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Abstract. Derived from Information Theory, the Information Bottlekeprinciple enables to quan-
tify and qualify the information contained in a signal. Thiper presents an algorithm based on the
Information Bottleneck principle to analyze Satellite pealime Series (SITS). The method is com-
posed of a parameter estimation and a model selection. Tétisan has been previously applied to
textural and radiometric parametric models and we propeseto extend it to take into account the
geometry information. Two approaches are presented. Ifirfi@pproach, each image of the SITS
is segmented and the obtained regions are described byakextodels. The Information Bottleneck
method is further used to characterize the image segmetite 3iTS a spatio-temporal way. In the
second method, the geometrical information is extractethfa temporal adjacency graph of the
spatial regions, and the radiometric and textural inforomais then extracted through the Informa-
tion Bottleneck method. This approach leads to a tempoaiterization of the spatial regions of
the SITS.

Keywords: Unsupervised clustering, Satellite Image Time Seriexrination Bottleneck, seg-
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INTRODUCTION

Nowadays, huge quantities of satellite images are availdié to the growing number of satel-
lite sensors. Moreover, a scene can be observed very oftes,enabling to create Satellite
Image Time-Series (SITS). These SITS contain highly detailedadpatormation and some
information about the scene dynamic. They are thereforelhighmplex data containing nu-
merous and various spatio-temporal information. For exanmpa SITS, growth, maturation or
harvest of cultures can be observed. Also, many applicationGlobal Monitoring and Secu-
rity need extraction of relevant information regardingéhelution of scene structures or objects.
Specialized tools for information extraction in SITS have beee such as change detection,
monitoring or validation of physical models. However, théschniques are dedicated to specific
restricted applications. Consequently in order to explatinformation contained in SITS, more
general analyzing methods are required. Some methods farelesiution images and uniform
sampled have been studied in [1]. For high resolution andumiform time-sampled SITS, new
spatio-temporal analyzing algorithms are presented i8][Z hey are based on a Bayesian hier-
archical model of information content. The concept was firtsbatuced in [4, 5] for information
mining in remote sensing image archives. The method is bas#tecsynergy of two represen-
tations of the information: objective and subjective. Théeotive information extraction is a
data driven approach, while the subjective part is useredriin fact, the subjective represen-
tation is obtained from the objective representation byhireclearning under the constraints
provided by a user. The advantage of such a concept is thditeei®f the application specificity
and adapted to the user’s query. Alternatively, this papdresses the problem of representing



objectively the information by unsupervised clusteringl amodel selection. In order to cluster
spatio-temporal events of SITS, we present a new method whighecs stochastic processes
without any supervision since the optimal number of clisigcomputed. This method is based
on the Information Bottleneck (IB) principle which is an ersion of the Rate-Distortion anal-
ysis. The paper is organized as follows. First, we presentiberétical concept for modelling
stochastic process. Then, we present the models which begbe spatio-temporal informa-
tional content of SITS. Finally, we give two experiments of thehmd on a SITS.

MODELLING STOCHASTIC PROCESS : THE CONCEPT

In the following sections, we give a theoretical substdinefor using the IB principle to model

a stochastic process. First, we remind the Minimax probleRexfundancy-Coding introduced
by Davisson [6] and exploited by Rissanen [7] to derive thaiMum Description Length

criterion. Then, we point out the link between the IB prineiphd the Minimax problem. Finally,

we highlight the pertinence of the IB principle for modefjiatochastic processes.

Redundancy coding

We are interested in finding a universal generative model td@hastic procesk?!. As there
are an infinity of models, we restrict the research to a finit@sgenerative modelm } which
define the conditional probabilitiesp(X|m)}. Thus, we look for a distribution(X) whose
ideal code length is the shortest in mean for the worst moele¢ating the stochastic process.
Then, we define the redundancy as the additional amount ohiafiion required to encode the
realizations ofX using a distributiorg(X) instead ofp(X). The redundanciR(p, q) is given by
the Kullback-Leibler divergence between the two distribos:

X
R(p,q) =DkL(p,a) = ) p(X) IogM 1)
% q(x)
Considering a set of generative models, the Minimax prolé&Redundancy-Coding consists
in finding q(X) minimizing the largest redundancy which is the one assediatith the worst
model:
R™ =min max R(p(X|.#),q(X 2
min max R(P(X|.#),q(X)) (2
Rissanen embeds it within a wider problem by consideringntieen redundancy instead of
the worst case redundancy [8]. He introduces a probabilgyidution on the set of generative
modelsw(.#') and the redundancy is:

Rwag) = > WA)RPX|A),d(X)) =(X,.Z) 3)
A e{m}

It follows that the Minimax problem is reformulated as:

L
R = min maxR(w(.#),q(X)) (4)

Solving this problem, we find first thaj(X) is a mixture of the generative models for any
distribution w(.#). The following formula is also obtained using the Bayes oile) =

1 Upper case letters are used to name random variables and dase letters are used to name the
realizations.



> vefm)W(A)p(x|-4"). After minimizing over the distribution(X), we want to maximize the
mutual informationl (X, M) over the distributiorw(.#). The maximum obtained is the capac-
ity of the channel# — X. In conclusion, solving the Minimax Redundancy-Codinghbem
corresponds to find a universal model for a stochastic prabeséscould be generated by any
models of the set.

The Information Bottleneck principle

In this section, we make the link between the IB principle #mel Minimax problem of
Redundancy-Coding. Tishby introduced the IB principle9h We want to compress a signal
while preserving the relevant information contained intheo random variable. LeX be the
signal,X be the compressor antibe the variable containing the relevant information, thes t
IB principle is expressed as the following minimization.

min (X, X) = BI(X,Y) (5)
P(Xx),p(yIX)
Where( is a trade off parameter between the compression and theantlenformation ex-
tracted. To make the link with redundancy coding, we condidiat the relevant information is
contained in a random mode# taking its values in a set of mode{sn }. Then, the previous
principle is expressed as: B .
min  1(X,X)—BI(X
PR}, P(A[%) LX) =B, 4) ©
In this context, we have access to the real distributjuixy andp(.#|X). Hence, while we min-
imize the whole criterion, the mutual informatid(X,.#) is maximized over the distribution
p(./ | X). We suppose thai(X) is fixed during the maximization. Moreover, we suppose that
p(X) = > vefmiW(A) p(X|.#"), using the Bayes rule. In consequence, it is equivalent to ma
imize over the distributionv(.4") = Sz p(4#" | X)p(X). Relating to the Minimax Redundancy-
Coding problem, we try to find the distribution of models whizduses the worst redundancy
with p(X). However,p(X) is not fixed and is related to the minimization Ig, X) over the
distributionp(X | x). In the Minimax problem, we look for a distributiar{X) whose ideal code
length is the shortest in mean for the worst model generdliaglata. In the IB case, on one
hand, we try to find a distributiop(f() whose ideal code length is the shortest by minimizing
I(X,X). On the other hand, we try to find the distributiati.#") which gives the largest redun-
dancy with the distributionp(X). In a sense, we try to extract from the probabilityx) a new
distributionp(X) which would be a universal model for any stochastic procesemted by any
of the models. However, unlike the Minimax problem, thera isade off in the IB principle. For
example, a8 tends to zerol (X,.#) is not maximized, resulting into a non-universal model
for the set. On the contrary, wheghtends toe, p(X) approaches a universal model. In fact the
previous principle enables to find the subpart of informatibX which is well modeled in mean
by the set of generative models in the sense of redundandyg:od

Classification of stochastic process

In this section, we highlight the use of the Information Bateck principle for classifying
stochastic processes. From the Minimax Redundancy-Codioigigm, Rissanen derived the
Minimum Description Length (MDL) principle [7] in order to dptally model a stochastic pro-
cess. Generally, the MDL principle enables to select a madeing a family of parametric
models in order to characterize stochastic processes hycihreesponding estimated param-
eters. Then, a classification of the processes is possiblaghra clustering of the estimated



parameters [10]. Conversely, in our approach we try to findlgatt of information from the
stochastic process which is optimally modelled by a set ade®while the processes are clus-
tered at the same time. In this last case, we extract the mgfahinformation related to the
models and used for clustering. Consequently, our methiathjalusters and selects models.
Actually, the model selection is embedded in the clustecimgputation. However, the choice of
the trade-off parametg remains critical. This aspect will be discussed in a follayva@ction.

If we consider a stochastic proce$swe can always compute a non-parametric estimation of
its distribution. Then, using the IB principle we try to exdtshe relevant information related to
the set of models thus finding the conditional probabififf | x). We interpret this probability
like a soft clustering. In a sense, we cluster the realinataf X using the information related to
the set of models used.

Optimal trade-off parameter

As previously mentioned, the selection of the trade-offapzeterf is critical. We give
an heuristic criterion based on a Rate-Distortion analyBghby describes the self-consistent
equations of the minimization problem of the equation (9Pih As the equations are intricate,
an Expectation-Maximization like algorithm has been detif@ the IB problem in [9, 11]. In
addition, we can define a Rate-Distortion functid®(3),D(f8)) as explained by Banerjee in
[11]. In fact, B influences the effective number of clusters found. As theseduantities are
linked, we give a criterion for the optimal choice Bt This criterion is based on the Rate-
Distortion curveD(R) which is a parametric function g8. The optimal3 maximizes the
curvature ofD(R) (7). Consequently, more than selecting the trade-off patamwe give a
criterion to estimate the optimal number of classes dultiegctustering process. The reason for
selecting such a criterion is described in [12]. In fact, wed find the point where the decrease
in distortion does not provide significantly more informatio

. R(B)D"(B)—R'(B)D/(B)
B — argsup 4 @)
T RBPD (B

INFORMATIONAL CHARACTERIZATION OF
SPATIO-TEMPORAL PATTERNS

Gauss-Markov Random Field

Gauss-Markov Random Field (GMRF) have shown interestingeptigs for characterizing
textures in satellite images [10, 13]. In the following $&as, we present a family of GMRF for
the analysis of SITS since these latter preserve spatial amgbi@l dependencies. Using GMRF,
these dependencies will be characterized. These paramettiels are then used to represent the
relevant information extracted in the IB framework. In thatfimethod (described in ) GMRF
are generalized to a 3-dimensional random field: We conslagrthe random variablX is
a random field defined on a grid. L&t be the observations, belonging to a 3-dimensional
lattice Q andN the half of a symmetric 3-dimensional neighborhood (Figue)1 So GMRF
are defined as follows:

Xs = Zwer<xs+r+xs—r)+es (8)
re

wheree; is a white Gaussian noise of varianggand®; is a scalar parameter associated to each
direction in the neighborhood. The equation (8) is expressetbrially as follows ordering



order| dt=-1| dt=0 | dt=1 7 = (dz,dy, dt) and the index j(r)
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FIGURE 1. (a)Symmetric 3-d neighborhood. The pixglis black. Pixels corresponding ¥, are
white and pixels corresponding %, are grey.dt is the time dimension antdx dy) is the spatial
dimension.(b)Definition of the stochastic process deriveth the global spatial segmentation. At each
time, the regions stay the same. So we define a realizatidreaftochastic process as the concatenation
of the same region in time following images.

in a matrixG: X = GO + E. From this equatior® is estimated with the Least Minimum Square
method. From the estimated parameters, it is possible t@aippate the model evidence (9). A
general formulation of the model evidence for linear systésrgiven in [14, 15]. Considering
N, Q being the respective dimensionXf®, the model conditional likelihood is given by:

N2 ()M (BR)|GT Gl -Y/2
4RsR;(OTE)Q/2(XTX — (GO)T (GO)) 2°

p(X[A") ~ (9)

WhereRs, Ry are some constants not calculable. As discussed in thesegte need to define a
set of models in order to apply the IB principle for stochaptiocess classification. We propose
to use a set of GMRF models of different orders. The Figure l{ajverg a 3-dimensional
GMRF of order 1, 2 and 3 illustrates the fact that the ordehefrhodel is linked to the number
of parameters required.

CLUSTERING OF SPATIO-TEMPORAL STRUCTURES IN
SATELLITE IMAGE TIME SERIES

We present two experiments for clustering spatio-temggirattures in SITS. Both experiments
use the IB based clustering method. First, we use a spatbrafe segmentation (RS) to define
the stochastic process to be modeled. This assumption leaalspatio-temporal characteri-
zation of the regions contained in the SITS. Secondly, we congédeporal chains of spatial
regions which are characterized by textural and radiomparameters. Then, we consider the
corresponding parameters chains as a stochastic process.Wd obtain a temporal modelling
of the regions evolution.

Spatio-temporal modelling

First of all, we assume that a reference spatial segmenté®8ih of the SITS exists. This
assumption is motivated by the stability of the spatial @agiover the time. The RS of the
series is obtained considering the SITS as a vectorial imhgeamponents of the vector being
the different time samples. The Euclidean norm of its veckgriadient is then computed and
used to initialize a segmentation algorithm. The RS is used amsk on successive images
thus defining the realizations of a stochastic process asrslowhe Figure 1(b). However
the spatial regions have different size, therefore we needefine a normalized stochastic



FIGURE 2. One the top the reference series is displayed.Below, twsiersi are displayed in red in the
spatio-temporal domain. The first cluster highlights flatioes which do not vary in time. Finally, the

second cluster shows an intermediate evolution where atdgnsities vary in time which corresponds to
humidity of the ground.

process. For example, if we consider a GMRFefined on a 3-dimensional field of sire
where pixels are indexed form 1 tg the probability ofX is approximated by the pseudo
likelihood {1 p(Xi | {Xir, Xi—r, 6,1 € N}). We consider a normalized stochastic procéss

which follows the distributionp(Xs) = p(X)%. We normalize in the same way the evidence

of the model, which means that we compuieX | ///)% wheren is the size of the lattic®.
Consequently, the resulting evidence does not depend ogizheof the regions considered.
We made the experiment on series of 20 images>2Q00. The RS having approximatively
1000 regions, we obtain 201000 realizations of the stochastic process composed gfiére
following in time (there is an overlapping of the realizatsoin time). In order to compute the
Rate-Distortion curve, we start by applying the IB algarithvith a very small3 and with a
random initialization. The result is a unique cluster andsdeet depend on the initialization.
Then, we apply several times the algorithm with exponentigtbwing trade-off parameters.
This is a simulated annealing like scheme as described fordEgien-Maximization algorithms
in [16]. We obtain 15 clusters after the Rate-Distortionlgsia. We show in the Figure 2 the
results of two clusters drawn in the spatio-temporal domain

Temporal modelling

The hypothesis of a common segmentation for all images istygtuot completely verified.
Therefore, we propose to take into account the structuralggmbefore the temporal features
characterization. Given the nature of the scene observedmnake the assumption that the
objects do not move but that their structure and geometry ofe@nge. Consequently, the
segments of two images can be linked according to an intéosecriterion. These structural
changes are represented in a spatio-temporal graph of #imlspegions. The nodes of the
graph correspond to the segments and a node is linked to nbthes previous and next images
if their intersection is not empty. In order to be able to limlo segments, the two following



FIGURE 3. One the top the reference series is displayed.Below, twsters are displayed. The first
cluster highlights strong temporal changes such as hafMestsecond cluster shows some stable regions
in time with few spectral variations.

segmentations have to be comparable, ie most structuradilas In order to obtain those series
of segmentations, we use the structural criteria of segatientcomparison described in [17].
We define a dissimilarity measure inspired from the codingtytea distance between two
partitions &1 and &, is defined as the sum of the lengths of the two messdggsribing4?,
knowing%?, anddescribing%?; knowing#?;. We look for a maximum of these messages lengths
(") which is the conditional entropy. We then obtai %2, 771) = 1*(P22| 21) +1*( 1| F2) =

P < P2 DNZ D NHy = i ;
— S > i TN~ log, 70 whereE represents the number of element&|¥ (respectively

2)) is aregion of7; (respectively??,), andN is the number of pixels in an image. This distance
enables to select the closest segmentation to a RS amongfasate varying segmentations. In
order to obtain series of segmentations of the SITS, we usestiagivie method described in [18].
The result is a series of segmentations which are the modasifin the sense defined above) to
a RS under the constraint that each segmentation is alsodsiesimilar to the segmentations of
the previous and the following images. We then use the IB atkth order to characterize the
evolution of the region’s mean intensities in time. We cdasithat the chains of spectral means
of regions form the realizations of the stochastic prodesaddition, we use Markov models of
order one, two and three for representing the chains. Coesdlg, we characterize the evolution
of the spectral means in time, thus obtaining a temporalyaigabf the spatial regions of the
temporal adjacency graph. We made the experiment on sdriggen200x 200 x 14 which
contain approximately 1000 chains of spectral means paeamé\Ve then apply the previously
described IB algorithm and find 26 clusters at the trade-afépeter optimum. The Figure 3
shows the results of two clusters drawn in the signal domain.

CONCLUSION

We have presented a general method to compute a soft chgstarstochastic processes. This
method is unsupervised and enables to find the natural nunfbeusiers in a set of the

realizations of a stochastic process. In addition, we hhee/s that the method embeds a model
selection during the clustering process as done in the Bay&amework. We also presented




how to apply the method on SITS using Gauss-Markov Random Fabdssegmentation
methods. In the first experiment, we clustered spatio-tead®iructures and in the second,
we clustered the evolution of the structures. From the rgswit can conclude that the method
achieves to retrieve meaningful information from SITS in bedkes and it is a suitable tool for
creating indexes of SITS. However, the method is complex andinesya lot of computation
power.
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