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Abstract. We consider data fusion as the reconstruction of a single model from multiple data
sources. The model is to be inferred from a number of blurred and noisy observations, possibly
from different sensors under various conditions. It is all about recovering a compound object,
signal+uncertainties, that best relates to the observations and contains all the useful information
from the initial data set.

We wish to provide a flexible framework for bandlimited signal reconstruction from multiple
data. In this paper, we focus on a general approach involving forward modeling (prior model, data
acquisition) and Bayesian inference. The proposed method is valid for n-D objects (signals, images
or volumes) with multidimensional spatial elements. For the sake of clarity, both formalism and test
results will be shown in 1D for single band signals. The main originality lies in seeking an object
with a prescribed bandwidth, hence our choice of a B-Spline representation. This ensures an optimal
sampling in both signal and frequency spaces, and allows for a shift invariant processing.

The model resolution, the geometric distortions, the blur and the regularity of the sampling grid
can be arbitrary for each sensor. The method is designed to handle realistic Gauss+Poisson noise.

We obtained promising results in reconstructing a super-resolved signal from two blurred and
noisy shifted observations, using a Gaussian Markov chain as a prior. Practical applications are
under development within the SpaceFusion project. For instance, in astronomical imaging, we aim
at a sharp, well-sampled, noise-free and possibly super-resolved image. Virtual Observatories could
benefit from such a way to combine large numbers of multispectral images from various sources. In
planetary imaging or remote sensing, a 3D image formation model is needed; nevertheless, this can
be addressed within the same framework.
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1. INTRODUCTION

We can study multi-source data fusion from three different perspectives: data enhance-
ment, decision making and optimal data reduction. The first two define the most common
classification, as some seek to improve upon the data quality [16] through the simulta-
neous use of multiple observations, while others aim at making decisions [15] guided
by multiple, more or less compatible measurements. However, we place ourselves in a
different, third category, wishing to construct an object that reduces the dimensionality
of the data set while conserving the maximum amount of information. This implies (but
is not equivalent to) data enhancement, since the goal is to embed all measurements in
a single model, minimizing the information loss, the noise contribution and the redun-
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dancy. This should also help any subsequent decision making, as data analysis is greatly
simplified through the use of a single object instead of multiple, heterogeneous sources.

In this study, we focus on N-dimensional signals observed through multiple instru-
ments, and we aim at reconstructing such signals through a probabilistic framework,
with sampling theory, geometry and noise modeling as basic ingredients.

To avoid losing information, it is necessary to build a multivariate probability dis-
tribution as the fused object, since the observations are actually realizations of random
variables. Restricting to a signal-like, deterministic object would imply an obvious loss
not only of local uncertainties, but also of correlations between interacting variables in
the reconstructed signal. Indeed, initial uncertainties originating from the noise process
propagate through to the very final stage of the processing, and sources are redistributed
into the new object so that final variables become entangled. The uneven contributions
of the observations to each final variable, as well as the possible spatial dependence of
the noise, are strong evidence that model uncertainties are useful information that ought
to be retained during the fusion.

2. A BAYESIAN APPROACH TO DATA FUSION

2.1. Modeling uncertainty: Evidence vs. Bayesian theory

Uncertainty, as distinguished from imprecision, arises as a result of random process
modeling or when there is missing data, where the lack of information induces some
belief. What formalism is appropriate to treat evidence in the image fusion domain?
Two approaches can be considered right now: Bayesian theory [5] and Belief Function
theory [12] (a.k.a. Dempster-Shafer theory or theory of Evidence [6]).

The primary advantage of the Bayesian paradigm is that it is well developed, and
evidence is treated as a probability density function (pdf). By applying Bayes’ rule, we
know how to compute a posteriori knowledge based on the a priori knowledge and on
the conditional probability of the evidence.

As a fusion process combines the observations from different sources into a single
coherent perception of a scene, then the reduction of the uncertainties is expected; hence
observations could be treated as evidence and evidential reasoning could be used to
infer the original scene. The Evidence theory exhibits two main advantages: it explicitly
represents ignorance, and does not require a priori knowledge. Indeed, evidence is
represented as a belief function allowing any portion of the belief mass to be explicitly
assigned to ignorance; when evidence is acquired, belief replaces ignorance.

Nevertheless, no modeling of ignorance is explicitly needed within our data fusion
problem. Moreover, a priori knowledge is needed. In fact, the nature of our fusion
process, as a recursive method, makes us take advantage of prior information at each
update step. Besides, we always try to stay away from computationally intractable issues
while inferring evidence within the Bayesian framework. This situation could worsen
while distributing belief to the power set of hypothesis considered within the Belief
Function framework. The straightforward choice is then the Bayesian theory.



2.2. A generative model-based approach

From the Bayesian point of view [5], all variables (including parameters) are random
variables. We consider here the general case of real-valued variables. They are either
unknown or observed. Among all unknown variables, some of them are quantities
of interest (here, the single fused object we want to determine), others are nuisance
variables and they need to be integrated out. The likelihood term describes how the
observed data are formed given all other quantities. To fully specify the joint probability
density function (pdf) for all variables, priors are required. We could then summarize
the Bayesian treatment as the definition of a likelihood through the description of the
experimental setup, the specification of priors given all available knowledge, and the
marginalization [5, 2] to eliminate all unwanted variables.

Thus, the data fusion problem can be stated as the computation of the posterior
pdf of the unknown single object given all observations. If X denotes the object to
be reconstructed, and {Y } the set of observations, Bayes’ rule enables us to express
this posterior as P (X |{Y }) = P ({Y }|X)P (X)/P ({Y }) where P ({Y }|X) is the
likelihood, P (X) the prior, and the last term is referred to as evidence and does not
depend on X . Therefore the joint pdf and the posterior are proportional. Notice that all
unwanted variables are implicitly integrated out.

The model variables involved in this approach are usually linked to each other through
deterministic relations or, stochastically, through conditional probability densities. Thus,
building the likelihood function is not always an easy task. However, knowing the
hierarchy between variables (e.g. the sequence of physical processes leading from initial
parameter values to the final data set) helps constrain this function, and can be nicely
encoded in a graph structure, hence our resort to graphical models. Directed graphical
models or Bayesian networks [8] enable us to fully define a joint pdf for even complex
models: the joint is factorized into a product of conditional pdfs, represented by all nodes
with a set of converging arrows, and prior pdfs related to the remaining nodes.

We use a generative model to build the likelihood, rather than choosing popular or ad-
hoc functions; it is crucial to accurately understand how the data were generated (through
modeling each type of instrument used to produce each observation) in order to effec-
tively invert the observation process and reconstruct what was actually the origin of the
recorded set of measures. In this framework, we only try to introduce knowledge we
are certain of, for instance the experimental setup and some well-calibrated parameter
values. Precise statistical properties can be encoded in graph structures, such as the con-
ditional independence of observations given the model, or peculiar dependence patterns
within the model itself. Specifying the structure of the graph only specifies the depen-
dence between variables. Choosing the shape of the density functions strongly constrains
the problem and can sometimes bring more knowledge than intended, thus priors have to
be specified with great care. Whereas the functions involved in the likelihood are derived
from physics and are often well-known, the priors should be designed to only enforce
objective constraints, easy to check experimentally (such as image smoothness proper-
ties, or positivity) without being too informative regarding all that is unknown. To avoid
dealing with such issues, we will try to minimize the weight of the priors by minimizing
the number of parameters in the model to reconstruct, to ensure that there will (almost)
always be enough data points to determine each unknown variable accurately enough.



2.2.1. Bayesian networks for multiple observations

The formalism presented here is quite general and does not only apply to N-
dimensional signals. Let us call observation any group of recordings of the same
physical phenomenon taken through a sensor, characterized by a set of parameters
related to the experimental setup (e.g. in imaging, the camera parameters including
pose, blur, sensor geometry...). An observed signal Y n is generated given an object
model X , its resolution (or density) ε that acts as a spatial scaling parameter, and of
course the observation parameters Θn for this particular sensor indexed by n. Now we
can also constrain the image model itself by conditioning it upon a set of parameters ω.
Hence the graphical model of Fig. 1. Following the related formalism, the joint pdf is
then given by the product:

P (X,{Y n},{Θn},ω,ε) = P (ε)P (ω)P (X |ω)
∏
n

P (Θn)P (Y n |X,θn, ε) (1)

As the goal is to get the posterior marginal, integrating with respect to Θ, ω and ε is
required (this is also called marginalization):

P (X |{Y n})∝
∫

P (ε)P (ω)P (X |ω)
∏
n

P (Θn)P (Y n |X,Θn, ε)dΘn dωdε (2)
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FIGURE 1. The proposed directed graphical model explaining the formation of multiple observations
Y n from a single model X (governed by ω), given experimental setups Θn and a model density ε. Nodes
represent random variables (conditional pdf for converging arrows, prior pdf without incoming arrows).

2.2.2. A band-limited signal resampling scheme

We now need to precisely describe the generative model in terms of signal transfor-
mation, from an input X to each observation Y . We are making an important assumption
here: the signals we consider are band-limited since they are recorded using instruments
with limited bandwidth (e.g. finite-size optical systems in imaging) [7]. Indeed, there is
no point in trying to recover signals with arbitrary spectral content when performing data
fusion, as the goal is to combine observations, not to deconvolve or analyze them. We
explicitly use the point spread function (PSF) denoted by h, related to the transfer func-
tion of the system through a Fourier transform. Assuming a ground truth or underlying
scene T , the formation of the observed signal mean I is modeled as follows:

• Geometric mapping from model space to sensor space (both included in RN )
denoted by f , the respective spatial locations are x and u. It is defined by the
observation parameters θ,α and the model density ε. We use the inverse g = f−1 so
as to express the mapped T as T ◦g (u) = T (g(u)) in the sensor space.



• Convolution with the possibly spatially variable PSF h: we have

(T ◦g)?h(u) =

∫
RN

T (g(v))hu(u−v)dv (3)

• Sampling using a pixel grid denoted by π: point πp for each detector (pixel) p.

Ip = (T ◦g)?h(πp) (4)

Let us start with the properties that the fusion method must have in order to behave
as expected in well-known special cases. The goal is to constrain the proposed signal
resampling scheme. Though a formal proof is beyond the scope of this paper, we provide
an explanation based on induction to help understand the generative model design. 1) We
want to resort to a simple weighted average without deblurring when inputs are ideally
sampled, aligned and obtained using the same sensor and instrument geometry; 2) We
need our fusion framework to be a generalization of state of the art interpolation in
the presence of noise [9, 14] when inputs are not aligned; 3) We wish to handle non-
uniform spaced samples in the same way [1]. 4) Arbitrary geometries shall be allowed
while conserving the energy (i.e. photometry conservation for images).

Property 1. It arises from the band-limiting requirement, stating that the end result
can not be arbitrarily oversampled, and also from the information conservation condition
related to sampling theory, i.e. the reconstructed signal shall not be undersampled [7].
Some authors suggest that B-Splines provide a near-optimal sampling [13] since their
spatial footprint is finite and small, while having a reasonably limited bandwidth (though
not finite). An obvious advantage of B-Splines over other sampling kernels is their fast
and accurate implementation when it comes to interpolation [13]. These characteristics
mainly motivated our choice; we retain the B-Spline of degree 3, denoted by ϕ, as a good
compromise between accuracy and computational complexity. Then our target is actu-
ally the continuous, (almost) band-limited signal F = T ?ϕ; we aim at reconstructing
object Spline coefficients denoted by L such that:

F (x) =
∑

j

Lj ϕ(x− j) with j ∈ ZN (5)

where j refers to the model space discretization. We will rather aim at the sampled ver-
sion of F , denoted by X such that Xp = F (p), containing exactly the same information
since F it is nearly band-limited by definition. It is expressed through a discrete convo-
lution X = L?s where sj = ϕ(j). Thus we can easily use popular prior models defined
for discrete signals, governed by some parameters ω; for instance the positivity of X
(due to physical reasons) can be enforced whereas the coefficients L can take negative
values as required by interpolation theory. Hence the left part of the graph on Fig. 2.

In the special case of property 1, the only way to get a linear combination of obser-
vations at each point is if X = I (no intensity scaling so all the In are a copy of X).
Therefore each Ip is a linear combination of Lj by using the definition of X: we have
Ip =

∑
j λpjLj , and in this special case λpj = h(p− j) where h = ϕ.

The generalization is straightforward: let I be the blurred version of T such that
Ip = T ?h(p). If h is band-limited such that it can be written as h(u) =

∑
j cj ϕ(u− j),

then by expanding h we get Ip =
∑

j h(p− j)Lj . The band-limiting of h in the model
space is essential. We show in the following paragraphs how to enforce this constraint.



Property 2. If an observation is shifted by b, we want to resort to Spline interpolation
to cancel the shift. We set Xp =S[I](p+b) where S[I] stands for the Spline interpolation
of I . Since shifting through interpolation is invertible, we can write Ip = S[X](p− b) =
F (p− b) which gives λpj = h(p− j− b).

Property 3. We wish to allow an arbitrary sensor space discretization, using for
each sample real coordinates πp instead of integers p. This amounts to reconstructing
a signal from nonuniform samples by minimizing a sum of error terms for each πp and
a smoothness term as in [1] when there is a single input signal.

Property 4. In the special case above we have g(u) = u− b, but one could easily
imagine more complex functions so as to include scaling and rotations (i.e. Au + b),
and also nonlinear transforms such as distortions or perspective effects. Let us denote
by Wθ and bθ the linear transform from local to world frame, and by gs

α the transform
from sensor to local frame, respectively parametrized by so-called external and internal
observation parameters θ and α. The model density ε acts as a global scaling factor.

g(u) = ε
(
Wθg

s
α(u)+ bθ

)
(6)

We assume g has a linear behavior over the footprint of h. Let Ju be the Jacobian matrix
of g at location u so that g(u+w) ' g(u)+ Juw. We express the convolution (3) in the
model space through a change of variables, and use the linear approximation to get∫

T
(
g(v)

)
hu(u−v)dv '

∣∣J−1
u

∣∣∫ T (v′)hu

(
J−1
u

(
g(u)−v′

))
dv′ (7)

The Jacobian determinant ensures the conservation of energy. Now we need to expand
the warped PSF h using B-Splines as seen previously so we can revert to Spline coeffi-
cients L. The PSF bandwidth must fulfill the sampling conditions (sample spacing = 1)
even after remapping through g, which constrains the choice of the model density ε to
be higher than the Nyquist rate. Thus, fusing undersampled signals requires achieving
super-resolution by increasing the model density accordingly. Some calculus gives

(T ◦g)?h(u) =
∑

j

Lj

∣∣J−1
u

∣∣ hu

(
J−1
u

(
g(u)− j

))
(8)

Let us sample at u = πp and adopt a simpler notation ∆n
p = J−1

πp
and hn

p = hπp for each
observation indexed by n; each n-th mean observation at pixel p now writes

In
p =

∑
j

λn
pjLj where λn

pj =
∣∣∆n

p

∣∣ hn
p

(
∆n

p

(
g(πp)− j

))
(9)

2.2.3. The proposed generative model

The stochastic nature of the recorded signal comes from the observation noise. Its
mean is In

p . Its pdf can be modeled by a succession of Poisson counting, Gaussian
readout and uniform quantization processes, whose pdfs are convolved, and reasonably
approximated by a Gaussian additive process whose variance is a linear function of the
mean. We assume that given the mean, all observations are independent, between sensors
n as well as elementary detectors or pixels p. Therefore we have:

P ({Y n}|{In, τn,σn}) =
∏
n

∏
p

1√
2πvn

p

e−(Y n
p −In

p )
2
/

2vn
p with vn

p = τnIn
p +(σn)2 (10)



where In is the n-th observed signal as in the rendering equation (9), deterministic
function of L and, through λn, of (πn,hn) and, through g, of (αn, θn, ε). In the full
graphical model of Fig. 2, all deterministic relations of Eqns. (6) and (9) are expressed
through Dirac distributions, such as δ(In

p −
∑

j λn
pjLj) for instance, the object X being

linked to L through δ(X−L?s). This obviously simplifies the integration in Eqn. (2).
Now the entire observation model is defined and parametrized by Θn = (θ,α,h,σ,τ)n.

In order to express the full joint pdf (1) we need to specify P (X |ω), expressing the
prior object model. For the sake of simplicity, we consider a first order Gaussian Markov
Random Field (Markov chain if N=1) parametrized by a single smoothness parameter ω.
It could be replaced by more application-specific priors (e.g. point sources over a smooth
background for astronomical images, or wavelet-based models in remote sensing). Let
Zω denote a normalizing constant, and {q ∼ p} the first order neighbors of p:

P (X |ω) =
1

Zω

e−Φω(X) where Φω(X) = ω
1

2N

∑
p

∑
{q∼p}

(Xp−Xq)
2 (11)

If the PSF, the internal parameters α, the sampling grid and the noise variance are well-
calibrated, and ε fixed above Nyquist rate, then the joint posterior for all unknowns is

P (X,ω,{θn} |{Y n})∝ P (ω)
1

Zω

e−Φω(X)
∏
n

P (θn)
∏

p

1

vn
p

e−(Y n
p −In

p )
2
/

2vn
p (12)
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FIGURE 2. Expanded graphical model of Fig. 1 displaying the generative model for observations Y ,
the rendering of I and the B-Spline coefficients L. Shaded nodes represent variables having a fixed value.

3. DATA FUSION AS AN INVERSE PROBLEM

We address multisource data fusion as an inverse problem, the direct problem being the
observed signal formation described by the generative model of Section 2.2. If enough
data points per unknown variable are available, the problem is well-posed. However this
can never be guaranteed, unless we allow some loss of information by decreasing the
model density ε. In order to maintain a minimal sampling rate everywhere, some areas
may be under-determined if the mapping g is not linear, hence the use of a prior model.



3.1. The supervised inference scheme
Within a supervised framework, both prior and observation parameters are assumed

calibrated. Then we aim at computing the conditional pdf P (X |{Y n, θn},ω). We ap-
proximate it by a Gaussian distribution; let us first focus on its mean or mode, obtained
by finding X̂ that maximizes this pdf. To simplify, we rather work with L, and get the
end result as L̂ ? s. It all comes down to minimizing an energy term U :

U(L) =− logP (L |{Y n, θn},ω) = Φω(L?s)+
∑
n,p

(
Y n

p − In
p

)2

2vn
p

+logvn
p + const. (13)

which can be done iteratively by a quasi-Newton method, consisting of optimizing a
quadratic approximation of U through a conjugate gradient search [11] at each step.
Indeed, at each step we fix vn

p in (10) by setting In
p using the current estimate of L. This

is not needed for a pure Gaussian noise (τ=0) in which case the whole problem is linear.
The initialization is performed using the rendering coefficients λ as local weights:

L0
j =

(∑
n,p

λn
pj Y n

pj

)/(∑
n,p

λn
pj

)
(14)

If we use a vector notation (the components being the model coefficients indexed by j)
such that Φω = ωX tDtDX with X = SL, then the gradient and the Hessian write:

∇LU = 2ω (DS)T (DS)L+
∑
n,p

1

vn
p

(
λn

p ·L−Y n
p

)
λn

p (15)

∇2
LU = 2ω (DS)T (DS)+

∑
n,p

1

vn
p

(
λn

p

)(
λn

p

)T (16)

3.2. Computing, approximating and propagating uncertainties

Within the Gaussian approximation, uncertainties on the estimate X̂ are represented
by the covariance matrix ΣX , whose inverse is the Hessian ∇2

XU . From X = SL we get

Σ−1
X =

(
S−1

)T (
∇2

LU
)(

S−1
)

= 2ω DT D+
∑
n,p

1

vn
p

(
S−1λn

p

)(
S−1λn

p

)T (17)

Applying the inverse S−1 takes great advantage of the B-Spline theory, which provides
a computationally effective algorithm [13]. The resulting matrix can be very large, but it
is sparse, due to the small footprint of h compared to the size of the signal.

Due to the slow decay of the PSF in some cases, the coefficients λ defined in (9)
can induce many small but nonzero entries in the matrix Σ−1

X ; for practical reasons,
we would like to perform a so-called covariance simplification, in order to make it
arbitrarily sparse. Indeed, providing uncertainties in addition to the fusion result ought
not to overwhelm the end user by fairly large numbers of extra parameters. Moreover,
propagating them through to subsequent processing steps (such as updating, or data
analysis) could result in an uncontrolled growth of model complexity. One can possibly
minimize a distance between the posterior distribution and a simplified distribution,
subject to constraints – for instance, the simplified inverse covariance Σ̃−1

X has the
same Markov structure as the prior DtD, i.e. only near-diagonal elements are nonzero.
Optimization methods for sparse matrices are still subject to intensive research.



The recursive nature of our fusion methodology allows us to perform sequence up-
dates as long as new observations are available. Bayesian updating allows us to use the
current (approximate) posterior pdf as a prior when making inference from new obser-
vations. Thus, data can be processed in groups, to reduce memory requirements when
dealing with large data sets, or to update an existing fusion result without having to
restart the entire inference from the beginning. The new prior writes:

P ∗(X)∝ e−Φ∗(X)/2 where Φ∗(X) = XT Σ̃−1
X X (18)

3.3. Towards a fully automated procedure
There are several ways to make data fusion unsupervised (when neither ω nor θn

are known), all starting with the marginalization of Eqn. (2) but applying different
approximations. When the dimensionality of the parameters is small compared to the
number of variables in X , their posterior P (ω,{θn}|Y ) is very peaked around the
optimum (ω̂,{θ̂n}), which leads to the so-called empirical Bayesian formalism [5, 9]:

P (X |{Y n})=
∫

P (X |{Y n, θn},ω)P (ω,{θn}|Y )dωd{θn}'P (X |{Y n, θ̂n}, ω̂) (19)

Finding this optimum requires integrating (12) with respect to X (or L, equivalently):(
ω̂,{θ̂n}

)
= arg min

ω,{θn}

(Zωθ

Zω

P (ω)
∏
n

P (θn)
)

where Zωθ ≡
∫

e−U(L) dL (20)

A Laplace approximation [10] could be used, the optimum and Hessian being provided
by the supervised inference algorithm of section 3.1. The main difficulty lies in comput-
ing the Hessian determinant, whereas Zω can be calculated for the model of Eqn. (11)
[9]. Neglecting the contribution of this determinant provides a rather simple, nested algo-
rithm that runs a supervised inference within each step of the parameter search, giving in
the end not only the parameters, but also the fusion result with uncertainties. The param-
eter search is nonlinear; it can be done through gradient methods [11], or alternatively
by Expectation-Maximization [5], simpler but more sensitive to local minima.

4. POSSIBLE APPLICATIONS AND EXTENSIONS
The proposed formalism can be applied to 1D problems (as demonstrated by our prelim-
inary results). For instance spectrum fusion in physics would combine spectra measured
with different instruments and thus improve accuracy and faint source detection.

In 2D, the new fusion method aims at bringing new solutions to image mosaicing,
co-addition, and super-resolution with an unprecedented management of uncertainties
and an explicit handling of geometry, blur and noise statistics. Application areas include
astronomy [4] where huge amounts of data are available within virtual observatories,
as well as remote sensing and planetary imaging [3]. A common issue, particularly
well-suited to the new fusion framework, is the optimal combination of images taken at
different resolutions, in various viewing conditions (and not perfectly registered), with
specific noise properties and possibly missing data. The extension to multispectral data
is in progress; it should provide a unified framework for not only spatial resampling as
shown in this paper, but also spectral resampling via a fully Bayesian approach.



5. FIRST RESULTS: SUPER-RESOLUTION FOR SIGNALS
We made a 1D experiment, using an analytic function as ground truth (two peaks, with
an additive sinusoidal oscillation) as shown on Fig. 3. Two observations (left) were gen-
erated via a linear geometric mapping, a Gaussian blur and a regular sampling grid such
that the sampling rate (with respect to the blur) was 0.6 times the Nyquist rate, produc-
ing obvious aliasing effects. Therefore we aimed at a super-resolved output to recover
the aliased frequencies (factor 2 or ε = 0.5, inducing a slight deblurring). The supervised
method was used. Fusion allowed the recovery of the oscillations without too much noise
amplification, thanks to the Markovian prior model. Uncertainties were computed: the
inverse covariance matrix was inverted numerically while the error bars (uncertainty
envelope) correspond to 95% confidence and are given by diagonal elements.
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FIGURE 3. Super-resolved fusion of two undersampled 1D signals (shifted, blurred and noisy).
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