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Abstract. With the growing importance of model-based signal analysi$hods, the dependence
of their performance on the choice of the models needs to Heeased. Bayesian theory incor-
porates model selection in a natural and direct way: we aippdythe space-variant choice of the
best model in a given reference class in the framework ofrpatar estimation from complex
data. In particular, we introduce an algorithm for imageoiniation extraction that is based on
a two-level model, it estimates local texture Gauss-MarkRandom Field (GMRF) parameters
and local GMRF model order for incomplete data. Model s@eacts based on an approximate
numerical computation of the evidence integral. Resukgaesented on Synthetic Aperture Radar
(SAR) images.
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INTRODUCTION

I mage modeling and infor mation extraction

Model based filtering and information extraction belongHhe titerature of image
processing since a number of years. The seminal works bygHe$d] were instru-
mental in introducing the ideas of stochastic Markov madgproperties to the field of
image processing. Geman and Geman'’s article [7] introdtioedechniques of Gibbs
modelling and sampling to the field. Their ideas were appiredroviding solutions
to a number of problems from noisy image data filtering [3] tod@ling feedback in
human-computer interaction studies [14]. Bayesian amalgsoften characterized by
the fundamental role played in it by a priori distributiofi$ie usage of subjective ones
has often been the ground for objections and controverddfseys [9] and Jaynes [6]
layed the ground for the development of techniques that eapplied to generate objec-
tive a priori descriptions starting from a set of objectiemstraints to the problem and
from the principle of Maximum Entropy. When a whole class gireori descriptions
of the phenomenon under analysis is available insteadnaipked choice of the most
probable model according to the data can be made by the sémaidf Bayesian in-
ference, by selecting the one that maximizes a second leaeirMum A Posteriori esti-
mation criterion [5]. A number of the principles and techreg of hierarchical Bayesian



modelling and two-level Bayesian inference for the modgliand estimation of noisy,
non-stationary 2D signals are summarized in [11] and [1BESE works introduce the
general problem of estimation theory in a Bayesian framkwentering on the proper-
ties of 2D Markov random fields and their role in estimatioheTocus of [13] centers
instead on the extraction of reliable estimates of the patara of these models from
noisy, non-stationary observations in a two-levels Bayesnodelling approach. Gauss-
Markov random fields are used to describe textured cleansbatter images corrupted
by noise. The described system performs an estimation détere parameters of the
clean image. The order of the model that is used as a priocrigien of the data is not
an object of the estimation, though, and is considered a fiyaat parameter instead.

HIERARCHICAL BAYESIAN MODELLING AND INFERENCE

Bayesian inference and MAP estimation

In Bayesian probability theory, logical links are expresbg means of conditional
probability distributions

p(z,

(2,9) )
p(z)

It expresses the degree of belief that an evetakes place given the occurrence of an

eventz. An immediate consequence of the definition of conditiorrabpbility is the
so-called Bayes’ law

p(ylz) =

p(zly)p(y) 7 @
p(x)

which enables the reversal of probabilistic links and thirefit allows a direct model
based inference. The law can be seen as a rule for updatingstimg description, the
Priorp(y), of a phenomenon, based on new information-new data or a new description
of the phenomenon.

The direct link from the old to the new description is mode ey the likelihoodp(x|y).
Furthermore, the evidence normalization tegfyy), describes the distribution of the
data and it can be computed by marginalization:

p(ylz) =

p(x) = / p(x|y)p(y)dy. (3)

The posterior description of phenomengpis often summarized in terms of the position
of its maximum, by means of the Maximum a Posteriori (MAP)reator

Uniap = aIg mgxp(yﬂ). (4)

We observe that, in classical estimation theory, using afoostion is nothing else but
describing a type of Prior information. The expression fog posterior encapsulates



the deterministic Prior knowledge represented by the faidwaodel. In addition, the
knowledge about the observation noise and the a priori imétion about the desired
parameter are also included. We conclude that MAP is a camfsame for model-based
approaches in information extraction. This can be dematest{15] to be equivalent to
a Minimum Description Length (MDL) estimate obtained by smiering that the best
model of a phenomenon is the one that produces the most coempanxling of it. A very
similar approach, also considering two terms, a data onginieg the maximization of
a likelihood and a penalty term considering the complexitthe model, is the Akaike
Information Criterion (AIC) [8].

Hier archical models

As noted by O’Hagan in [1], the(y|z) posterior statistical model aney) Prior
model together form an ordered structure in which the distion of the data is written
conditionally on parameterasp(z|y). The Prior distribution of) can be conditioned by
an hyper-parameter asp(y|z) and completed by the distribution ef p(z). Since we
can go further and write the conditionally distributionzobn anhyper-hyper parameter
t asp(z|t), and we can continue this process as long as necessary, énerajed
a hierarchical model. The distribution of the parameterrat lavel of the hierarchy
depends, by conditioning, on the parameter at lower lewltar independent from the
parameters at all levels below it. For instance, if we moldeldistribution ofy in terms
of p(y|z) andp(z), the likelihoodp(z|y) will be formally the distribution ofr giveny
andz. If we write p(z|y), it means that if we know then knowingz will not add any
information about:. This is reasonable becauséas been introduced only as a way of
formulatingp(y). The reason for making this interpretationygfc|y) is that otherwise
the distributions op(z|y), p(y|z) andp(z) together do not completely specify the joint
distribution ofz, y andz. Thus, this extra assumption allows us to write:

p(,y,2) = p(xly)p(y|2)p(=). ()

A hierarchical model specifies always the full joint distriion of all quantities in the
previous way.

Principle of Inference

We consider that each mod#l; has a vector of parametefis A model is defined
by its functional form and two probability distributionse Prior distributiorp(6|H;)
which states what values the model’'s parameters mightiplguake; and the prediction
p(D|0; H;) that the model makes about the datavhen its parametet has a particular
value. Note that models with the same parameterisation iffigreht Prior over the
parameters are defined as different models. At the first leveiference, we assume
that one modeH,; is true, and we infer the value of the parameieiven the dataD.



Using Bayes’ rule in eq. 2, the posterior probability of tleegmeterd is:

p(D|0; H;)p(0|H;)
p(D|H;)

p(0|D; H;) = (6)
The normalization constap{ D|H;) is commonly ignored, since it is irrelevant to the
first level of inference, i.e., the estimation @f It is important in the second level of
inference, and we name it the evidence fr.

Occam razor and Occam factor

As noted by [5], model comparison is a difficult task becatigenot possible simply
to choose the model that fits the data best since more compbelelsrcan always
fit the data better. Then the maximum likelihood model chdeads us inevitably
to implausible over-parameterized models which genexgdiaorly. Occam’s razor is
the principle that states that unnecessarily complex nsoslebuld not be preferred
to simpler ones. Since Bayesian method automatically arahtgatively embodies
Occam's razor [16][9], without the introduction of any penalty terms, cplex models
are automatically self-penalized under Bayes’ rule.

This is useful at the second level of inference where we wasimfer which model is
most plausible given the data. The posterior probabilitthefmodel is:

p(H;| D) oc p(D|H;)p(H;), (7)

where the data-dependent tepfiD| H;) is the evidence fofi,. It appears as the normal-
izing constant in eq. 6. The second tepti;), is asubjective Prior over the hypothesis
space. Itis kept constant when there is no reason to assamgbt differing priorp(H;)

to the alternative models. In order to assign a preferenedtéonative modeld7;, the
evidence has to be evaluated, since it embodie®ttan's razor as shown below. The
evaluation of the marginalization integral of eq. 3

p(D|H;) = / p(D16, H,)p(6) H,)d6 ®)

can be conducted by approximating the posterior as a Gauasdand its MAP peak,
using Laplace’s method:

p(D|H;) ~ p(D|Onp, Hy) - p(Orian| H;)det ™2 (A/27) (9)

where the Hessiad = VVlogp(0|D; H;) appears in the last two terms which account
for the Occam factor:

Q = p(Oyup | Hi)det 2 (A/27) < 1. (10)

It penalizesH; for depending on the parametér Thus, the evidence is obtained by
multiplying the best fit likelihood by the Occam factor, whitavors in the set of models

the less complicated ones. The maximization of the evidentteerefore regarded as a
criterion for the choice of a suitable model to explain a gidataset.



FIGURE 1. Tile of 500x500 pixels from E-SAR SLC image of Oberpfaffefdrg Germany. On the
left, the original image which shows strong scatterers febtarge metallic structure (range resolution
1.99 m, azimuth resolution 0.72 m). On the right, the evi@eofcthe image for the GMRF model: it is
possible to distinguish three main areas coded by black,ajrd white.

IMAGE MODELS

We investigate the analysis of image data acquired by cahgystems, such as echogra-
phy, sonar, SAR and computer tomography. We consider thenfatmation contained
in both amplitude and phase instead of consider only thegiéisn in terms of the local
image intensities. This because the intensity images &etafl by coherent superpo-
sition of many scatterers responses which populate théutemocell. It appears as a
well-known kind of strong multiplicative noise callegeckle [10], which is not visible

in the fully description given by amplitude and phase. Thermodel we consider for
our image data is the Gauss-Markov Random Field (GMRF) [21j[

1 Xs_ 9 Xs r 2
PX|X €N.0.60) = ——exp _( Zr;fz r Xoir) an

specified byr and by the parameter vectér= (6r,,...6r, ) defined on the neighbor-
hood of cliquesV centered on the generic pix&l, such that the scalar parameters are
symmetric around the central element. The main strengtheof3auss-Markov model
lies in the ability to model structure in a wide set of locadhationary textured images
while still allowing analytical tractability. The data meldwe consider is adapted to
model real and imaginary part of the complex signal, i.e.tti@ orthogonal channel
of the coherent system. The likelihood therefore employethé Bayes equation is a



FIGURE 2. From the original image we selected three different ardees:fitst one from the large
metallic structure, the second from grass landscape artthitidefrom asphalt pavement. We expected to
have different model order in the space variant model selecthe areas appear different both in the real
image and in the evidence map.

space-variant circular complex Gaussian distributiomwéro mean:

1 2?2 +y?
i Yi) = o ! 12
p(@i, yi) 2m2eXp{ 5,2 (12)

wherex; andy; are the two orthogonal channel for the real and imaginary qfaithe
complex signal.

MODEL ORDER SELECTION

Different neighborhood sizes of the Gauss-Markov model lsarused for both in-
formation extraction from image data and for image filterifitne selection of the
most probable model order is performed within the Bayesiaméwork. We maximize
p(y|0, M,rqer) @s afunction ob for a given model ordek/,, 4., , i.e. we perform a model
parameter estimation for different neighborhood sizesvemdhoose the one with high-
est evidence. Since computing time increases with the nuaflmeodels to test, we usu-
ally use a fixed model order for practical application. Weirahthat a full model order
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FIGURE 3. Plot of the evidence vs model order for the first area (metatructure). The local
maximum represents the best model explaining the spacesiivef the data. It corresponds to model
order 6.
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FIGURE 4. Plot of the evidence vs model order for the second area (¢madscape). The evidence
does not show any local maxima. In this case a simple modeichlas preferred from a more complex
one, so a good choice is the model of order 4 for which the exidstarts to become stable.

selection independent of the estimétequires an additional Bayesian layer becoming a
really complicated task. If a MAP estimation system is usedtie space-variant model
order selection, the results in the evidence and model ondertend to discriminate the
different phenomena.
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FIGURE 5. Plot of the evidence vs model order for the third area (asghalement). As for the
previous area the evidence does not show any local maxinem &Vven in this this case a simple model
has to be preferred from a more complex one. The model of dridea reasonable choice.

CASE STUDIES: MODEL ORDER SELECTION FOR
SPACE-VARIANT INFORMATION EXTRACTION FROM SAR
IMAGE

We give example of information extraction and model ordéect®n on SAR imagery
which is a coherent imaging system that operates in the mare domain, ranging
from 30 meters to sub-meter resolution. We consider an E-SAR image of Oberp-
faffenhofen, Germany (figure 1, left). In the image is clgatkible a large geometrical
metallic structure characterized by a set of strong s@#elt is the skeleton of a build-
ing under construction surrounded by a grass land. Figuva fhe right, shows the ev-
idence of the original image for GMRF model of fixed order.c®ithe computing time
increases with the complexity of the model, we selected ttooriginal image three ar-
eas showing different textures. Figure 2, shows the selerteas: the first one from the
strong scatterers structure, the second from grass lgnelscad the third from asphalt
pavement. It is also possible to distinguish the three diffeareas in the evidence map
of figure 1, in which they are coded in grey-scales. We peréatithe model selection
computing the evidence for model order from one, for the &éirst up to eleven, for the
second area up to fifteen and for the third area up to seventbenesults are presented
in figures 3, 4 and 5, where in the abscissa is the model ordeinathe ordinate is the
correspondent value of the log-evidence. Figure 3 showthievidence behavior for
the first area. From a maximum value for the lowest model dfueevidence decrease
and then it has a local maxima for model order 6, which is thecsed model best ex-
plaining the data. The results in figures 4 and 5 for the seemdthird areas do not
show any local maxima, then a reasonable choice for the dateodel order 4 where
the evidence becomes stable.



CONCLUSIONS

For SAR SLC data the evidence shows a different behavior ttatheoretical one. It
decreases increasing the model order complexity. Thisvi@h& due to the noise on
the real data. Using the evidence is possible to select thimalmodel order which is
order six for the metallic structure and model order fourgass landscape and asphalt
pavement. Bayesian model selection by evidence maxiroizaiin be applied to the
space-variant choice of the best model in a given class. Wednced a model based
algorithm for texture parameter estimation and spaceamainnodel order selection.
Example of feature extraction and classification on locatlehi@election is given on
SLC HR SAR image.
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