined by first order statistics in the image scene, i.e. the illumina-
tion distribution. Optimal values for the hyper-parameter of former image scenes
could therefore be used to feed in the Bayesian hyper-parameter estimation frame-
work. Furthermore, the resulting objective function is not convex with respect to the
hyper-parameters, thus an appropriate starting point for the estimated parameters is
essential for obtaining a reasonable estimate and not to stick into an unimportant lo-
cal minimum. Experiments demonstrate the performance of this optimization tech-
nique and show that the choice of the regularization parameter/hyper-parameters
is an essential key-point in order to obtain precise motion estimates.
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UPDATING PROBABILITIES

Ariel Caticha and Adom Giffin
Department of Physics, University at Albany - SUNY, Albany, NY, USA

(e-mail: ariel@albany.edu)

Abstract
The Method of Maximum (relative) Entropy (ME) has been designed for updating
from a prior distribution to a posterior distribution when the information being
processed is in the form of a constraint on the family of allowed posteriors. This is
in contrast with the usual MaxEnt which was designed as a method to assign, and
not to update, probabilities. The objective of this paper is to strengthen the ME
method in two ways.

In [1] the axioms that define ME have been distilled down to three; here the
design is improved by considerably weakening the axiom that refers to independent
subsystems. Instead of the old axiom which read: “When a system is composed
of subsystems that are believed to be independent it should not matter whether
the inference procedure treats them separately or jointly” we now modify it by
replacing the word ‘believed’ by the word ‘known’. As pointed out by Karbelkar
and by Uffink the modified axiom is a much weaker consistency requirement, which,
in their view, fails to single out the usual (logarithmic) relative entropy as the unique
tool for updating. It merely restricts the form of the entropy to a one-dimensional
continuum labeled by a parameter η; the resulting η-entropies are equivalent to
the Renyi or the Tsallis entropies. We show that further applications of the same
modified axiom select a unique, universal value for the parameter η and this value
corresponds to the usual (logarithmic) relative entropy. The advantage of our new
approach is that it shows precisely how it is that the other η-entropies are ruled out
as tools for updating.

Our second concern is mostly pedagogical. It concerns the relation between the
ME method and Bayes’ rule. We start by drawing the distinction between Bayes’
theorem, which is a straightforward consequence of the product rule for probabilities,
and Bayes’ rule, which is the actual updating rule. We show that Bayes’ rule can be
derived as a special case of of the ME method. The virtue of our derivation, which
hinges on translating the information in data into constraints that can be processed
by ME, is that it is particularly clear. It throws light on Bayes’ rule and it shows
the complete compatibility of Bayes’ updating with ME updating.

References:
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FROM OBJECTIVE AMPLITUDES TO BAYESIAN
PROBABILITIES

Ariel Caticha
Department of Physics, University at Albany - SUNY, Albany, NY, USA

(e-mail: ariel@albany.edu)

Abstract

Many discussions on the foundations of quantum theory start from the abstract
mathematical formalism of Hilbert spaces and some ad hoc ”postulates” or rules
prescribing how the formalism should be used. Their goal is to discover a suitable
interpretation.

The Consistent-Amplitude approach to Quantum Theory (CAQT) is different
in that it proceeds in the opposite direction: one starts with the interpretation and
then derives the mathematical formalism from a set of ”reasonable” assumptions.
The overall objective is to predict the outcomes of certain idealized experiments
on the basis of information about how complicated experimental setups are put
together from simpler ones. The theory is, by design, a theory of inference from
available information.

The ”reasonable” assumptions are four. The first specifies the kind of setups
about which we want to make predictions. The second assumption establishes what
is the relevant information and how it is codified. It is at this stage that amplitudes
and wave functions are introduced as tools for the consistent manipulation of infor-
mation. The third and fourth assumptions provide the link between the formalism
and the actual prediction of experimental outcomes. Although the assumptions do
not refer to probabilities, all the elements of quantum theory, including indeter-
minism and the Born rule, Hilbert spaces, linear and unitary time evolution, are
derived.

Within the CAQT approach probabilities are completely Bayesian, and yet, there
is nothing subjective about the wave function that conveys the relevant informa-
tion about the (idealized) experimental setup. The situation is quite analogous to
assigning Bayesian probabilities to outcomes of a die toss based on the objective
information that the (idealized) die is a perfectly symmetric cube.

Key Words: quantum theory, quantum information theory, Bayesian quantum
mechanics
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BLIND SOURCE SEPARATION USING

MAXIMUM ENTROPY PDF ESTIMATION BASED

ON FRACTIONAL MOMENTS
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Abstract

Recovering a set of independent sources which are linearly mixed is the main task of
the blind source separation. Utilizing different methods such as infomax principle,
mutual information and maximum likelihood leads to simple iterative procedures
such as natural gradient algorithms[1]. These algorithms depend on a nonlinear
function (known as score or activation function) of source distributions. Since there
is no prior knowledge of source distributions, the optimality of the algorithms is
based on the choice of a suitable parametric density model.

In this paper, we propose an adaptive optimal score function based on the frac-
tional moments of the sources. In order to obtain a parametric model for the source
distributions, we use a few sampled fractional moments to construct the maximum
entropy probability density function (PDF) estimation [2]. By applying an opti-
mization method we can obtain the optimal fractional moments that best fit the
source distributions. Using the fractional moments instead of the integer moments
causes the maximum entropy estimated PDF to converge to the true PDF much
faster .

The simulation results show that unlike the most previous proposed models [3]
for the nonlinear score function, which are limited to some sorts of source families
such as sub-gaussian and super-gaussian or some forms of source distribution models
such as generalized gaussian distribution, our new model achieves better results for
every source signal without any prior assumption for its randomness behavior.
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Abstract

We consider a problem of determining the amount to bid in a certain type of auctions
in which customers submit one sealed bid. The bid reflects the price a customer
is willing to pay for one unit of the offered goods. The auction is repeated and at
each auction each customer requests a certain amount of goods, an amount that we
call the capacity of the customer and that varies among customers and over time.
At each auction, only the customer with the largest bid-capacity product obtains
any goods. The price paid by the winner equals his/her bid-capacity product, and
the amount of goods obtained in return equals the winner’s capacity. The auction
is repeated many times, with only limited information concerning winning bid-
capacity products being announced to the customers. This situation is motivated
in for example wireless communication networks in which a possible way of obtaining
a desired service level is to use dynamic pricing and competitive bidding. In this
application, the capacity is typically uncertain when the bid is made. We derive
bidding rules and loss functions for a few typical service requirements.

We assume that the auctioneer announces only some limited aggregate statistics
from previous auctions. Consequently, we use the maximum entropy principle in
assigning probabilities for other customers’ bids and capacities.

Our approach is to minimize the expected loss, conditional on the limited infor-
mation I available to the customer. Let a particular customer u’s probability that
he or she will have the largest bid-capacity product of all customers be denoted by
P (u | I). Then P (u | I) is equal to the probability that the customer v with the
largest bid-capacity product of all other customers has a lower bid-capacity product
than customer u. Let qv denote the bid of v, cv the corresponding capacity, and
y = qvcv the largest bid-capacity product among all customers except u. We can
then find the probability that u wins as follows: first determine the probability that
y < cuqu assuming knowledge of cu, i.e.

∫
cuqu

0
P (y | cuI)dy. Then multiply this

with the probability distribution for cu given I to obtain the joint probability for
cu and y < cuqu. Integrating the result over all possible capacities cu, we have

P (u | I) =

∫
P (cu | I)

∫
cuqu

0

P (y | cuI)dydcu . (1)

In the full paper, we compute this probability explicitly for some particular states
of knowledge I and illustrate how customers behave using the suggested strategy.
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PARAMETER ESTIMATION OF ELLIPSOMETRY
MEASUREMENTS

Udo v. Toussaint1, Thomas Schwarz-Selinger1

(1) Institute for Plasma Physics, 85748 Garching, Germany
(e-mail: udo.v.toussaint@ipp.mpg.de)

Abstract

Ellipsometry is a unique technique of great sensitivity for in situ non-destructive
characterization of surfaces utilizing the change in the state of polarization of a
light-wave probe which is extensively used in the semi-conductor industry. To relate
ellipsometric measurements to surface properties (as eg layer thickness changes in
the range of nm or chemical composition), Bayesian probability theory is used. The
parameter estimation process is complicated by the incomplete phase information
of the measured data. Examples of 3-D surface reconstructions of samples after
plasma exposure demonstrate the tremendous information gain due to the Bayesian
analysis.

References:

Key Words: Parameter Estimation, Bayesian Probability Theory

26-th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering



MaxEnt 2006 — CNRS, Paris, France, July 8-13, 2006 111 / 205

26-th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering



MaxEnt 2006 — CNRS, Paris, France, July 8-13, 2006 112 / 205

Applied Probability Trust (19 May 2005)

ENTROPY FOR PARETO (IV), BURR, AND ITS ORDER //STATIS-

TICS DISTRIBUTIONS

GHOLAMHOSSEIN YARI,∗ Iran University of Science and Technology

GHOLAMREZA MOHTASHAMI,∗∗ Birjand University

Abstract

Main result of this paper is to derive the exact analytical expressions of

entropy for Pareto, Burr and related distributions. Entropy for kth order

statistic corresponding to the random sample size n from these distributions is

introduced. These distributions arise as tractable parametric

models in reliability, actuarial science, economics, finance and telecommunica-

tions. We showed that all the calculations can be obtained from one main

dimensional integral whose expression is obtained through some particular

change of variables. Indeed, we consider that this calculus technique for that

improper integral has its own importance.

Keywords: Gamma and Beta functions; Polygamma functions; Entropy; Order

Statistics; Pareto, Burr models.

∗ Postal address: Iran University of Science and Technology, Narmak, Tehran 16844, Iran.

email: yari@iust.ac.ir

∗∗ Postal address: Birjand university email: Gmohtashami@birjand.ac.ir
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CLEARING UP THE MYSTERIES:
COMPUTING ON HYPOTHESIS SPACES

Kevin H. Knuth
Department of Physics

University at Albany (SUNY)
Albany NY, 12222, USA

(e-mail: kknuth@albany.edu, http://www.huginn.com/kknuth)

Abstract

We all have become very comfortable with Bayesian probability theory and the
interpretation of probabilities as real numbers representing degrees of belief. Indeed
this level of comfort was necessary for these methods to become widely accepted. In
keeping with Jaynes’ original goal of ‘Clearing up the Mysteries’, I aim to inject some
healthy discomfort back into this meeting by closely examining hypothesis spaces
and the computations we perform on them. For example, these spaces are not
necessarily Boolean spaces. There are two different types of logical and operations,
one which occurs within a lattice and the other which is induced by the lattice
product. Clearly, these details do not upset the Bayesian inferential framework
with which we have become so comfortable. Instead, they serve to highlight the fact
that even today there remains uncharted territory in the foundation of probability
theory.

Key Words: Hypothesis Space, Bayes’ Theorem, Boolean Algebra, Lattice Theory,
Associativity, Distributivity
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AND IF YOU WERE A BAYESIAN
WITHOUT KNOWING IT?

Bruno Lecoutre
C.N.R.S. et Université de Rouen, France
(e-mail: bruno.lecoutre@univ-rouen.fr

http://www.univ-rouen.fr/LMRS/Persopage/Lecoutre/Eris)

Abstract

Many statistical users misinterpret the p-values of significance tests as “inverse”
probabilities (1 − p is “the probability that the alternative hypothesis is true”).
As is the case with significance tests, the frequentist interpretation of a 95% con-
fidence interval involves a long run repetition of the same experiment: in the long
run 95% of computed confidence intervals will contain the “true value” of the pa-
rameter; each interval in isolation has either a 0 or 100% probability of containing
it. Unfortunately treating the data as random even after observation is so strange
this “correct” interpretation does not make sense for most users. Ironically it is
the interpretation in (Bayesian) terms of “a fixed interval having a 95% chance of
including the true value of interest” which is the appealing feature of confidence
intervals. Moreover, these “heretic” misinterpretations of confidence intervals (and
of significance tests) are encouraged by most statistical instructors who tolerate
and even use them. For instance Pagano (1990, page 288), in a book which claims
the goal of “understanding statistics”, describes a 95% confidence interval as “an
interval such that the probability is 0.95 that the interval contains the population
value”.

The literature is full of Bayesian interpretations of frequentist p-values and con-
fidence levels. All the attempts to rectify these interpretations have been a loosing
battle. In fact such interpretations suggest that most users are likely to be Bayesian
“without knowing it” [2] and really want to make a different kind of inference [3].

References:
[1] Pagano, R. R., Understanding Statistics in the Behavioral Sciences (1990, 3rd
edition), West, St. Paul, MN.
[2] Lecoutre B., Et si vous étiez un bayésien “qui s’ignore”? La Revue de Modulad
32 (2005) [http://www-rocq.inria.fr/axis/modulad/archives/numero-32/lecoutre-32
/lecoutre-32.pdf].
[3] Lecoutre, B., Lecoutre, M.-P. & Poitevineau, J., Uses, abuses and misuses of
significance tests in the scientific community: won’t the Bayesian choice be un-
avoidable? International Statistical Review 69 (2001), 399-418.

Key Words: Frequentist probabilities, Bayesian probabilities
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PROBABILITY ASSIGNMENT IN A QUANTUM

STATISTICAL MODEL

L. F. Lemmens 1, Burhan Bakar1

(1) Department of Physics, University of Antwerp, Belgium
(e-mail: lucien.lemmens@ua.ac.be)

Abstract

In ref [1] the evolution of a quantum system, appropriate to describe nano-magnets,
is mapped on a Markov process when the system is cooled, the adjoint heating
process is obtained using Bayes theorem. Once the mapping is achieved a Markov
representation for the evolution with respect to inverse temperature of the quantum
system is obtained. The representation can be used to study the probability density
of the magnetization. The PDF changes from unimodal to bimodal as a function of
the temperature. The change occurs at the so called blocking temperature and de-
pends critically on the initial probability. This probability encodes the multiplicity
of the states. The transition from paramagnetic to super-paramagnetic behavior is
of importance to enhance the sensitivity of the nano-magnet.

Using the information entropy [2] one can calculate the same PDF without invok-
ing a Markov process. Although the characteristics of the PDF for both calculations
are resembling, the numerical values are different: implying that probabilities ob-
tained using the trace and the diagonal elements i.e. the method leading to the
information entropy, are not necessarily equal to those derived from the Markov
process.

Considering both approaches as a model to assign probabilities, one can use
the maximum entropy principle to perform a model selection. A straight forward
calculation shows that the entropy obtained in the Markov representation is larger
than the information entropy.

References:
[1] Burhan Bakar, and L F Lemmens Phys. Rev. E 71, 046109 (2005) see also

cond-mat / 0502277
[2] Alexander Stotland, Andrei A. Pomeransky, Eitan Bachmat, Doron Cohen,

Europhysics Letters 67, 700 (2004)

Key Words: Blocking Temperature, information entropy, Markov representation
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Maximum likelihood separation of spatially
auto-correlated images using a Markov model

Shahram Hosseini1, Rima Guidara1, Yannick Deville1, Christian Jutten2

(1) Laboratoire d’Astrophysique de Toulouse-Tarbes (LATT), France
(2) Laboratoire des Images et des Signaux (LIS), Grenoble, France

Abstract
We recently proposed an efficient maximum likelihood approach for blindly sep-
arating markovian time series [1]. In the present paper, we extend this idea to
bi-dimensional sources (in particular images), where the spatial correlation of each
source is described using a 2nd-order Markov model. The idea of using Markov
Random Fields (MRF) for image separation has recently been exploited by other
authors [2], where the source Probability Density Functions (PDF) are supposed to
be known, and are used to choose the Gibbs priors. In the present work, however,
we make no assumption about the source PDF so that the method can be applied
to any sources. Beginning with the joint PDF of all the observations, and suppos-
ing a unilateral 2nd-order Markov model for the sources, we can write down the
likelihood function and show that the nondiagonal entries of the separating matrix
can be estimated by solving the following estimating equations

E[
1∑

k=0

1∑
l=−1,k+l 6=−1

ψ(k,l)
si

(m,n)ŝj(m− k, n− l)] = 0 i 6= j

where the conditional score functions ψ(k,l)
si of the estimated sources ŝi are

ψ(k,l)
si

(m,n) =
−∂ logPsi(ŝi(m,n)|ŝi(m− 1, n− 1), ŝi(m− 1, n), ŝi(m− 1, n+ 1), ŝi(m,n− 1))

∂si(m− k, n− l)

In practice, these functions must be estimated from data in a 5-dimensional space.
The nonparametric estimation algorithm used in [1] being very time consuming, we
developed a new algorithm using polynomials as score function parametric models.
The estimating equations were solved using Newton algorithm. The experiments
proved the better performance of our method in comparison to some classical algo-
rithms. The final version of the paper will contain the theoretical details and the
experimental results with artificial and real data including astrophysical images.

References:
[1] S. Hosseini, C. Jutten, D.-T. Pham, Markovian source separation, IEEE

Transactions on Signal Processing, vol. 51, no. 12, pp. 3009-3019, Dec. 2003.
[2] E. E. Kuruoglu, A. Tonazzini and L. Bianchi, Source separation in noisy

astrophysical images modelled by markov random fields, ICIP’04, pp. 2701-2704.

Key Words: Blind source separation, Markov random fields, Maximum likelihood
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Comparing Class Scores in GCSE Modular Science

JASON WELCH, County High School, Leftwich, Cheshire, UK

Abstract

Multiple choice tests are used widely in education and elsewhere.  The results of these tests contain

information both about the students’ knowledge and their ability to guess the answers.  This paper

describes the use of Bayesian statistical techniques to attempt to ‘remove’ the guess-work from the

results in order  to obtain information about the students’ underlying knowledge based on our prior

knowledge about the structure of the test.  The resulting mathematical model allows fair comparisons of

the  levels  of  knowledge of  groups  of  students  in schools and highlights  the flaws in  the common

practice of analysing these scores using simple averages.  It also allows more specific comparisons to

be made that are not possible using averages.  These comparisons can then inform teaching practice.

Introduction

A multiple choice test provides the student with a number of options from which they are to select the

correct answer e.g.

The Milky Way is a …

A galaxy

B solar system

C universe

D star

Using such a test to assess knowledge can be problematic not least because the person being tested

could guess the correct answer without any understanding of the topic.  The literature on multiple-

choice  testing  is  wide-ranging  but  can  be  broadly  categorised  into  four  areas:   question  writing,

administration  of  tests  (electronically),  scoring  systems  and  results  analysis.   The  work  comes

predominantly  from  higher-education  (especially  in  medicine,  law,  economics  and  IT)  with

contributions from statistics and psychology.
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Dirichlet or Potts ?

Ali Mohammad-Djafari
Laboratoire des signaux et systmes (L2S)

Suplec, Plateau de Moulon, 3 rue Joliot Curie
91192 Gif-sur-Yvette, France

Abstract

When modeling the distribution of a set of data {xi, i = 1, · · · , n} by a mixture of
Gaussians (MoG), there are two possibilities: i) the classical one is using a set of
parameters which are the proportions αk, the means µk and the variances σ2

k; ii)
the second is to consider the proportions αk as the probabilities of a hidden variable
z whith αk = P (z = k) and assignining a prior law for z. In the first case a usual
prior distribution for αk is the Dirichlet which account for the fact that

∑
k αk = 1.

In the second case, to each data xi we associate a hidden variable zi. Then, we have
two possibilities: either assuming the variables zi to be i.i.d. or assigning them a
Potts distribution. In this paper we give some details on these models and different
algorithms used for their simulation and the estimation of their parameters.

More precisely, in the first case, the assumption is that the data are i.i.d sam-
ples from p(x) =

∑
k=1 αkN (µk, σ

2
k) and the objective is the estimation of θ =

{K, (αk, µk, σ
2
k), k = 1, · · · ,K}. In the second case, the assumption is that the data

xi is a sample from p(xi|zi = k) = N (µk, σ
2
k),∀i where the zi can only take the values

k = 1, · · · ,K. Then if we assume zi i.i.d., then the two models become equivalent
with αk = 1

n

∑n
i=1 δ(zi−k). But if we assume that there some structure in the hidden

variables, we can use the Potts model p(zi|zj , j 6= i) ∝ exp
{

γ
∑

j∈V(i) δ(zi − zj)
}

where V(i) represents the neighboring elements of i, for example V(i) = i − 1 or
V(i) = {i − 1, i + 1} or in cases where i represents the index of a pixel in an im-
age, then V(i) represents the four nearest neigbors of that pixel. γ is the Potts
parameter.

These two models have been used in many data classification or image segmenta-
tion where the xi represents either the grey level or the color components of the pixel
i and zi its class labels. The main objective of an image segmentation algorithm is
the estimation of zi. When the hyperparameters K, θ = (αk, µk, σ

2
k), k = 1, · · · ,K

and gamma are not known and have also to be estimated, we say that we are in to-
tally unsupervised mode, when are known we are in totally supervised mode and we
say that we are in partially supervised mode when some of those hyperparameters
are fixed. In the following, we present some of these methods.

Key Words: Mixture of Gaussians, Dirichlet, Potts, Classification, Segmentation.
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ESTIMATION AND DETECTION OF A PERIODIC
SIGNAL

D. Aronsson, E. Björnemo, M. johansson
Signals and Systems Group, Uppsala University, Sweden

dar,eb,mj@signal.uu.se

Abstract

Detection and estimation of a periodic signal with an additive disturbance is con-
sidered. We study estimation of both the frequency and the shape of the waveform
and develop a method based on Fourier series modelling. The method has an ad-
vantage over time domain methods such as epoch folding, in that the hypothesis
space becomes continuous. Using uninformative priors, the noise variance and the
signal shape can be marginalised analytically, and we show that this expression can
be evaluated in real time when the data is evenly sampled and does not contain any
low frequencies.

We compare our method with other frequency domain methods. Although de-
rived in various different ways, most of these, including our method, have in common
that the cumulative periodogram plays a central role in the estimation. But there
are important differences. Most notable are the different penalty terms on the
number of harmonic frequencies. In our case, these enter the equations automati-
cally through the use of probability theory, while in previous methods they need to
be introduced in an ad hoc manner. The Bayesian approach in combination with
the chosen model structure also allow us to build in prior information about the
waveform shape, improving the accuracy of the estimate when such knowledge is
available.
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SENSOR NETWORK NODE SCHEDULING FOR

ESTIMATION OF A CONTINUOUS FIELD

E. Björnemo, M. Johansson, D. Aronsson

Signals and Systems Group, Uppsala University, Sweden

eb,mj,dar@signal.uu.se

Abstract

A wireless sensor network consists of radio-equipped sensors that are spread out
in space to perform some network task, such as monitoring or estimating a field
quantity. In many sensor networks, the main limitation is the scarce energy resources
available at each sensor node. A major issue is therefore optimisation of the activity
in the network with respect to energy consumption. We investigate such an energy-
limited sensor network, whose purpose is to estimate a continuous field over a certain
spatial and temporal range. One way of reducing energy consumption is to utilise
knowledge of the field variations to reduce the number of actual measurements and
thus not waste energy on measuring quantities that can be inferred with knowledge
of related parameters.

We investigate the trade-off between estimation performance and resource cost
in terms of energy consumption, and devise a general Bayesian estimation scheme to
take advantage of (necessarily incomplete) knowledge of physical properties of the
field, such as bounds on time and space variations. Each measurement is taken at a
discrete point in space and time and our goal is to infer the entire field over a given
time and space horizon. We assume that the position of each node is known and
that there is a known node-specific cost associated with each sensor measurement.
The central unit schedules sensor measurements according to cost and information
gain. We assume simple sensors that only perform the assigned measurements and
forward them to the central unit along pre-defined routeS.

We illustrate how different states of uncertainty lead to interesting special cases
of the general problem scenario, and discuss relations to Nyquist sampling of a time
series of known bandwidth.
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Maximum entropy approa
h to 
hara
terization of random mediaE. V. VakarinUMR 7575 LECA ENSCP-UPMC, 11 rue P. et M. Curie, 75231 Cedex 05, Paris, Fran
ee-mail: vakarin�

r.jussieu.frChara
terization of 
omplex disordered media (porous matri
es, random networks,et
.) is usually based on an analysis of indire
t probes. This is realized through a 
onta
tof the medium and a system with a well-de�ned response fun
tion �(�j�) 
onditional tothe medium state �. Thus one deals with an inversion of the following integral�(�) = Z d�f(�)�(�j�);where �(�) is an experimental result, f(�) is the desired distribution of some relevantquantity, �. In many 
ases the inversion of this integral with respe
t to f(�) is an "ill-posed" mathemati
al problem. Therefore, 
urrent approa
hes involve either sophisti
atedregularization pro
edures, or a �tting with multiple adjustable parameters. The problemis 
ompli
ated by the absen
e of a unique solution and strong sensitivity to the inputdeviations.Based on a 
ombination of the statisti
al thermodynami
s and the maximum informa-tion prin
iple [1℄ we propose a 
omplementary approa
h to this problem. The distribu-tions are 
al
ulated through a maximization of the Shannon entropy fun
tional 
ondi-tioned by the available data �(�). The s
heme is shown to provide an expli
it solutionand a systemati
 link between the distribution and the input (�(�), and �(�j�)). Thegained amount of information is shown to be dire
tly related to the probe thermodynami
state �(�). Several illustrative examples, relevant to adsorption probes are dis
ussed.[1℄ E. T. Jaynes, Phys. Rev. 106, 620 (1957)
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INFORMATION-THEORETIC MEASURES OF
SOME QUANTUM SYSTEMS

R.J. Yáñez1,3, J.S. Dehesa2,3

(1) Dpto. de Matemática Aplicada,
Universidad de Granada, Spain
(2) Dpto. de F́ısica Moderna,

Universidad de Granada, Spain
(3) Instituto Carlos I de F́ısica Teórica y Computacional,

Universidad de Granada, Spain.
(email: ryanez@ugr.es, dehesa@ugr.es, Fax: 958242862)

Abstract

The distribution of a probability density function all over its domain of definition
may be best measured by means of information-theoretic notions of both global
(Shannon entropy) and local (Fisher information) characters. These quantities will
be here computed for several classical and quantum systems directly from its wave
equation. In this communication we shall make emphasis on the following single
particle systems: atoms in a spherically symmetric potential, circular membrane
and atoms in an external electric field. The extension to multidimensional systems
will be also discussed. All these problems require an extensive use of the theory of
special functions and orthogonal polynomials.

References:
[1] J. S. Dehesa, A. Mart́ınez-Finkelshtein & V.N. Sorokin, Short-wave asymp-

totics of the information entropy of a circular membrane, Int. J. Bifurcation and
Chaos, 12 (2002) 2387.

[2] J.S. Dehesa, S. López-Rosa, B. Olmos & R.J. Yáñez, The Fisher informa-
tion of D-dimensional hydrogenic systems in position and momentum spaces, J.
Mathematical Physics (2006). Accepted.

Key Words: Shannon entropy, Fisher information, wave equation, circular mem-
brane, quantum mechanics, atoms, atoms in external fields, special functions, or-
thogonal polynomials
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INTEGRATED DATA ANALYSIS:
NON-PARAMETRIC PROFILE GRADIENT

ESTIMATION

R. Fischer1, A. Dinklage2, V. Dose1

Max-Planck-Institut für Plasmaphysik, EURATOM Association,
(1) Boltzmannstr. 2, D-85748 Garching, Germany

(2) Greifswald Branch, Wendelsteinstr. 1, D-17493 Greifswald, Germany
(Rainer.Fischer@ipp.mpg.de)

Abstract

The estimation of distributions and distribution gradients from pointwise mea-
surements of profiles is frequently hampered by measurement errors and lack of
information. A combination of measured profile data from heterogeneous experi-
ments is suitable to provide a more reliable data base to decrease the estimation
uncertainty by complementary measurements. The Integrated Data Analysis (IDA)
concept allows to combine data from different experiments to obtain improved re-
sults [1]. Persisting missing information is usually regularized by applying para-
metric interpolation schemes to fit profiles and derive gradients at the expense of
flexibility. The lack of flexibility affects in particular the estimation of profile gradi-
ents. The estimation of profile gradient uncertainties is usually not considered. The
goal is to reconstruct profiles only from the significant information in the measured
data and avoid noise fitting without restricting profiles using parametric functions.

A flexible non-parametric distribution estimation is achieved by using exponen-
tial splines. Exponential splines adaptively allow for flexibility in regions where
profile data provide detailed information as well as smoothness (cubic splines as
limiting case) elsewhere. Regularization parameters as well as number of knots and
knot positions are marginalized in the framework of Bayesian probability theory.
The resulting posterior probability distribution allows to estimate profiles, profile
gradients and their uncertainties in a natural way. An application of exponential
splines will be shown on temperature and density profile gradient estimation from
an integrated data set measured with different experiments for transport modeling
at Wendelstein 7-AS and ASDEX Upgrade.

References:
[1] R. Fischer, A. Dinklage, and E. Pasch, Plasma Phys. Control. Fusion 45

(2003) 1095
[2] V. Dose and A. Menzel, Global Change Biology 10 (2004) 259
[3] V. Dose and R. Fischer, Bayesian Inference and Maximum Entropy Methods

in Science and Engineering, ed. K. Knuth, AIP Conf. Proc. 803 (2005) 67
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The Full Bayesian Significance Test
for Separate Hypotheses

Julio M. Stern1, Marcelo S. Lauretto1,
Silvio R. de Faria Jr.1, Basilio B. Pereira2

(1) University of Sao Paulo, Brazil
(2) Federal University of Rio de Janeiro, Brazil

(e-mail: jstern@ime.usp.br)

Abstract

A typical problem of discriminating between models consists of determining which of
m alternative models, fk(x, ψk), more adequately fits or describes a given dataset.
In general the parameters ψk have distinct dimensions, and the models fk have
distinct (unrelated) functional forms. In this case it is usual to call them “separate”
models (or hypotheses). Atkinson [1], although in a different theoretical framework,
was the first to analyse this problem using a mixture formulation,
f(x|w1 . . . wm, ψ1 . . . ψm) =

∑m
k=1wkfk(x, ψk), where wk ≥ 0,

∑m
k=1wk = 1.

The Full Bayesian Significance Test (FBST) was introduced by Pereira and Stern
in 1999 and its invariant formulation was presented by Madruga et al [2]. The FBST
was applied in mixture model selection by Lauretto and Stern [3] and performed
very well when compared with model-based clustering methods.

In this article we propose the FBST as a robust tool for the test of separate
hypotheses, in the context of mixture formulation. Simulated experiments in the
Lognormal versus Gamma and other classical problems are analysed, where the
FBST performance is compared with Bayes Factors [4].

References:
[1] A.C.Atkinson (1970). A Method for Discriminating Between Models. J.
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[2] M.R.Madruga, C.A.B.Pereira, J.M.Stern (2003). Bayesian Evidence Test for

Precise Hypotheses. Journal of Statistical Planning and Inference, 117,185–198.
[3] M.S.Lauretto, J.M.Stern (2005). FBST for Mixture Model Selection. Max-

ent’2005, AIP Conf. Proc. 803, 121-128.
[4] B.B.Pereira (2005). Separate Families of Hypotheses. In: Peter Armitage,
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AN ALTERNATIVE APPROACH TO THE

PARAMETRIC EMPIRICAL BAYES SELECTION

OF WAVELET THRESHOLDS

M. Aminghafari
Dépt. Statistique et Modélisation, Univ. Paris-sud and Dept. of Statistics, Tehran Polytechnic

Mina.Aminghafari@math.u-psud.fr

The prior distribution is the key to the Bayesian inference. Theoretical priors, conjugate
priors and estimated priors are different types of prior distributions. Estimating hyper-
parameters, i.e., prior distribution parameters, using data is called Parametric Empirical
Bayes (PEB), which is used by frequentists more often than by Bayesians [3].

Our purpose in this paper is to provide an alternative approach to the PEB approach
to wavelet threshold selection [2,4,5]. We propose an approach to wavelet threshold se-
lection when we have a few prior candidates for the wavelet coefficients. In the other
words, instead of PEB estimation of the threshold, we perform a prior selection and then
estimate the threshold. A few advantages of the proposed method are given through the
examples. We compare the proposed method with the well known methods to the wavelet
thresholding [1].

Key Words: Wavelet Thresholding, Parametric Empirical Bayes, Most Powerful Test.
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Human Detection using Ultrasonic Doppler
Vibrometry

Asif Mehmood1 , Paul M. Goggans1, James M. Sabatier2
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Abstract

This paper considers the problem of distinguishing a walking human from other
moving or stationary objects in near real-time using Bayesian model comparison
and data obtained from an ultrasonic Doppler vibrometer (UDV). Here we describe
our initial experimental and analytical work to develop an automated non-invasive
model-based approach for recognizing people based on their measured velocity signal
while walking. Our experimental set up uses an ultrasonic Doppler vibrometer as
a non-contact means for obtaining data related to the velocity of the moving body
components. The main advantages of using an ultrasonic vibrational measurement
system is high resolution, low cost, and ease of installation. In the UDV an ultrasonic
transducer directs a 50 kHz acoustic wave to the moving body surface. The returned
acoustic signal, frequency modulated by the velocity of the body components, is
received by a co-located transducer whose output is sampled to produce the output
data time series. Our experiment is laboratory based and intended to determine
basic capabilities. The presence of a characteristic and approximately sinusoidal
back motion component in the observed velocity of a walking human is used as a
basis for distinguishing a walking human from other moving objects. We have two
models, one representing data attributed to human bulk velocity and back velocity
and the other model representing a constant (possibly zero) bulk velocity. In the
walking human model, the back motion can be linked to whole body motion. For
the detection of walking human, we make use of the Bayesian inference approach,
where models are compared by computing their posterior odds ratio. In this paper
we present parameters estimation results for the walking human model and discuss
our initial model selection results.
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INTEGRATED BAYESIAN ESTIMATION OF Zeff

IN THE TEXTOR TOKAMAK FROM
BREMSSTRAHLUNG AND CX IMPURITY

DENSITY MEASUREMENTS
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Abstract
The validation of diagnostic data from a nuclear fusion experiment is an impor-
tant issue. The concept of an Integrated Data Analysis (IDA) allows the consistent
estimation of plasma parameters from heterogeneous data sets [1]. Here, the de-
termination of the ion effective charge (Zeff), a critical local measure of impurity
concentration, is considered. Several diagnostic methods exist for the determination
of Zeff , but the results are in general not in agreement. Moreover, so far none of
the available methods has provided a Zeff estimate that is reliable over the entire
plasma cross-section, which is at present a real challenge.
In this work, the problem of Zeff estimation is approached from the perspective of
IDA, in the framework of Bayesian probability theory. The ultimate goal is the es-
timation of a full Zeff profile that is consistent both with measured bremsstrahlung
emissivities, as well as individual impurity spectral line intensities obtained from
Charge Exchange Spectroscopy (CXS). We present an overview of the various un-
certainties that enter the calculation of a Zeff profile from bremsstrahlung data on
the one hand, and line intensity data on the other hand. These appear at several
levels, including the measurement process itself (together with independent electron
density and temperature measurements), the inversion procedure (including knowl-
edge of the magnetic equilibrium), the atomic data, the diagnostic calibrations, etc.
We discuss a simple Bayesian model permitting the estimation of a central value for
Zeff and the electron density ne on TEXTOR from bremsstrahlung emissivity mea-
surements in the visible, and carbon densities derived from CXS. Both the central
Zeff and ne are sampled using an MCMC algorithm. Extensions of the model to a
full Bayesian analysis, incorporating all critical measurement and model uncertain-
ties, are examined. Relevance to ITER through the pilot active beam experiment
on TEXTOR is discussed.

References:
[1] R. Fischer and A. Dinklage, Rev. Sci. Instrum. 75, 4237 (2004).

26-th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering



MaxEnt 2006 — CNRS, Paris, France, July 8-13, 2006 145 / 205

26-th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering



MaxEnt 2006 — CNRS, Paris, France, July 8-13, 2006 146 / 205

PROBING THE COVARIANCE MATRIX

Kenneth M. Hanson
Los Alamos National Laboratory, Los Alamos, NM 87545, USA

(e-mail: kmh@lanl.gov, http://public.lanl.gov/kmh/)

Abstract
Relationships between statistics and physics often provide a deeper understanding
that can lead new or improved algorithmic approaches to solving statistics problems.
It is well known that the negative logarithm of a probability distribution is analogous
to a physical potential. Thus, ϕ(a) = − log(p(a |y)) is analogous to a potential,
where p(a |y) is the posterior, vector a represents the n continuous parameters, and
y represents the m measurements. The maximum a posteriori (MAP) solution, â,
which minimizes ϕ(a), is frequently chosen as the parameter estimator because it
is easier to find than the posterior mean. In many inference problems the posterior
can not be stated in analytic form, only evaluated by means of a computational
model.

The inference process requires estimates of the uncertainties in , which are related
to the width of the posterior, typically characterized in terms of the covariance
matrix C. Standard approaches to determining C include: 1) sensitivity analysis,
2) Markov chain Monte Carlo, and3) functional analysis. Each of these approaches
has its advantages and disadvantages depending on the nature of the problem, for
example, the magnitude of n and m and the cost of evaluating the forward model
and its sensitivities.

I describe a novel alternative approach that may be advantageous in some situ-
ations. In the physics analogy, the notion is to determine the displacement of the
equilibrium of the system (â) under the influence of an external force. The displace-
ment is determined by the curvature (or stiffness) matrix describing the potential
around â. In the inference problem, the idea is to add to ϕ(a) a potential that is
linear in a and find the new minimizer a′. It is easy to show that ∆a = a′−â = Cf ,
where f is the force applied to the system; thus, the additional potential is aT f .
The force f represents a linear combination of the parameters about which we want
to estimate the uncertainty. The variance in the direction of f is proportional to
fT Cf = fT ∆a. Furthermore, the covariance between f and another linear combi-
nation of parameters g is gT Cf = gT ∆a. This approach to uncertainty estimation
is most useful in situations in which a) the standard techniques are costly, b) it is
relatively easy to find the minimum in ϕ(a) and ϕ(a) + aT f , and c) one is inter-
ested in the uncertainty wrt. one or a few directions in the parameter space. The
useful of this new technique is demonstrated with examples ranging from simple to
complicated.

Key Words: covariance estimation, probability potential, posterior stiffness, linear
response theory, dissipation-fluctuation relation
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A Cyclostationary Bayesian Approach For GPS Signals Delay

and Frequency Offset Estimation
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Abstract
Frequency offset and delay estimation are typically required in the reception of GPS signals.
The frequency of the incoming signal can differ from that of the local oscillator frequency
due to propagation, Doppler effects and mismatch between the satellites transmitter and the
receiver. The delay estimation allows the computation of the distance between the user and
the satellite, and with at least four estimates from the different emitters, the positioning
can be realized. In GPS applications, conventional positioning techniques are based on the
characteristics of the pseudorandom code autocorrelation function. They don’t take into
account the eventuality presence of interference, multipath reflections and high level non-
Gaussian noise. These undesired signals may greatly disturb the measures of the usual Early-
Late method [3]. Several techniques has been proposed in the GPS literature to mitigate
separately the interference or multipath effect but there is no synchronization method robust
to both of them.

Since we have shown in [1, 2] that the cyclostationarity property of the GPS signal can
be exploited to improve the synchronization parameters estimation, we propose in this paper
a novel method based on the second order cyclic statistics. By considering the sample cyclic
autocorrelation function of the GPS signal and the probability distribution of the estimation
error, a general linear model formulation of the problem is derived from which the parameters
are estimated using the Maximum A Posteriori (MAP) estimator in a Bayesian framework.
This approach require only knowledge of the frequency that characterizes the underlying
periodicity exhibited by the GPS signal, namely the cycle frequency. Thus we avoid the
need for a priori knowledge of interference and noise characteristics (e.g. no gaussianity
assumption is needed).

The results demonstrate analytically and also by simulations that greatly improved jam-
mer and interference rejection is achievable by exploiting properly the signal-selectivity prop-
erties of the cyclic autocorrelation function of the cyclostationary GPS signals. The proposed
method can perform well for multipath signals severely corruptive by noise and interference
that exhibit no cyclostationarity with the same cycle frequency.

References:
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Abstract

We consider the problem of retrieving items from a concept or cluster, given a
query consisting of a few items from that cluster. We formulate this as a Bayesian
inference problem based on models of human categorization and generalization and
describe a very simple algorithm for solving it. Our algorithm ends up with a score
which can be evaluated exactly using a single sparse matrix multiplication. This
makes it possible to apply the method to retrieval from very large datasets (i.e.
millions of items). We evaluate our algorithm on three problems: retrieving movies
from a database of movie preferences, finding sets of similar authors based on their
word usage in a scientific conference, and finding completions of sets of words ap-
pearing in encyclopaedia articles. Compared to “Google Sets”, we show that our
“Bayesian Sets” retrieval method gives very reasonable set completions. Finally, we
show how the Bayesian Sets algorithm can form the basis of a Content-Based Im-
age Retrieval (CBIR) system. I will describe and demonstrate this Bayesian CBIR
system and mention a range of other applications of our approach.

Key Words: Information retrieval, Vision, Image Retrieval, Google
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Abstract

We consider in this paper the well known minimum cross-entropy method (MinxEnt)
as applied to the problem of constructing approximations to a non-negative function,
f(x), when partial information about it is given as a set of constraints of the form:

µ0 =
∫ b

a
f(x)dx µj =

∫ b

a
kj(x)f(x)dx j = 1, . . . , n ,

i.e. its normalization, µ0, and a set of expectation values of certain functions, kj(x)
(j = 1, . . . , n). On applying the MinxEnt method to this problem, a minimum of
the cross-entropy functional

E [f : f0] =
∫

D
f(x) log

(
f(x)
f0(x)

)
dx

has to be computed, where f0(x) is a prior approximation to f(x), usually obtained
from the knowledge of the specific problem in which f(x) and the constraints ap-
pears.

One can find in the literature a number of algorithms to deal with this prob-
lem which works for some particular situations (see e.g. [1]–[4] among others). Our
intention here is to discuss the behavior of the standard optimization methods (New-
ton, quasi-Newton, ... with line–search of several types) with the aim of developing
a general algorithm to solve the minimization problem in the sense that it could be
applied to a wide set of densities and constraints, ranging from the discrete to the
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Abstract

Plasma experiments in large fusion devices represent high efforts and costs. Mo-
tivated by physical questions many experiments are performed under small varia-
tions of settings leading to clustered parameter spaces. Thereby being hardly well
conditioned, data bases are fed by mean values and standard deviations of the mea-
sured quantities. In the analysis process the data descriptive equation can only
approximate the overall confinement behaviour with a power law. Resulting from
this approximation and the sparse parameter space outliers and non-Gaussian error
statistics are to be expected. The question addressed here is to cope with them in
order to develop a robust analysis.

In the sense of the maximum entropy principle a Gaussian results from the
assumed knowledge of mean µ and variance σ2. If we assume instead that the
expectation value of |di − µ| is σi we obtain a Laplace distribution. It allows for
considerable outlier tolerance compared to the Gaussian choice. A combination of
the properties of a Gaussian and a Laplace distribution is obtained from an inverse
hyperbolic cosine. Its small argument behaviour approximates a Gaussian while the
wings of the distribution are Laplace-like.

We examine the impact of the three likelihood functions on Bayesian model
comparison which is employed to determine the consistency of confinement data
with different physical models. These models derive from different combinations of
inclusion/neglect of ion collisions and diamagnetic response of the plasma to be re-
flected in equations which couple exponents of a power law ansatz. In order to check
the validity of the procedure, subsets of confinement data with known behaviour
in the above physical properties are tested against a set of models resulting in an
acceptance probability of each model under consideration.

Key Words: Laplacian distribution, Hyberbolic likelihood, Model comparison
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OVERVIEW OF BAYESIAN INFERENCE,
MAXIMUM ENTROPY AND SVM METHODS
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Abstract

Feature selection analyses from the perspective of classification performance con-
ducts to the discussion of the relationships between SVM, Bayesian and Maximum
Entropy formalisms. Maximum Entropy discrimination can be seen as a particular
case of Bayesian inference, which at its turn can be seen as a regularization ap-
proach applicable to SVM. Probability measures can be attached to each feature
vector thus, feature selection can be described by a discriminative model over the
feature space. Further the probabilistic SVM allows to define a posterior prob-
ability model for a classifier. Further, the similarities with the kernels based on
Kullback-Leibler divergence can be deduced, thus returning to a MaxEnt similarity.

Key Words: Bayesian Inference, Support Vector Machine, Maximum Entropy
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THE EARTHQUAKE RECURRENCE MODELS :

Methodica Firma Per Terra Non-Firma
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Abstract

This paper has the Great Expectations to end the complaints of the seismologists
that the earthquakes are unpredictable and to replace the traditional methodology
with the new one based on the Information Theoric Framework. In words of Charles
Dickens (1812-1870) It was the best of times,.. .it was the Age of Wisdom, , since
we are living in an Extra Ordinary time at the turn of the Millennium, Age of
Information...

On 17 August 1999, a destructive magnitude 7.4 earthquake occurred 100 km
east of Istanbul on the North Anatolian Fault. What is the probability of an earth-
quake of M=7.4 will occur before the year 2030 in Istanbul ? A group of seismologists
found a 62 15

International Conference during 1-4 Nov. 2005 in Lisbon, on the occasion of the
250th Anniversary of the 1755 Lisbon Earthquake that influenced not only Portugal
but the all Europe & North African countries, was to foster an integrated view of
global perception of natural disasters. [http://www.lisbon1755.org ]

100th Anniversary of the 1906 San Francisco Earthquake to be held during 18-22
April 2006 shall also include the Centennial Meeting of the Seismological Society of
America , where the next 10 steps our communities must take to avoid catastrophic
disasters. [ http://www.1906eqconf.org ]

Paper maintains that the attempts to forecast or predict earthquake occurrence
can be studied chronologically under 3 types of models :

1-) Models developed between years 1968-1976 can be designated as the First
Generation Models that were based on earthquake probabilities independent of time
& geographical location. 2-) Second Generation Models during the next two decades
introduced the space & time dimension by considering the local geological & seis-
mological conditions in the estimation of random probabilities. 3-) Third Genera-
tion Models developed after 2000, in addition to the above considerations, compute
probabilities with respect to the interactions between the local stress changes & the
occurrence of large & small earthquakes. [1]

In these three types of models above, many researchers have thought that there
ought to be some precursory phenomena that could be consistently observed &
identified as the basis for making reliable prediction. There was an intense optimism

1
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Bayesiyan Estimation for Updating Coefficients 
in the Neural Networks 
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Abstract. Bayesian inference approach is well known to solve inverse problems in signal and 
image processing. In this paper we focused on source separation that has become one of the most 
major fields in the signal and image processing. Classical approaches based on Independent 
component analysis (ICA) and Principal Component Analysis (PCA) suffer from mapping 
mixed noises to the desired properties of the sources, on the other hand they try to analyze and 
separation of signals features using the linear approaches that is unsuitable for non-linear nature 
of the signals. Therefore using of a non-linear analysis of signals component like Neural-
Networks is possible and must be considered. We show that a MLP network with Bayesian 
estimation for updating coefficients can be used in many signal and image processing 
application and the proposed algorithm can also serve as very good standard for maximize 
separation regions, Data Mining applications and minimizing Mutual Information.  

Keywords: Blind source separation, Bayesian estimation, Independent component analysis 
(ICA), Principal Component Analysis (PCA), Multi-Layer Perceptron (MLP). 

26-th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering



MaxEnt 2006 — CNRS, Paris, France, July 8-13, 2006 161 / 205

26-th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering



MaxEnt 2006 — CNRS, Paris, France, July 8-13, 2006 162 / 205

A QUASILINEAR PARABOLIC TYPE

VARIATIONAL SOLUTION FOR FOURIER’S

IRREVERSIBLE HEAT CONDUCTION PROCESS

WITH MINIMUM PRINCIPLES IN CASE OF

FINITE SIGNAL RATE

Endre Kiss
Budapest University of Technology and Economics,

Institute of Physics, Department of Chemical Physics
H-1521 Budapest, Budafoki street 8., Hungary

Telephone: (36-1) 463-1341. Fax:(36-1) 463-1896
(e-mail: kiss ee@goliat.eik.bme.hu)

Abstract

The linear parabolic type PDE for heat conduction process is analyzed. It is an
old well-known problem that with constant phenomenological coefficient the sig-
nal spreading velocity is infinite for the Fourier heat conduction process. Here is
shown a quasilinear solution for this problem with finite signal rate. Connecting to
parabolic PDE it is shown the minimum principle solution of Onsager, Prigogine
and Gyarmati type for the Fourier irreversible heat conduction process in energy
and entropy representation pictures too. For the stationary state of irreversible heat
conduction process there is interesting form for the variational minimum solution
with the aid of the so-called ”naive” variational procedure. This procedure is equiv-
alent with the Euler-Lagrange PDE. So the minimum entropy production or the
minimum information loss can be shown with a more general way. As to the phe-
nomenological solutions of quasilinear heat conduction irreversible process the least
dissipation of energy in stationary state leads to the different materials in solid
state physics, namely to phonon heat conduction(dielectrics and semiconductors
with Umklapp processes) and the conductive electrons (in metals) for which heat
conduction coefficients variate in hyperbolic way depending on the temperature.
Solutions for them are subharmonic type.
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ELECTRODE SELECTION FOR NON-INVASIVE
FETAL ELECTROCARDIOGRAM EXTRACTION

USING MUTUAL INFORMATION CRITERIA

Frédéric Vrins1, Reza Sameni2, Fabienne Parmentier1, Christophe Hérail3,
Vincent Vigneron3, Michel Verleysen1, Christian Jutten2

(1) UCL, Louvain-La-Neuve, Belgium
(2) LIS, Grenoble, France

(3) LSC, Evry, France
(e-mail: vrins@dice.ucl.ac.be, www.dice.ucl.ac.be/∼vrins)

Abstract

In recent years, blind source separation (BSS) techniques have been used as promis-
ing approaches for the non-invasive extraction of fetal cardiac signals from maternal
abdominal recordings [1]. With the new developments in BSS, it is believed that
the complete shape of the fetal ECG should be extractable from a sufficient number
of electrodes well-positioned over the abdomen of a pregnant woman. Based on
this intuition, in a previous research a multi-channel recording system containing
an array of 72 electrodes was developed, which can be placed as a belt of electrodes
over the abdomen and the back of a pregnant woman [2].

However, many of the recording channels are contaminated with the mater-
nal ECG noise and contain little information about the fetal ECG. Moreover, the
processing of all the different combinations of these electrodes (72×71/2 electrode
pairs), can be very time-consuming and inefficient, since a much smaller subset of
the electrodes (which can also vary with time depending on the pose of the fetus,
shape of the abdomen, or stage of pregnancy), may be sufficient to extract the
required ‘information’. Based on this idea, in a recent study, an electrode selec-
tion strategy was proposed to reject the channels which correspond to the maternal
ECG, by minimizing the mutual information (MI) between the different electrodes
and a reference channel of the maternal ECG [3].

On the other hand according to the dipole theory of the cardiac electrical activity,
it is known that the electrodes placed on the body surface are recording a projection
of the heart’s dipole vector depending on their position. This suggests that the
different electrodes should be compared with different references (depending on
their location), rather than a single reference. In this work the electrode selection
algorithm has been improved by using a novel 3-dimensional model of the cardiac
dipole vector. Using this model the reference channel has been customized for each
of the recording channels and the MI of each channel has been calculated with
respect to its own reference. Moreover the channel selection strategy has also been
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A FAST METHOD FOR SPARSE COMPONENT

ANALYSIS BASED ON ITERATIVE

DETECTION-PROJECTION

Arash Ali AMINI 1, Massoud BABAIE-ZADEH 1,2, Christian JUTTEN 2

(1) Sharif University of Technology, Tehran, Iran
(2) Laboratory of Images and signals, Grenoble, France

(e-mail: mbzadeh@yahoo.com)

Abstract

We introduce a new iterative algorithm for Sparse Component Analysis (SCA). The
algorithm is essentially a method to find sparse solutions of underdetermined linear
systems of equations. In the SCA context, the method solves the source separation
part of the problem, provided that the mixing matrix is known (i.e. estimated).
The method is not restricted to SCA and may be used in any context in which such
a problem arises. For example, it may be used to find sparse decomposition of a
signal in an overcomplete dictionary. For the purpose of discussion, however, we will
use the SCA notation and terminology. More specifically, we are given the system
x = As where x is the known n × 1 mixture vector, s is the unkown m × 1 source
vector and A is the known n × m mixing matrix. The system is underdetermined,
i.e. n < m. We wish to find the sparsest source vector satisfying the system.

The idea is to first detect which components of the source vector are active, i.e.

having a considerable value. The test for activity is carried for each component
(i.e. each source) separately. We will use a Gaussian mixture to model a (sparse)
source. It is found that the optimal test for activity of one source requires the
knowledge of all the other sources. We will replace those other sources with their
estimates obtained from a previous iteration. The suboptimal test for activity of
the i-th source then reduces to comparison of an activity function gi(x, ŝ) against
a threshold. After determination of the activity status of all the sources, the new
estimate for source vector will be obtained by finding a solution of x = As which
is closest (in 2-norm) to the subspace specified by the detection step. We will call
this step “projection into the activity subspace”. Explicit solution of the projection
step will be given in terms of pseudo-inverses, for the cases of interest. It is found
experimentally that repeated use of the two-step iteration, with proper choices of
thresholds, quickly yields the sparsest solution for most well-posed problems.

We will compare the performance of the proposed algorithm against the min-
imum l1 norm solution obtained by Linear Programming (LP). It is found by ex-
periment that, with the proper choices of thresholds, the algorithm performs nearly
two orders of magnitude faster than interior-point LP solvers while providing the
same (or better) accuracy. The figure below shows the typical evolution toward

1
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MARS HYPERSPECTRAL DATA PROCESSING
USING ICA AND BAYESIAN POSITIVE SOURCE

SEPARATION

H. Hauksdottir 1,4, S. Moussaoui2, F. Schmidt 3, C. Jutten 1,4,
D. Brie 2, J. Chanussot 1,4, J.A. Benediktsson 1,4

(1) Laboratory of Images and Signals (LIS), Grenoble, France
(2) Centre of Research in Automatic (CRAN), Nancy, France

(3) Laboratory of Planetology, Grenoble, France
(4) University of Iceland, Reykjavik, Iceland

(e-mail: hafrun.hauksdottir@lis.inpg.fr, Said.Moussaoui@cran.uhp-nancy.fr)

Abstract

The surface of Mars is currently being mapped with an unprecedented spatial resolu-
tion. The high spatial resolution and its spectral range give it the ability to pinpoint
chemical species on Mars more accurately than before. The subject of this paper is
to present a method to extract this information. The proposed method combines
two approaches, Independent Component Analysis (ICA) [1] and Bayesian positive
source separation (BPSS) [2]. ICA will be applied iteratively for selection of pixels in
independent locations of the images, while spatial reconstruction SNR will be used
to check whether all the regions are accounted for. BPSS is then applied for the
estimation of the pure constituent spectra and their abundances. The hyperspectral
images are collected with the OMEGA instrument (Observatoire pour la Minralogie,
l’Eau, les Glaces et l’Activit), which is a spectrometer boarded on the European
Space Agency Mars Express mission and collects 256 images in the infrared spectral
region from 0.926 to 5.108 µm with a resolution of 0.014 µm roughly.

As solar light incident to a planetary surface is partially reflected back by interac-
tion with the different constituents, the analysis of reflectance spectra may allow the
identification and the quantification of the chemical species present at the surface of
Mars. For the linear model the measured spectra is assumed to be a linear mixture
of the reflectance spectra, which is the case for geographical mixture of chemical
species on the surface. The actual sources are correlated and thus the fundemental
assumption of independence in ICA is not satisfied and therefore ICA is not an ad-
equate method for the unmixing. Moreover, it is important to take into account the
positivity constraint of both sources and mixing coefficients. This draws attention
to Bayesian approach which is able to manage priors such as positivity, but there we
face the problem of high computation time when dealing with vast amount of data
(more than 30.000 pixels). In this paper, we propose to combine spatial ICA and

1
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Bayesian approximation for physical inverse problem

Roy

Abstract

Here we focus on simulation-based Bayesian inference from electrical impedance
tomography (EIT) data. We image an unknown convex polygonal insulating in-
clusion within an object, made of otherwise conducting material, using current/
voltage measurements on the surface of the object. This kind of problem can be
classified as an inverse problem for non-invasive imaging. In the forward map we
solve a partial differential equation (PDE) subject to boundary conditions. The sta-
tistical inverse problem is to summarize the posterior distribution of conductance
at all points within the imaged object given the current applied on the boundary
of the object and the corresponding boundary potentials. We apply an MCMC ap-
proach to the EIT inverse problem and demonstrate it on noisy simulated data. We
will also talk about the coupling separation scheme to analyse the computational
approximation of the likelihood.

26-th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering



MaxEnt 2006 — CNRS, Paris, France, July 8-13, 2006 171 / 205

26-th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering



MaxEnt 2006 — CNRS, Paris, France, July 8-13, 2006 172 / 205

EMPIRICAL MAXIMUM ENTROPY METHOD

M. Grendar1 and G. Judge2

(1) Bel University and Slovak Academy of Sciences, Slovakia
(2) University of California, Berkeley, USA

(e-mail: umergren@savba.sk)

Abstract

A method, which we suggest to call the Empirical Maximum Entropy method, is
implicitly present at Maximum Entropy Empirical Likelihood method [1], as its
special, non-parametric case. From this vantage point we will survey the empirical
approach to estimation; cf. [1], [2], [3], [4], [5].

References:
[1] R. Mittelhammer, G. Judge and D. Miller, Econometric Foundations, CUP,

2000.
[2] A. Owen, Empirical Likelihood, Chapman-Hall/CRC, 2001.
[3] J. Qin and J. Lawless, Empirical Likelihood and General Estimating Equa-

tions, Ann. Statist., 22, 300-325, 1994.
[4] Y. Kitamura and M. Stutzer, An information-theoretic alternative to Gener-

alized Method of Moments estimation, Econometrica, 65, 861-874, 1997.
[5] M. Grendar and G. Judge, Large Deviations theory and Empirical Estimator

choice, ARE Berkeley, 2006. http://repositories.cdlib.org/are ucb/1012

Key Words: Empirical Estimation, Estimating Equations, Criterion Choice Prob-
lem
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Wavelet-Based SAR Images Despeckling Using Estimation Theory  

H. Abrishami Moghaddam, M.J. Valadan Zoj, M. Dehghani, 
K.N. Toosi University of Technology, Tehran, Iran 

 
Abstract 

In this paper, an improved speckle noise reduction method is presented based on 

wavelet transform. A 2D circularly symmetric Gaussian function is found to be the best 

model fitted to the speckle noise pattern cross-section in the logarithmically transformed 

noisy image [1]. Therefore, a Gaussian low pass filter using a trous algorithm has been 

used to decompose the logarithmically transformed image. The wavelet coefficients of 

the signal and noise are modeled using alpha-stable and Gaussian distribution functions, 

respectively. A Bayesian estimator is then applied to the wavelet coefficients based on 

these distribution functions as a priori information to estimate the best value for the 

noise-free signal. Quantitative and qualitative comparisons of the results obtained by the 

new method with the results achieved from the other speckle noise reduction techniques 

[2] demonstrated its higher performance for speckle reduction in SAR images.  

 

References: 

[1] H. Abrishami, M.J. Valadan Zoj, M. Dehghani, "Bayesian-based Despeckling in 
Wavelet Domain Using a trous algorithm", Proceedings of the 20th International 
Congress on Photogrammetry and Remote Sensing ISPRS2004, Istanbul, Turkey, July 
2004. 
[2] Achim, A., A. Bezerianos, and P. Tsakalides, 2001. Novel Bayesian Multiscale for 
speckle Removal in Medical Ultrasound Images, IEEE Trans. Med. Imaging Journal, 
20(8):772-783.  
 

Keywords: Speckle Noise, Synthetic Aperture Radar, Bayesian Estimator, Wavelet 
Transform 
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RIEMANNIAN OPTIMIZATION METHOD ON
THE GENERALIZED FLAG MANIFOLD FOR

COMPLEX AND SUBSPACE ICA

Yasunori Nishimori1, Shotaro Akaho1, and Mark D. Plumbley2

(1) National Institute of Advanced Industrial Science and Technology
AIST Central 2, 1-1-1, Umezono, Tsukuba, Ibaraki 305-8568, Japan

(2) Dep. of Electronic Engineering, Queen Mary University of London

Mile End Road, London E1 4NS, UK

(e-mail: y.nishimori@aist.go.jp)
Abstract

Independent component analysis (ICA) can be solved in two steps: whitening fol-
lowed by orthogonal rotation. Thus ICA can be tackled by an optimization on the
manifold of orthogonal matrices. Recently researchers have investigated the use of
manifolds and Lie group methods for ICA and other signal processing tasks, includ-
ing the Stiefel and the Grassmann manifolds. The aim of this paper is to introduce a
new class of manifold: the generalized flag manifold. The generalized flag manifold is
a set of orthogonal subspaces and includes the Stiefel and the Grassmann manifolds
as special cases. This new manifold naturally arises when we relax the condition
of ICA and consider subspace ICA. Subspace ICA assumes the source signal s is
decomposed into d-tuples where signals within a particular tuple are allowed to be
dependent on each other, while signals belonging to different tuples are statistically
independent. Then the manifold of candidate matrices is no longer just the Stiefel
manifold. The statistical dependence of signals within tuples gives the manifold an
additional symmetry, which makes it into the generalized flag manifold. Moreover,
the demixing matrix for complex ICA is a unitary matrix as ordinary ICA, and the
pair of the real and imaginary parts of each column vector of the unitary matrix
forms a 2-dimensional real subspace which is orthogonal to each other. Therefore
complex ICA can also be tackled by an optimization on this flag manifold. We ex-
tend the Riemannian optimization method to the flag manifold utilizing our previous
geodesic formula for the Stiefel manifold [1], and based on it propose a new learning
algorithm for complex and subspace ICA. Simulations validate the effectiveness of
our method. A part of this work was first presented in [2].

References:
[1] Y. Nishimori and S. Akaho, Learning Algorithms Utilizing Quasi-Geodesic

Flows on the Stiefel Manifold, Neurocomputing, 67, pp.106-135, 2005.

[2] Y. Nishimori, S. Akaho, and M D. Plumbley Riemannian Optimization
Method on the Flag Manifold for Independent Subspace Analysis, Proceedings of
6th International Conference ICA2006, pp.295-302, 2006.
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ENTROPIC INFERENCE FOR ASSIGNING
PROBABILITIES: SOME DIFFICULTIES IN

AXIOMATICS AND APPLICATIONS

Alberto Solana-Ortega, Vicente Solana

Instituto de Matematicas y Fisica Fundamental, CSIC, Spain
(e-mail: albsolana@imaff.cfmac.csic.es)

Abstract

The question how to assign probabilities is inescapable in order to develop a the-
ory of plausible inference, yet it is an extraordinarily difficult one. Among the most
attractive candidate procedures for this task we find entropic methods, character-
ized by the extremization of an entropy functional subject to probability constraints
representing available information. Notwithstanding several precedents in concrete
disciplines, the first proposal of an entropy method as a general scientific inference
procedure was due to Jaynes, in the form of the Principle of Maximum Entropy,
with extensions in the method of minimum relative entropy of Kullback, and other
generalized formulations.

Here we briefly review the different interpretations and uses of entropy meth-
ods. Likewise, we examine the various justifications that have been put forward
to support them, in particular the appealing attempts to axiomatically derive a
unique mathematical expression for entropy procedures in compliance with consis-
tency requirements. In addition to summarizing the state of the art of the rational
foundations for entropic inference, which remain controversial and open, we under-
line the major difficulties analysts encounter in practice when trying to apply these
methods. They are: the selection of an entropy functional, the choice of constraints
and the selection of reference measures. The latter issues, about which entropy for-
malisms remain silent, constitute more than just practical obstacles, and ultimately
manifest the incompleteness of inference theory.

In our opinion progress can only be attained with a change of perspective. We
propose a logical viewpoint of plausible inference, understood not merely as an op-
timization problem starting from given probability inputs, but as the representation
or encoding of the knowledge that basic evidences and other higher-order informa-
tion or assumptions provide about conjectures. More specifically, a novel generic
scheme for inference is presented, which considers two stages and three inference
levels.
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MAXENT PRINCIPLE FOR HANDLING UNCERTAINTY WITH

QUALITATIVE VALUES

Michele  Pappalardo

Department of Mechanical Engineering ,University of Salerno
Salerno, Italy

mpappalrdo@unisa.it

Abstract

A method for  handling data in the presence of  uncertainty with qualitative values is the theory of
Dempster-Shafer. The DS theory is a method for reasoning under uncertainty. The idea of upper and

lower theory, include the Bayesian probability as special case, and introduce  the belief function as

lower  probabilities  and  the plausibility  function  as  upper  probabilities.  Here  we  are  interested  in
applying this theory when the  numerical information required by Bayesian methods are not available.
The numerical measures in presence of uncertainty  may be assigned to a set of propositions  as well as

to a single proposition. The probabilities are apportioned to subsets and the mass  vi  can move over

each element. 

Let  the  finite  non  empty  set  ={x1 , . . xn}  be  the  frame  of

discernment which is the set of all the hypothesis. The basic probability is assigned in the range [0,1 ]
to the  2n subset of   consisting of a singleton or conjunction

of singleton of  n elements xi . The lower probability  P
¿
 A j   is defined as  

P
¿
 A j =∑A

j⊆¿A
i
m  A

j


¿
.

And the upper probability P¿ A j  is defined as 
P¿ A j =1−∑A

j⊆¿A
i
m  A

j


¿
.The m  Ai   values are the

independent  basic  values  of  probability  inferred  on  each  subset  Ai .  The  evidential  interval that

provides a lower and upper bound is  EI=[Bl M  , Pl M  ] . If m1  and m2  are the independent  basic

probabilities from the independent evidence, and  {A1 i}  and {A2 j}  the sets of focal points, then the

theorem of  Shafer gives the rule of combination. Let m1  and m2  two independent basic probabilities

from the independent evidence.
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1

Particle Filtering on Riemannian Manifolds
Hichem Snoussi and Ali Mohammad-Djafari

Particle filtering is an approximate Monte Carlo method implementing the Bayesian Sequential
Estimation. It consists in online estimating the a posteriori distribution of the system state given
a flow of observed data. The popularity of the particle filter method stems from its simplicity and
flexibility to deal with non linear/non Gaussian dynamical models. However, this method suffers from
the curse of dimensionality. In general, the system state lies in a constrained subspace which dimension
is much lower than the whole space dimension. In this contribution, we propose an implementation
of the particle filter with the constraint that the system state lies in a low dimensional Riemannian
manifold. The sequential Bayesian updating consists in drawing state samples while moving on the
manifold geodesics. We illustrate the effectiveness of the proposed solution on synthetic examples and
we show that it compares favorably with classical unconstrained particle filter.
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EXTRINSIC GEOMETRICAL METHODS FOR
NEURAL BLIND DECONVOLUTION

Simone Fiori
Dipartimento di Elettronica, Intelligenza Artificiale e Telecomunicazioni,

Università Politecnica delle Marche, Italy
(e-mail: fiori@deit.univpm.it, http://www.deit.univpm.it/fiori)

Abstract

The present contribution proposes a Riemannian-gradient-based and a projection-
based learning algorithms over a curved parameter space for single-neuron learning.
We consider the ‘blind deconvolution’ signal processing problem using a single neu-
ron model. The learning rule naturally arises as a via criterion-function minimiza-
tion over the unitary hyper-sphere. We consider the blind deconvolution perfor-
mances of the two algorithms as well as their computational burden and numerical
features.
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Why We Should Think of Quantum Probabilities as
Bayesian Probabilities

Carlton M. Caves
Department of Physics and Astronomy

1 University of New Mexico
Albuquerque, New Mexico 87131-0001, USA

(e-mail: caves@info.phys.unm.edu
http://info.phys.unm.edu/∼caves)

Abstract

In a realistic, deterministic world, it is easy to argue that all probabilities are subjec-
tive Bayesian, i.e., measures of degree of belief. It’s so easy, in fact, that the primary
refuge for objective interpretations of probability lies in the radically nondetermin-
istic world of quantum mechanics. The objectivist asks, “How can probabilities
that are prescribed by physical law be anything but objective?” In this talk I
will argue nonetheless that quantum probabilities, even those associated with pure
quantum states, are best thought of as being subjective Bayesian probabilities. The
viewpoint that emerges from pursuing this line of argument is called the Bayesian
interpretation of quantum mechanics.

I will review the major arguments for viewing quantum probabilities as subjec-
tive, coming from the indistinguishability of quantum states, the apparent nonlo-
cality of entanglement, and the nonuniqueness of ensemble decompositions of mixed
states. I will discuss how the quantum de Finetti representation theorem provides a
tool for banishing the notion of an unknown quantum state—and a practical tool in
quantum cryptography. Finally, I will present an argument, based on the notion of
inside information, which clarifies why it seems that the outcomes of measurements
on a system in a pure quantum state are more random than a classical random
process.

I will conclude with a summary of the Bayesian interpretation of quantum me-
chanics, including my view of what is objective in a quantum description of the
physical world.

Key Words: Quantum probabilities, Bayesian probabilities, Bayesian interpretation
of quantum mechanics
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INTRODUCTION TO QUANTUM COMPUTATION

Carlton M. Caves
Department of Physics and Astronomy

1 University of New Mexico
Albuquerque, New Mexico 87131-0001, USA

(e-mail: caves@info.phys.unm.edu
http://info.phys.unm.edu/∼caves)

Abstract

Quantum computers are believed to perform some computations, such as factor-
ing large composite numbers, exponentially faster than classical computers. In this
talk I will introduce the concepts of quantum computation. Topics to be discussed
include how qubits supplant bits, quantum gates and circuits, simple quantum algo-
rithms, quantum error correction, and the requirements for physical implementation
of a quantum computer.

Key Words: Quantum computation, qubit, quantum circuit, quantum error cor-
rection
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THE PARAMETER-BASED FISHER

INFORMATION OF RAKHMANOV-BORN

DENSITY OF ORTHOGONAL POLYNOMIALS

AND QUANTUM SYSTEMS

B. Olmos1;2, J.S. Dehesa1;2, R.J. Y�a~nez1;3

(1) Instituto Carlos I de F��sica Te�orica y Computacional,
Universidad de Granada, 18071-Granada, Spain

(2) Departamento de F��sica Moderna,
Universidad de Granada, 18071-Granada, Spain
(3) Departamento de Matem�atica Aplicada,

Universidad de Granada, 18071-Granada, Spain
(e-mail: beaos@correo.ugr.es)

Abstract

The ground and excited states of physical systems are described by means of the
Born quantum-mechanical probability density �(x j �), which for single-particle
systems is equal to the squared wavefunction of the states. Often the physical
wavefunctions are given by means of known special functions of the mathematical
physics and applied mathematics, and particularly the orthogonal hypergeometric
polynomials depending on the parameter �. Then, the physical Born probability
density reduces to the so-called Rakhmanov probability density of the orthogonal
polynomials. Here, we calculate the explicit expression for the Fisher information
with respect to the parameter � (not necessarily of locality character) for all the
classical orthogonal polynomials in a closed and explicit form. Applications to
various speci�c quantum systems will be described in detail.
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[1] J.S. Dehesa, B. Olmos and R.J. Y�a~nez, Parameter-based Fisher's information

of orthogonal polynomials, J. Comp. Appl. Math., Preprint (2006)
[2] J.S. Dehesa, S. L�opez-Rosa, B. Olmos and R.J. Y�a~nez, The Fisher infor-

mation of D-dimensional hydrogenic systems in position and momentum spaces, J.
Mathematical Physics, (2006). Accepted

26-th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering



MaxEnt 2006 — CNRS, Paris, France, July 8-13, 2006 191 / 205

26-th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering



MaxEnt 2006 — CNRS, Paris, France, July 8-13, 2006 192 / 205

Spreading properties of extreme entropy distributions

S. López-Rosa1,2, J. C. Angulo1,2, J. S. Dehesa1,2

(1) Instituto Carlos I de F́ısica Teórica y Computacional,
Universidad de Granada, 18071-Granada, Spain

(2) Departamento F́ısica Moderna,
Universidad de Granada, 18071-Granada, Spain

(e-mail: slopez@ugr.es)

Abstract

The extremization of the information-theoretic measures which describe the spread-
ing of the physical states of natural systems gives rise to their fundamental wave
equation and/or conservation laws. This is the case not only for the Shannon entropy
[1] but also for the Fisher information [2] and the Tsallis entropy [3]. The associated
extremun entropy distribution are often known for some given constraints. Here, we
carry out a relative comparation of the spreading properties of these distributions
for a given similar set of constraints. Some specific applications will be discussed in
detail.

References:
[1] See e.g. N. Wu, The Maximum Entropy Method, Edit. Springer-Verlag

(1997)

[2] B. R. Frieden, Physics from Fisher Information, Edit. Cambridge University
Press (1998)

[3] J. P. Boon and C. Tsallis (edit.), Nonextensive Statistical Mechanics, Euro-
physics News 36 (2005)
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COMPARING CLASSIC, BAYES AND

PARAMETRIC EMPIRICAL BAYES RISKS

A. Mohammadpour1,2, and A. Mohammad-Djafari2

(1) Amirkabir University of Technology, Tehran Polytechnic, Iran

(2) L2S, CNRS Supélec Univ. Paris-sud, Gif-sur-Yvette, France

The assumptions on the structure of data or modelling data is a basic problem in the
statistical decision making. In this paper we compare the estimator’s risks in the different
frameworks, with respect to false assumption(s) on the structure of data. More precisely,
we compare the robustness of classic, Bayes and parametric empirical Bayes estimators
with respect to the prior choice.

Consider independent sample (X1, θ1), . . . , (Xn, θn) of (X, θ), where Xi|θi has probability
density function (pdf) f(xi|θi) and consider the following cases:

1. In the classical statistics, the prior π(θi) is a dirac function, centered on the unknown
value θ. That is, X1, . . . , Xn are independent and identically distributed random
variables with pdf f(xi|θ).

2. In the Bayesian case, the prior pdf, π(θ) is no more a degenerate dirac function but
is assumed to be perfectly known. In this case, we have only a random parameter
θ, i.e. θ = θ1 = . . . = θn, and so the sample (X1, θ), . . . , (Xn, θ) is not independent
and as a result the marginal distributions of Xis are not independent. However,
conditional on θ, Xis are independent and have a common pdf f(xi|θ).

3. In the parametric empirical Bayes framework, θis have pdf π(θi|τ) with the hyper-
parameter τ . Conditional on θi, Xi has a pdf f(xi|θi). The common marginal pdf
of each Xi is

m(xi|τ) =

∫
∞

−∞

f(xi|θi) π(θi|τ) dθi,

and X1, . . . , Xn are independent.

In this paper, we compare the robustness of estimators in the above frameworks with
respect to the false model on data by a Monte Carlo study.

Key Words: Calssic, Bayes and empirical Bayes estimators.
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Maximum Entropy and Bayesian inference:

Where do we stand and where do we go?

Ali Mohammad-Djafari

Laboratoire des signaux et systmes(L2S),
UMR 8506 du CNRS-Supélec-Univ. Paris-sud,

Plateau de Moulon, 91192 Gif-sur-Yvette, France

In this tutorial talk, I will first review the main notions of Uncertainty, Random variable,
Probabilty distribution, Information and Entropy. Then, we will consider the following
main questions in any inference method:
1) Assigning a (prior) probability law to a quantity to represent our knowledge about it,
2) Updating the probability laws when there is new piece of information, and
3) Extracting quantitative estimates from a (posterior) probabilty law

For the first, I will mainly present the Maximum Entropy Principle (MEP).

For the second, we have two tools:
1) Maximising the relative entropy or equivalently minimizing the Kullbak-Leibler dis-
crepency measure, and
2) The Bayes rule.
We will precise the appropriate situations to use them as well as their possible links.

For the third problem, we will see that, even if it can be handeled through the decision
theory, the choice of an utility function may depend on the two previous tools used to
arrive at that posterior probability.

Finally, these points will be more illustrated through examples of inference methods for
some inverse problems such as image restoration or blind sources separation.

Key Words: Uncertainty, Probabilty distribution, Information and Entropy, Maxi-

mum Entropy Principle, Bayesian inference, Decision theory
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Information theory based inference in the

Bayesian context: applications for semantic image

coding

Mihai Datcu
German Aerospace Centre (DLR) and GET, Telecom Paris

D-82234 Oberfaffenhaffen

Abstract

Traditionally Information Theory focused to applications in communi-
cations, it refers mainly to coding, transmission, or compression of signals.
However, implicitly, from its very beginning, information theory closely
related to statistics and machine learning. Thus, many other fields like
stochastic inference, estimation and decision theory, optimisation, com-
munication or knowledge representation benefit from basic results from
information theory. The goal of the tutorial is to overview new applica-
tions and new developments in information theory relevant to inference,
as well as general methods for information processing and understanding.

The topics envisaged are: applications and extensions of Rate-Distortion
theory, the methods of Information Bottleneck, The links to Bayesian,
MDL and related methods, information and/or complexity based estima-
tion, and inference.

The lecture will focus on specific methods for: image understanding,
image semantic coding, image indexing and information mining. Propos-
ing methods to distinguish, signs and symbols and understand signifi-
cance.

The possible applications are search engines in large satellite image
archives, picture archiving and communication systems (PACS) for use in
medical science, or multimedia systems.

1

1
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GraphMaxEnt

Arthur Ramer

School of Computer Science and Engineering
University of New South Wales

Sydney 2032, Australia

Abstract. Assume a undirected graphG on a finite domainX and a probability distributionP on
X . Graph entropy, defined in terms of the vertex packing polytope, is recast as

H(G,P ) = min
R
−

∑
pi logPl(R)(xi),

where plausibilityPl(R) is defined wrt probability distributionR on the stable setsY (independent
subsets ofG)

Pl(R)(x) =
∑

Y :x∈Y

R(Y ).

The plausibility which obtains from the minimisingR is called theplausibility wrt P onX

PlP (x) = Pl(R)(x), R = argminH(G,P ).

It serves to define thegraph information distance

D(G,Q‖P ) =
∑

qi log
PlQ(xi)

PlP (xi)

for two distributionsQ andP onX , given a (fixed) graph structureG. It is straightforward to offer
a similar definition wrt the change ofG, though useful results require some restrictions on that
change.

One verifies the usual properties of additivity and subadditivity wrt weak products of the support-
ing graphs. The method of GraphMaxEnt can be formulated accordingly. It is postulated it admits
an axiomatisation akin to that for MaxEnt.

Applied to probability kinematics, it permits resolving several problems arising from the AGM
belief revision. One obtains

• imaging (‘nonproportional conditioning’) as minimisation of graph information distance
• Jeffrey-like imaging
• inverse imaging

Applied to trust updating, based on reported experiences, one obtains

• recognition of repeated reports
• recognition of dependent reports

Several further directions are being pursued. On the computational side

• defining DigraphEnt - entropy over directed graphs, or, at least, DAG’s
• constructing continuous domain analogs toH(G,P ) andD(G,Q‖P )

• use of entropy generating functions

On the foundational side, the main question is physical interpretation of graph entropy. It is
hoped that a ‘virtual reality’ can be produced, one that assigns a statistical mechanical meaning to
probability kinematics on graph structures.

Key Words: Graph entropy, probability kinematics, AGM model, belief revision, inverse
conditioning.
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