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Abstract. With the growing importance of model-based signal analysismethods, the dependence
of their performance on the choice of the models needs to be addressed. Bayesian theory incor-
porates model selection in a natural and direct way: we applyit to the space-variant choice of the
best model in a given reference class in the framework of parameter estimation from complex
data. In particular, we introduce an algorithm for image information extraction that is based on
a two-level model, it estimates local texture Gauss-MarkovRandom Field (GMRF) parameters
and local GMRF model order for incomplete data. Model selection is based on an approximate
numerical computation of the evidence integral. Results are presented on Synthetic Aperture Radar
(SAR) images.
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INTRODUCTION

Image modeling and information extraction

Model based filtering and information extraction belong to the literature of image
processing since a number of years. The seminal works by Besag [2][4] were instru-
mental in introducing the ideas of stochastic Markov modeling properties to the field of
image processing. Geman and Geman’s article [7] introducedthe techniques of Gibbs
modelling and sampling to the field. Their ideas were appliedin providing solutions
to a number of problems from noisy image data filtering [3] to modeling feedback in
human-computer interaction studies [14]. Bayesian analysis is often characterized by
the fundamental role played in it by a priori distributions.The usage of subjective ones
has often been the ground for objections and controversies.Jeffreys [9] and Jaynes [6]
layed the ground for the development of techniques that can be applied to generate objec-
tive a priori descriptions starting from a set of objective constraints to the problem and
from the principle of Maximum Entropy. When a whole class of apriori descriptions
of the phenomenon under analysis is available instead, a principled choice of the most
probable model according to the data can be made by the secondlevel of Bayesian in-
ference, by selecting the one that maximizes a second level Maximum A Posteriori esti-
mation criterion [5]. A number of the principles and techniques of hierarchical Bayesian



modelling and two-level Bayesian inference for the modelling and estimation of noisy,
non-stationary 2D signals are summarized in [11] and [12]. These works introduce the
general problem of estimation theory in a Bayesian framework centering on the proper-
ties of 2D Markov random fields and their role in estimation. The focus of [13] centers
instead on the extraction of reliable estimates of the parameters of these models from
noisy, non-stationary observations in a two-levels Bayesian modelling approach. Gauss-
Markov random fields are used to describe textured clean backscatter images corrupted
by noise. The described system performs an estimation of thetexture parameters of the
clean image. The order of the model that is used as a priori description of the data is not
an object of the estimation, though, and is considered a fixedinput parameter instead.

HIERARCHICAL BAYESIAN MODELLING AND INFERENCE

Bayesian inference and MAP estimation

In Bayesian probability theory, logical links are expressed by means of conditional
probability distributions

p(y|x) =
p(x,y)

p(x)
. (1)

It expresses the degree of belief that an eventy takes place given the occurrence of an
eventx. An immediate consequence of the definition of conditional probability is the
so-called Bayes’ law

p(y|x) =
p(x|y)p(y)

p(x)
, (2)

which enables the reversal of probabilistic links and threfore it allows a direct model
based inference. The law can be seen as a rule for updating an existing description, the
Priorp(y), of a phenomenony, based on new information-new data or a new description
of the phenomenonx.
The direct link from the old to the new description is modelled by the likelihoodp(x|y).
Furthermore, the evidence normalization term,p(x), describes the distribution of the
data and it can be computed by marginalization:

p(x) =

∫

p(x|y)p(y)dy. (3)

The posterior description of phenomenony is often summarized in terms of the position
of its maximum, by means of the Maximum a Posteriori (MAP) estimator

ŷMAP = argmax
y

p(y|x). (4)

We observe that, in classical estimation theory, using a cost function is nothing else but
describing a type of Prior information. The expression for the posterior encapsulates



the deterministic Prior knowledge represented by the forward model. In addition, the
knowledge about the observation noise and the a priori information about the desired
parameter are also included. We conclude that MAP is a complete frame for model-based
approaches in information extraction. This can be demonstrated [15] to be equivalent to
a Minimum Description Length (MDL) estimate obtained by considering that the best
model of a phenomenon is the one that produces the most compact encoding of it. A very
similar approach, also considering two terms, a data one requiring the maximization of
a likelihood and a penalty term considering the complexity of the model, is the Akaike
Information Criterion (AIC) [8].

Hierarchical models

As noted by O’Hagan in [1], thep(y|x) posterior statistical model andp(y) Prior
model together form an ordered structure in which the distribution of the datax is written
conditionally on parametery asp(x|y). The Prior distribution ofy can be conditioned by
an hyper-parameterz asp(y|z) and completed by the distribution ofz, p(z). Since we
can go further and write the conditionally distribution ofz on anhyper-hyper parameter
t as p(z|t), and we can continue this process as long as necessary, it is generated
a hierarchical model. The distribution of the parameter at any level of the hierarchy
depends, by conditioning, on the parameter at lower level and it is independent from the
parameters at all levels below it. For instance, if we model the distribution ofy in terms
of p(y|z) andp(z), the likelihoodp(x|y) will be formally the distribution ofx giveny
andz. If we write p(x|y), it means that if we knowy then knowingz will not add any
information aboutx. This is reasonable becausez has been introduced only as a way of
formulatingp(y). The reason for making this interpretation ofp(x|y) is that otherwise
the distributions ofp(x|y), p(y|z) andp(z) together do not completely specify the joint
distribution ofx, y andz. Thus, this extra assumption allows us to write:

p(x,y,z) = p(x|y)p(y|z)p(z). (5)

A hierarchical model specifies always the full joint distribution of all quantities in the
previous way.

Principle of Inference

We consider that each modelHi has a vector of parametersθ. A model is defined
by its functional form and two probability distributions: the Prior distributionp(θ|Hi)
which states what values the model’s parameters might plausibly take; and the prediction
p(D|θ;Hi) that the model makes about the dataD when its parameterθ has a particular
value. Note that models with the same parameterisation but different Prior over the
parameters are defined as different models. At the first levelof inference, we assume
that one modelHi is true, and we infer the value of the parameterθ given the dataD.



Using Bayes’ rule in eq. 2, the posterior probability of the parametersθ is:

p(θ|D;Hi) =
p(D|θ;Hi)p(θ|Hi)

p(D|Hi)
. (6)

The normalization constantp(D|Hi) is commonly ignored, since it is irrelevant to the
first level of inference, i.e., the estimation ofθ. It is important in the second level of
inference, and we name it the evidence forHi .

Occam razor and Occam factor

As noted by [5], model comparison is a difficult task because it is not possible simply
to choose the model that fits the data best since more complex models can always
fit the data better. Then the maximum likelihood model choiceleads us inevitably
to implausible over-parameterized models which generalize poorly.Occam’s razor is
the principle that states that unnecessarily complex models should not be preferred
to simpler ones. Since Bayesian method automatically and quantitatively embodies
Occam’s razor [16][9], without the introduction of any penalty terms, complex models
are automatically self-penalized under Bayes’ rule.
This is useful at the second level of inference where we wish to infer which model is
most plausible given the data. The posterior probability ofthe model is:

p(Hi|D) ∝ p(D|Hi)p(Hi), (7)

where the data-dependent termp(D|Hi) is the evidence forHi. It appears as the normal-
izing constant in eq. 6. The second term,p(Hi), is asubjective Prior over the hypothesis
space. It is kept constant when there is no reason to assign strongly differing priorp(Hi)
to the alternative models. In order to assign a preference toalternative modelsHi, the
evidence has to be evaluated, since it embodies theOccam’s razor as shown below. The
evaluation of the marginalization integral of eq. 3

p(D|Hi) =

∫

p(D|θ,Hi)p(θ|Hi)dθ (8)

can be conducted by approximating the posterior as a Gaussian around its MAP peak,
using Laplace’s method:

p(D|Hi) ≈ p(D|θ̂MAP,Hi) ·p(θ̂MAP|Hi)det−
1

2 (A/2π) (9)

where the HessianA = ∇∇ logp(θ|D;Hi) appears in the last two terms which account
for theOccam factor:

Ω ≡ p(θ̂MAP|Hi)det−
1

2 (A/2π) < 1. (10)

It penalizesHi for depending on the parameterθ. Thus, the evidence is obtained by
multiplying the best fit likelihood by the Occam factor, which favors in the set of models
the less complicated ones. The maximization of the evidenceis therefore regarded as a
criterion for the choice of a suitable model to explain a given dataset.



FIGURE 1. Tile of 500x500 pixels from E-SAR SLC image of Oberpfaffenhofen, Germany. On the
left, the original image which shows strong scatterers froma large metallic structure (range resolution
1.99 m, azimuth resolution 0.72 m). On the right, the evidence of the image for the GMRF model: it is
possible to distinguish three main areas coded by black, grey and white.

IMAGE MODELS

We investigate the analysis of image data acquired by coherent systems, such as echogra-
phy, sonar, SAR and computer tomography. We consider the full information contained
in both amplitude and phase instead of consider only the description in terms of the local
image intensities. This because the intensity images are affected by coherent superpo-
sition of many scatterers responses which populate the resolution cell. It appears as a
well-known kind of strong multiplicative noise calledspeckle [10], which is not visible
in the fully description given by amplitude and phase. The Prior model we consider for
our image data is the Gauss-Markov Random Field (GMRF) [11][12]:

p(Xs|Xr, r ∈N ,σ,θ) =
1√

2πσ2
exp

[

− (Xs−
∑

r∈N
θrr

Xs+r)
2

2σ2

]

(11)

specified byσ and by the parameter vectorθ = (θr0
, . . . θrm

) defined on the neighbor-
hood of cliquesN centered on the generic pixelXs such that the scalar parameters are
symmetric around the central element. The main strength of the Gauss-Markov model
lies in the ability to model structure in a wide set of locallystationary textured images
while still allowing analytical tractability. The data model we consider is adapted to
model real and imaginary part of the complex signal, i.e. thetwo orthogonal channel
of the coherent system. The likelihood therefore employed in the Bayes equation is a



FIGURE 2. From the original image we selected three different areas: the first one from the large
metallic structure, the second from grass landscape and thethird from asphalt pavement. We expected to
have different model order in the space variant model selection. The areas appear different both in the real
image and in the evidence map.

space-variant circular complex Gaussian distribution with zero mean:

p(xi,yi) =
1

2πσ2
exp

[

− x2
i +y2

i

2σ2

]

(12)

wherexi andyi are the two orthogonal channel for the real and imaginary part of the
complex signal.

MODEL ORDER SELECTION

Different neighborhood sizes of the Gauss-Markov model canbe used for both in-
formation extraction from image data and for image filtering. The selection of the
most probable model order is performed within the Bayesian framework. We maximize
p(y|θ,Morder) as a function ofθ for a given model orderMorder , i.e. we perform a model
parameter estimation for different neighborhood sizes andwe choose the one with high-
est evidence. Since computing time increases with the number of models to test, we usu-
ally use a fixed model order for practical application. We remind that a full model order



FIGURE 3. Plot of the evidence vs model order for the first area (metallic structure). The local
maximum represents the best model explaining the space diversity of the data. It corresponds to model
order 6.

FIGURE 4. Plot of the evidence vs model order for the second area (grasslandscape). The evidence
does not show any local maxima. In this case a simple model hasto be preferred from a more complex
one, so a good choice is the model of order 4 for which the evidence starts to become stable.

selection independent of the estimateθ̂ requires an additional Bayesian layer becoming a
really complicated task. If a MAP estimation system is used for the space-variant model
order selection, the results in the evidence and model ordermap tend to discriminate the
different phenomena.



FIGURE 5. Plot of the evidence vs model order for the third area (asphalt pavement). As for the
previous area the evidence does not show any local maxima. Then even in this this case a simple model
has to be preferred from a more complex one. The model of order4 is a reasonable choice.

CASE STUDIES: MODEL ORDER SELECTION FOR
SPACE-VARIANT INFORMATION EXTRACTION FROM SAR

IMAGE

We give example of information extraction and model order selection on SAR imagery
which is a coherent imaging system that operates in the microwave domain, ranging
from 30 meters to sub-meter resolution. We consider an E-SARSLC image of Oberp-
faffenhofen, Germany (figure 1, left). In the image is clearly visible a large geometrical
metallic structure characterized by a set of strong scatterers. It is the skeleton of a build-
ing under construction surrounded by a grass land. Figure 1,on the right, shows the ev-
idence of the original image for GMRF model of fixed order. Since the computing time
increases with the complexity of the model, we selected fromthe original image three ar-
eas showing different textures. Figure 2, shows the selected areas: the first one from the
strong scatterers structure, the second from grass landscape and the third from asphalt
pavement. It is also possible to distinguish the three different areas in the evidence map
of figure 1, in which they are coded in grey-scales. We performed the model selection
computing the evidence for model order from one, for the firstarea up to eleven, for the
second area up to fifteen and for the third area up to seventeen. The results are presented
in figures 3, 4 and 5, where in the abscissa is the model order and in the ordinate is the
correspondent value of the log-evidence. Figure 3 shows thethe evidence behavior for
the first area. From a maximum value for the lowest model orderthe evidence decrease
and then it has a local maxima for model order 6, which is the selected model best ex-
plaining the data. The results in figures 4 and 5 for the secondand third areas do not
show any local maxima, then a reasonable choice for the data is model order 4 where
the evidence becomes stable.



CONCLUSIONS

For SAR SLC data the evidence shows a different behavior fromthe theoretical one. It
decreases increasing the model order complexity. This behavior is due to the noise on
the real data. Using the evidence is possible to select the optimal model order which is
order six for the metallic structure and model order four forgrass landscape and asphalt
pavement. Bayesian model selection by evidence maximization can be applied to the
space-variant choice of the best model in a given class. We introduced a model based
algorithm for texture parameter estimation and space-variant model order selection.
Example of feature extraction and classification on local model selection is given on
SLC HR SAR image.
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