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Abstract. Derived from Information Theory, the Information Bottleneck principle enables to quan-
tify and qualify the information contained in a signal. Thispaper presents an algorithm based on the
Information Bottleneck principle to analyze Satellite Image Time Series (SITS). The method is com-
posed of a parameter estimation and a model selection. This method has been previously applied to
textural and radiometric parametric models and we propose here to extend it to take into account the
geometry information. Two approaches are presented. In thefirst approach, each image of the SITS
is segmented and the obtained regions are described by textural models. The Information Bottleneck
method is further used to characterize the image segments ofthe SITS a spatio-temporal way. In the
second method, the geometrical information is extracted from a temporal adjacency graph of the
spatial regions, and the radiometric and textural information is then extracted through the Informa-
tion Bottleneck method. This approach leads to a temporal characterization of the spatial regions of
the SITS.

Keywords: Unsupervised clustering, Satellite Image Time Series, Information Bottleneck, seg-
mentation.
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INTRODUCTION

Nowadays, huge quantities of satellite images are available due to the growing number of satel-
lite sensors. Moreover, a scene can be observed very often, thus enabling to create Satellite
Image Time-Series (SITS). These SITS contain highly detailed spatial information and some
information about the scene dynamic. They are therefore highly complex data containing nu-
merous and various spatio-temporal information. For example in a SITS, growth, maturation or
harvest of cultures can be observed. Also, many applications for Global Monitoring and Secu-
rity need extraction of relevant information regarding theevolution of scene structures or objects.
Specialized tools for information extraction in SITS have beenmade such as change detection,
monitoring or validation of physical models. However, these techniques are dedicated to specific
restricted applications. Consequently in order to exploitthe information contained in SITS, more
general analyzing methods are required. Some methods for lowresolution images and uniform
sampled have been studied in [1]. For high resolution and non-uniform time-sampled SITS, new
spatio-temporal analyzing algorithms are presented in [2,3]. They are based on a Bayesian hier-
archical model of information content. The concept was first introduced in [4, 5] for information
mining in remote sensing image archives. The method is based on the synergy of two represen-
tations of the information: objective and subjective. The objective information extraction is a
data driven approach, while the subjective part is user driven. In fact, the subjective represen-
tation is obtained from the objective representation by machine learning under the constraints
provided by a user. The advantage of such a concept is that it isfree of the application specificity
and adapted to the user’s query. Alternatively, this paper addresses the problem of representing



objectively the information by unsupervised clustering and model selection. In order to cluster
spatio-temporal events of SITS, we present a new method which clusters stochastic processes
without any supervision since the optimal number of clusters is computed. This method is based
on the Information Bottleneck (IB) principle which is an extension of the Rate-Distortion anal-
ysis. The paper is organized as follows. First, we present the theoretical concept for modelling
stochastic process. Then, we present the models which describe the spatio-temporal informa-
tional content of SITS. Finally, we give two experiments of the method on a SITS.

MODELLING STOCHASTIC PROCESS : THE CONCEPT

In the following sections, we give a theoretical substantiation for using the IB principle to model
a stochastic process. First, we remind the Minimax problem ofRedundancy-Coding introduced
by Davisson [6] and exploited by Rissanen [7] to derive the Minimum Description Length
criterion. Then, we point out the link between the IB principle and the Minimax problem. Finally,
we highlight the pertinence of the IB principle for modelling stochastic processes.

Redundancy coding

We are interested in finding a universal generative model of a stochastic processX1. As there
are an infinity of models, we restrict the research to a finite setof generative model{mi} which
define the conditional probabilities{p(X|mi)}. Thus, we look for a distributionq(X) whose
ideal code length is the shortest in mean for the worst model generating the stochastic process.
Then, we define the redundancy as the additional amount of information required to encode the
realizations ofX using a distributionq(X) instead ofp(X). The redundancyR(p,q) is given by
the Kullback-Leibler divergence between the two distributions:

R(p,q) = DKL(p,q) = ∑
x

p(x) log
p(x)
q(x)

(1)

Considering a set of generative models, the Minimax problemof Redundancy-Coding consists
in finding q(X) minimizing the largest redundancy which is the one associated with the worst
model:

R+ = min
q(X)

max
M∈{mi}

R(p(X|M ),q(X)) (2)

Rissanen embeds it within a wider problem by considering themean redundancy instead of
the worst case redundancy [8]. He introduces a probability distribution on the set of generative
models,w(M ) and the redundancy is:

R(w,q) = ∑
N ∈{mi}

w(N )R(p(X|N ),q(X)) = I(X,M ) (3)

It follows that the Minimax problem is reformulated as:

R+ = min
q(X)

max
w(M )

R(w(M ),q(X)) (4)

Solving this problem, we find first thatq(X) is a mixture of the generative models for any
distribution w(M ). The following formula is also obtained using the Bayes rule:q∗(x) =

1 Upper case letters are used to name random variables and lower case letters are used to name the
realizations.



∑N ∈{mi}w(N )p(x|N ). After minimizing over the distributionq(X), we want to maximize the
mutual informationI(X,M) over the distributionw(M ). The maximum obtained is the capac-
ity of the channelM → X. In conclusion, solving the Minimax Redundancy-Coding problem
corresponds to find a universal model for a stochastic processthat could be generated by any
models of the set.

The Information Bottleneck principle

In this section, we make the link between the IB principle andthe Minimax problem of
Redundancy-Coding. Tishby introduced the IB principle in [9]. We want to compress a signal
while preserving the relevant information contained in another random variable. LetX be the
signal,X̃ be the compressor andY be the variable containing the relevant information, thus the
IB principle is expressed as the following minimization.

min
p(x̃|x),p(y|x̃)

I(X̃,X)−β I(X̃,Y) (5)

Whereβ is a trade off parameter between the compression and the relevant information ex-
tracted. To make the link with redundancy coding, we consider that the relevant information is
contained in a random modelM taking its values in a set of models{mi}. Then, the previous
principle is expressed as:

min
p(x̃|x),p(N |x̃)

I(X̃,X)−β I(X̃,M ) (6)

In this context, we have access to the real distributionsp(X) andp(M |X). Hence, while we min-
imize the whole criterion, the mutual informationI(X̃,M ) is maximized over the distribution
p(N | x̃). We suppose thatp(X̃) is fixed during the maximization. Moreover, we suppose that
p(X̃) = ∑N ∈{mi}w(N )p(X̃|N ), using the Bayes rule. In consequence, it is equivalent to max-
imize over the distributionw(N ) = ∑x̃ p(N | x̃)p(x̃). Relating to the Minimax Redundancy-
Coding problem, we try to find the distribution of models whichcauses the worst redundancy
with p(X̃). However,p(X̃) is not fixed and is related to the minimization ofI(X̃,X) over the
distributionp(x̃ | x). In the Minimax problem, we look for a distributionq(X) whose ideal code
length is the shortest in mean for the worst model generatingthe data. In the IB case, on one
hand, we try to find a distributionp(X̃) whose ideal code length is the shortest by minimizing
I(X̃,X). On the other hand, we try to find the distributionw(N ) which gives the largest redun-
dancy with the distributionp(X̃). In a sense, we try to extract from the probabilityp(X) a new
distributionp(X̃) which would be a universal model for any stochastic process generated by any
of the models. However, unlike the Minimax problem, there isa trade off in the IB principle. For
example, asβ tends to zero,I(X̃,M ) is not maximized, resulting into a non-universal model
for the set. On the contrary, whenβ tends to∞, p(X̃) approaches a universal model. In fact the
previous principle enables to find the subpart of informationof X which is well modeled in mean
by the set of generative models in the sense of redundancy coding.

Classification of stochastic process

In this section, we highlight the use of the Information Bottleneck principle for classifying
stochastic processes. From the Minimax Redundancy-Coding problem, Rissanen derived the
Minimum Description Length (MDL) principle [7] in order to optimally model a stochastic pro-
cess. Generally, the MDL principle enables to select a modelamong a family of parametric
models in order to characterize stochastic processes by their corresponding estimated param-
eters. Then, a classification of the processes is possible through a clustering of the estimated



parameters [10]. Conversely, in our approach we try to find a subpart of information from the
stochastic process which is optimally modelled by a set of models while the processes are clus-
tered at the same time. In this last case, we extract the meaningful information related to the
models and used for clustering. Consequently, our method jointly clusters and selects models.
Actually, the model selection is embedded in the clusteringcomputation. However, the choice of
the trade-off parameterβ remains critical. This aspect will be discussed in a following section.
If we consider a stochastic processX, we can always compute a non-parametric estimation of
its distribution. Then, using the IB principle we try to extract the relevant information related to
the set of models thus finding the conditional probabilityp(x̃ | x). We interpret this probability
like a soft clustering. In a sense, we cluster the realizations ofX using the information related to
the set of models used.

Optimal trade-off parameter

As previously mentioned, the selection of the trade-off parameterβ is critical. We give
an heuristic criterion based on a Rate-Distortion analysis. Tishby describes the self-consistent
equations of the minimization problem of the equation (5) in[9]. As the equations are intricate,
an Expectation-Maximization like algorithm has been derived for the IB problem in [9, 11]. In
addition, we can define a Rate-Distortion function(R(β ),D(β )) as explained by Banerjee in
[11]. In fact, β influences the effective number of clusters found. As these two quantities are
linked, we give a criterion for the optimal choice ofβ . This criterion is based on the Rate-
Distortion curveD(R) which is a parametric function ofβ . The optimalβ̂ maximizes the
curvature ofD(R) (7). Consequently, more than selecting the trade-off parameter, we give a
criterion to estimate the optimal number of classes during the clustering process. The reason for
selecting such a criterion is described in [12]. In fact, we try to find the point where the decrease
in distortion does not provide significantly more information.

β̂ = argsup
β

|R′(β )D′′(β )−R′′(β )D′(β )|

(R′(β )2 +D′(β )2)
3
2

(7)

INFORMATIONAL CHARACTERIZATION OF
SPATIO-TEMPORAL PATTERNS

Gauss-Markov Random Field

Gauss-Markov Random Field (GMRF) have shown interesting properties for characterizing
textures in satellite images [10, 13]. In the following sections, we present a family of GMRF for
the analysis of SITS since these latter preserve spatial and temporal dependencies. Using GMRF,
these dependencies will be characterized. These parametricmodels are then used to represent the
relevant information extracted in the IB framework. In the first method (described in ) GMRF
are generalized to a 3-dimensional random field: We consider that the random variableX is
a random field defined on a grid. LetXs be the observations,s belonging to a 3-dimensional
lattice Ω andN the half of a symmetric 3-dimensional neighborhood (Figure 1(a)). So GMRF
are defined as follows:

Xs = ∑
r∈N

θr(Xs+r +Xs−r)+es (8)

wherees is a white Gaussian noise of varianceσe andθr is a scalar parameter associated to each
direction in the neighborhood. The equation (8) is expressedvectorially as follows orderingX



(a)

dt = 1order

1

2

3

dt = 0

r (−1, 0, 0) (−1,−1, 0) (1, 0, 1)
j(r) 1 2 3
r (0,−1, 0) (1,−1, 0) (0,−1, 1)

j(r) 4 5 6
r (0, 0, 1) (−1, 0, 1) (0, 1, 1)

j(r) 7 8 9

r (−1, 0, 0) (0,−1, 0) (0, 0, 1)
j(r) 1 2 3

r = (dx, dy, dt) and the index j(r)

the length of the index is 13
and is too long to be described here

dt = −1

(b)
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FIGURE 1. (a)Symmetric 3-d neighborhood. The pixelXs is black. Pixels corresponding toXs+r are
white and pixels corresponding toXs−r are grey.dt is the time dimension and(dx,dy) is the spatial
dimension.(b)Definition of the stochastic process derivedfrom the global spatial segmentation. At each
time, the regions stay the same. So we define a realization of the stochastic process as the concatenation
of the same region in time following images.

in a matrixG: X = GΘ+E. From this equation,̂Θ is estimated with the Least Minimum Square
method. From the estimated parameters, it is possible to approximate the model evidence (9). A
general formulation of the model evidence for linear systems is given in [14, 15]. Considering
N,Q being the respective dimension ofX,Θ, the model conditional likelihood is given by:

p(X|N ) ≈
π−N/2Γ(Q

2 )Γ(P−Q
2 )|GTG|−1/2

4Rδ Rσ (Θ̂TΘ̂)Q/2(XTX− (GΘ̂)T(GΘ̂))
P−Q

2

(9)

WhereRδ ,Rσ are some constants not calculable. As discussed in the section , we need to define a
set of models in order to apply the IB principle for stochastic process classification. We propose
to use a set of GMRF models of different orders. The Figure 1(a) showing a 3-dimensional
GMRF of order 1, 2 and 3 illustrates the fact that the order of the model is linked to the number
of parameters required.

CLUSTERING OF SPATIO-TEMPORAL STRUCTURES IN
SATELLITE IMAGE TIME SERIES

We present two experiments for clustering spatio-temporalstructures in SITS. Both experiments
use the IB based clustering method. First, we use a spatial reference segmentation (RS) to define
the stochastic process to be modeled. This assumption leads to a spatio-temporal characteri-
zation of the regions contained in the SITS. Secondly, we consider temporal chains of spatial
regions which are characterized by textural and radiometric parameters. Then, we consider the
corresponding parameters chains as a stochastic process. Thus, we obtain a temporal modelling
of the regions evolution.

Spatio-temporal modelling

First of all, we assume that a reference spatial segmentation(RS) of the SITS exists. This
assumption is motivated by the stability of the spatial regions over the time. The RS of the
series is obtained considering the SITS as a vectorial image, the components of the vector being
the different time samples. The Euclidean norm of its vectorial gradient is then computed and
used to initialize a segmentation algorithm. The RS is used asa mask on successive images
thus defining the realizations of a stochastic process as shown in the Figure 1(b). However
the spatial regions have different size, therefore we need to define a normalized stochastic



FIGURE 2. One the top the reference series is displayed.Below, two clusters are displayed in red in the
spatio-temporal domain. The first cluster highlights flat regions which do not vary in time. Finally, the
second cluster shows an intermediate evolution where only intensities vary in time which corresponds to
humidity of the ground.

process. For example, if we consider a GMRFX defined on a 3-dimensional field of sizen
where pixels are indexed form 1 ton, the probability ofX is approximated by the pseudo
likelihood ∏n

i=1 p(Xi | {Xi+r ,Xi−r ,θr , r ∈ N}). We consider a normalized stochastic processXs

which follows the distributionp(Xs) = p(X)
1
n . We normalize in the same way the evidence

of the model, which means that we computep(X | M )
1
n wheren is the size of the latticeΩ.

Consequently, the resulting evidence does not depend on thesize of the regions considered.
We made the experiment on series of 20 images 200× 200. The RS having approximatively
1000 regions, we obtain 20×1000 realizations of the stochastic process composed of 5 regions
following in time (there is an overlapping of the realizations in time). In order to compute the
Rate-Distortion curve, we start by applying the IB algorithm with a very smallβ and with a
random initialization. The result is a unique cluster and does not depend on the initialization.
Then, we apply several times the algorithm with exponentially growing trade-off parameters.
This is a simulated annealing like scheme as described for Expectation-Maximization algorithms
in [16]. We obtain 15 clusters after the Rate-Distortion analysis. We show in the Figure 2 the
results of two clusters drawn in the spatio-temporal domain.

Temporal modelling

The hypothesis of a common segmentation for all images is actually not completely verified.
Therefore, we propose to take into account the structural changes before the temporal features
characterization. Given the nature of the scene observed, we make the assumption that the
objects do not move but that their structure and geometry maychange. Consequently, the
segments of two images can be linked according to an intersection criterion. These structural
changes are represented in a spatio-temporal graph of the spatial regions. The nodes of the
graph correspond to the segments and a node is linked to nodesof the previous and next images
if their intersection is not empty. In order to be able to linktwo segments, the two following



FIGURE 3. One the top the reference series is displayed.Below, two clusters are displayed. The first
cluster highlights strong temporal changes such as harvest. The second cluster shows some stable regions
in time with few spectral variations.

segmentations have to be comparable, ie most structurally similar. In order to obtain those series
of segmentations, we use the structural criteria of segmentation comparison described in [17].
We define a dissimilarity measure inspired from the coding theory: a distance between two
partitionsP1 andP2 is defined as the sum of the lengths of the two messages:describingP1
knowingP2 anddescribingP2 knowingP1. We look for a maximum of these messages lengths
(l∗) which is the conditional entropy. We then obtain:D(P2,P1)= l∗(P2|P1)+ l∗(P1|P2)=

−∑P1
k=1 ∑P2

l=1
Ql∩Rk

N log2
Ql∩Rk
RkQl

whereE represents the number of elements inE, Rk (respectively

Ql ) is a region ofP1 (respectivelyP2), andN is the number of pixels in an image. This distance
enables to select the closest segmentation to a RS among a setof scale varying segmentations. In
order to obtain series of segmentations of the SITS, we use the iterative method described in [18].
The result is a series of segmentations which are the most similar (in the sense defined above) to
a RS under the constraint that each segmentation is also the most similar to the segmentations of
the previous and the following images. We then use the IB method in order to characterize the
evolution of the region’s mean intensities in time. We consider that the chains of spectral means
of regions form the realizations of the stochastic process.In addition, we use Markov models of
order one, two and three for representing the chains. Consequently, we characterize the evolution
of the spectral means in time, thus obtaining a temporal analysis of the spatial regions of the
temporal adjacency graph. We made the experiment on series of size 200× 200× 14 which
contain approximately 1000 chains of spectral means parameters. We then apply the previously
described IB algorithm and find 26 clusters at the trade-off parameter optimum. The Figure 3
shows the results of two clusters drawn in the signal domain.

CONCLUSION

We have presented a general method to compute a soft clustering of stochastic processes. This
method is unsupervised and enables to find the natural number of clusters in a set of the
realizations of a stochastic process. In addition, we have shown that the method embeds a model
selection during the clustering process as done in the Bayesian framework. We also presented



how to apply the method on SITS using Gauss-Markov Random Fieldsand segmentation
methods. In the first experiment, we clustered spatio-temporal structures and in the second,
we clustered the evolution of the structures. From the results, we can conclude that the method
achieves to retrieve meaningful information from SITS in bothcases and it is a suitable tool for
creating indexes of SITS. However, the method is complex and requires a lot of computation
power.
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