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INTRODUCTION

A common problem in quantitative analysis of physical spectra is the ability of separat-
ing the data of interest from a smooth background. As reported in [1], there are several
methods for background subtraction in the literature. Most of them rely on polynomial or
semi-empirical nonlinear fitting procedures. These techniques suffer from unpredictable
reliability and require human monitoring. A great improvement is given in [1, 2] where
authors follow a probabilistic approach based on prior knowledge – albeit vague – of
the observed data model. The key idea in [1, 2] is to use a prior for cubic spline val-
ues ensuring that the background is smoother than the “peaks” information. The prior
is chosen to emphasize solutions which minimize the integral of the second derivative
of the background. Yielding a rigorous framework, this Bayesian approach offers better
properties than anyad hocmethod.

Our motivation in this contribution is basically the same as authors in [1, 2], but we
address here the additional problem of ensuring that both background and residual peaks
spectrum after background subtraction remain probability measures. We focus thus on
the estimation of a two component mixture model. Referring to physical considerations,
we think reasonable to consider a latent discrete mixture model underlying the peaks
spectrum while background data sit on an absolutely continuous distribution.

Indeed, quantum physics says that energy levels of x/γ-rays lead to a discrete spec-
trum. The actual number of nuclei and of energy levels, so the number of peaks, is most
of the time unknown (specially in exotic nuclei characterization experiments). Any at-
tempt to specify this number could lead to dramatic physical misinterpretations. It is
therefore appealing to leave this number open-ended in our model. This important issue
has been addressed [3] following a reversible jump MCMC method (see [4]).

Besides theoretical considerations, the experimental setup increases the complexity
of an “ideal” quantum levels spectrum. In the field of x/γ-ray spectrometry, the parti-



cle detection process induced by semiconductors or scintillators devices entail several
kinds of interactions, mainly the photoelectric absorption, pair creation and the Comp-
ton scattering effects [5]. Photoelectric absorption and pair creation lead to a discrete
energy distribution whereas Compton scattering produce a continuous spectrum. Ener-
gies are not directly observed due to detection devices noises which introduce a con-
volution of both discrete and continuous measures by a parametrized kernel, typically
normal with an energy dependent variance. Moreover, other interactions processes (e.g.
binding, backscattering, multiple scattering, bremsstrahlung escape) induce more com-
plex features for the observed energy distribution. These phenomena highlight the actual
complexity of the overall data distribution. The paper is organized as follows: first, we
review two nonparametric Bayesian tools for density estimation. We then give a hier-
archical model for physical spectra and sketch out a sampling algorithm which is illus-
trated on experimental data. Detailed expressions of the posterior distributions involved
in the proposed algorithms are defered to a longer contribution.

BAYESIAN NONPARAMETRIC DENSITY ESTIMATION

Thanks to their ability to capture the structure of complex data, nonparametric and semi-
parametric statistical models appear more and more a relevant alternative to parametric
models. Very good tutorials [6, 7, 8, 9] bring out the wide variety of fields covered by
the approach. A nonparametric or semiparametric model involve one or more infinite
dimensional parameters. This is particularly suitable for estimation in the space of prob-
ability measures onR (R+ for energy distribution). Nonparametric Bayesian density
estimation turns out to be quite appealing in physical sciences. First, it is well known
that the Bayesian approach allows to embed our physical prior belief in the analysis.
Second, predictive distribution, and more generally spectral inference, can be obtained
in a straightforward manner by means of posterior draws.

Besides these advantages there are some difficulties in the use of Bayesian nonpara-
metrics, and analysis has to be undertaken with care [10]. First, construction and elicita-
tion of priors are difficult in infinite dimension space. Second, original MCMC schemes
have to be developed to work with infinite dimensional models. As we will show, some
truncation mechanisms may be introduced to allow implementation of the nonparamet-
ric approach [11]. Finally, general consistency results obtained in parametric Bayesian
inference do not exist in the nonparametric context. Consistency can be roughly viewed
as a kind of frequentist validation of Bayesian method ensuring that a particular choice
of prior is overridden by the observation of a sufficient amount of data [12, 10].

As we characterized the peaks spectrum by a latent discrete model, we look forward a
nonparametric prior on discrete measures. This is precisely a feature of the well known
Dirichlet process (denoted DP in the followings) introduced by Ferguson [13]. On the
other hand, we need to handle priors on continuous distributions to model the latent
continuous physical background and will take an interest in Pólya trees (denoted PT),
also introduced by Ferguson [14] and developed by Lavine [15] and Mauldinet al. [16].
For our purpose, it might be underlined that due to instrumental convolutions both DP
and PT will be used as mixing distributions and that the mixture model always admits a
probability density function.



Truncated Dirichlet process mixtures

Due to this discreteness of generated measures, DP cannot be used as a prior for
estimating a probability density function. Nevertheless, the convolution of the DP by a
parametric kernel (e.g. normal, gamma, Weibull kernel) produces continuous densities.
Dirichlet process mixtures (DPM), introduced by Antoniak [17] play an important role
in nonparametric density estimation and clustering problems.

Despite their elegant hierarchical representation, posterior distribution of DPM are
analytically intractable and MCMC techniques are required for inference. An important
literature deals with MCMC methods based on Pólya urn Gibbs sampling, see for
example [18, 19, 20, 21]. However, this marginalization technique reveals quite slow
mixing when working with huge datasets.

This limitation can be avoided by using the blocked Gibbs sampler developed in [11].
One requirement is to work with a truncated approximation of the DP derived from the
stick-breaking representation introduced by Sethuraman [22].

The idea is to truncate the infinite summation of Sethuraman representation after a
chosen valueN. We refer to the work of Ishwaran and James [11] in this section who
showed that the finite DPPN converges almost surely to a Dirichlet process with mean
distributionG0 and precision parameterα. We define then a truncated Dirichlet mixture
for observed dataX = (X1,X2, . . . ,Xn),

(Xi |Z,K) ind∼ µ (Xi |ZKi )

(Ki |p) i.i.d.∼
N

∑
k=1

pk δk (·)

(p,Z)∼ µ (p)× (G0)N

(1)

whereK = (K1,K2, . . . ,Kn) represents the classification vector andZ = (Z1,Z2, . . . ,ZN)
the location vector of the DP : fori ≤ n, Ki = j if {hidden alloted location ofXi} = Z j .
We also define the vector of weights of the finite stick-breakingp = (p1, p2, . . . , pN)
with distribution µ (p) such thatV1,V2, . . . are i.i.d. Beta(1,α), p1 = V1 and for all
k ≥ 2, pk = Vk ∏k−1

i=1 (1−Vi). Finally, µ (Xi |ZKi ) is the conditional distribution with
kernel densityψ (Xi |ZKi ) andδθ (·) denotes a discrete measure concentrated atθ .

The form (1) allows direct sampling fromPN (·|X) by iteratively drawing samples
from the conditionals of the blocked variables.

(Z|K ,X)
(K |Z,p,X)
(p|K)

(2)

After convergence of the Markov Chain, the blocked Gibbs sampler produces draws
from (Z,K ,p|X). From draws(Z∗,K∗,p∗) we build the random probability measure

P∗N (·) =
N

∑
k=1

p∗k δZ∗k
(·) (3)



which is a draw from the posteriorPN|X. Recording generatedP∗N (·), we are able to
estimatePN|X and its functionals.

Details for drawing from the conditional distributions of the Gibbs sampler are given
in [11, 23]. The key of the algorithm is the finite dimensionality of the prior which allows
to write the model using a finite number of random variables.

Finite Pólya tree process mixtures

In comparison to the profuse literature dealing with Dirichlet mixtures, the Pólya tree
process seems to have been neglected for the estimation of probability density functions.
However, this random distribution prior offers several nice properties. We refer to Lavine
[15] for Pólya tree definition and complete description. First of all, unlike Dirichlet
processes, we can choose parameters of PT to give absolute continuity to the generated
random distributions by observing the Kraft inequality.

A PT process (denoted PT(A,Π)) with parametersA generates random distributions
leaning on a separating binary tree of partitionsΠ of the measurable space so that sets at
levelm+1 are obtained by a binary split of the sets of levelm. The partition construction
can be continued indefinitely but since it is not possible to compute with infinite trees,
Pólya trees are often simplified by only specifying parameters and constructing the
partition until a given finite levelM. We denote byB j the j th subset at levelM.

Unlike DP, Pólya trees are dependent on the underlying partition. Furthermore, even
if partitions and parameters are suitably chosen for ensuring continuity of generated
random distributions, lack of smoothness appears at partition endpoints. This drawback
tends to limit the use of PT in density estimation. To overcome this difficulty, PT
mixtures [15, 24, 25] have been developed. The idea is to allow the sequence of partitions
and the parameters to depend on a random parameter. We propose here a special kind of
randomized finite Pólya tree that shifts the whole partitions tree on a wider space. We
assume a non-informative center distribution for the PT such that the Lebesgue measure
of all B j is equal toλM. The shifts are then taken equal tod ·λM with d ∈ {0, . . . ,∆}.
Givend, the Pólya tree is denoted : PT(Ad,Πd).

A second hierarchical mixture level, based on the convolution with a parametric kernel
ψ, may be introduced.

For observationsX = {X1, . . . ,Xn}, we defineK = {K1, . . . ,Kn} ∈
{

1, . . . ,2M−∆
}n

a
classification variable such thatKi = j if {hidden alloted subset ofXi}= B j .

(Xi |K) ind∼ µ (Xi |BKi )

(Ki |q) i.i.d∼
2M−∆

∑
k=1

qkδk

G|d∼ PT(Ad,Πd) , q j = G
(
B j

)
d∼ 1

1+ ∆

∆

∑
l=0

δl (d)

(4)



whereq =
{

q j : j ∈
{

1, . . . ,2M−∆
}}

, PT(Ad,Πd) is expressed in [26] in this proceed-
ings, and forj ∈

{
1, . . . ,2M−∆

}
, µ

(
Xi |B j

)
has densitỹψ

(
·|B j

)
= ψ ? fB j where fB j

is the density of the uniform distribution on the intervalB j andψ the kernel density.
Unfortunately, in this case posterior distribution is intractable and we have to settle to

sampling techniques.
Readers may notice similarities between model (4) and (1). Indeed, we propose a

blocked Gibbs sampler inspired from [11] for this hierarchical mixture of PT. For
sampling we need to express conditionals for

(K |q,d,X)
(q,d|K)

(5)

The conditional for(K |q,d,X) is similar to the allocation step of DP mixtures proposed
in [11]. Draws from(q,d|K) are obtained either involving a Metropolis-Hastings step
in the sampler or by first sampling(d|K) then(q|K ,d). In the latter solution, the step
can be dramatically speed up if we assume that PT mixtures are smooth enough so
that posterior sampling ofd can be assimilated to a discrete uniform distribution. This
approximation turns out to be very attractive since our aim is mainly to avoid partition
endpoints discontinuities.

Now that probability density mixture priors based on either discrete or absolute
continuous mixing distributions are presented we turn on a hierarchical model dedicated
to physical spectra inference.

SEMIPARAMETRIC MODEL FOR EXPERIMENTAL SPECTRA
ANALYSIS

Dirichlet mixtures meet the peaks spectrum requirements as the latent DP prior generates
discrete mixing distributions with eventually infinitely many locations.

Note that there is no guarantee that each DP location corresponds to a radio-nucleus
peak location. Indeed, we underlined in the introduction that detection devices may in-
volve, even for photoelectric absorption, other phenomena which, after kernel deconvo-
lution, take away discreteness of energy distribution. But we assume that the DP loca-
tions preserve reasonably the energy discrete distribution.

On the other hand, the data belonging to the background spectrum relies on the con-
tinuity of the mixing distribution of a PT mixture with the same kernelψ as DPM. We
propose a hierarchical construction where the parameters of the PT may depend on the
DP locations. Using such a model, physicists can embed any kind of analytic knowledge
about the physical quantity spectrum as the mean distribution of the Pólya tree. This
is especially interesting when we consider that many analytic expressions are most of
the time parametric approximations of usually more complex phenomena. The complex-
ity may be induced by the physical mechanisms themselves or by interactions with the
environment. In one hand, the approach let the analyst rely upon his understanding of
the phenomenon by means of an approximated analytical description introduced as the
mean distribution of the quantity. In the other hand, his limited degree of belief will be
tackled by nonparametric Bayesian random distributions.



Gibbs sampler for physical spectra estimation

The key idea of the approach described here is that by means of finite stick breaking
representation for DP processes and finite PT processes, we cast the problem into a
random variables formulation where priors of both parts are involved in the allocation
phase. The classification vectorK is now extended to cover either DP components or PT
subsets.

for i ∈ {1, . . . ,n} , Ki =

{
j if {hidden alloted DP location ofXi}= Z j

j +N if {hidden alloted PT subset ofXi}= B j
(6)

Using notations of (1) and (4) we propose the following hierarchical model

(Xi |Z,K ,η) ind∼

{
µ (Xi |ZKi ,η) if Ki ≤ N
µ (Xi |BKi−N,η) otherwise

(Ki |p,q) i.i.d.∼ w
N

∑
k=1

pk δk (·)+(1−w)
2M−∆

∑
k=1

qkδk+N (·)

G|d∼ PT
(
A

p,Z
d ,Πd

)
, q j = G

(
B j

)
d∼ 1

1+ ∆

∆

∑
l=0

δl (d)

(p,Z)∼ µ (p)× (G0)N

w∼ Beta(νP,νB)
η ∼ H

(7)

where tree parametersAp,Z
d illustate the DP dependence.

The balance between the DP peaks spectrum and the PT background is handled by
the variablew which is beta(νP,νB) distributed.

An additional nuisance parameterη with distributionH is introduced to tackle instru-
mental parameters like the energy dependence of the spectrum resolution.

Since model (7) belongs to the same class as (1) and (4) a blocked Gibbs sampler for
spectrum inference can thus be constructed in the same way and will successively draw
samples from

(Z|K ,η ,X)
(K |Z,p,q,d,w,η ,X)
(q|K ,p,Z,d)
(d|K)
(p|K)
(w|K)
(η |K ,Z,X)

(8)



Applications

We present results of the described Gibbs sampler (8) on an experimental spectrum
of a Uranium oxide ore sample. Whole observed data correspond to a single binned
histogram on the range [0 KeV, 2.5 MeV]. When only binned data are observed, the
algorithm can be adapted with minor modifications. The kernel densities of both parts
become probability mass functions of the observed bins by integration ofψ and ψ̃

over the binwidth and the allocation step of the Gibbs sampler becomes a multinomial
distribution where we break down simultaneously all the counts of a given bin. This
binned version appears computationally attractive for huge datasets.

We focus on two distinct regions of interest. The first region [400 KeV, 630 KeV]
(R1) exhibits a high background. Remark that a common problem for physicists is the
“detection limit” [5] of small peaks on such a background. The second range [2.25 MeV,
2.47 MeV] (R2) presents a situation with a smaller dataset.

We analyze these two regions separately. For both spectra all parameters are taken
identical : DP concentration parameterα = 1 andN = 100. We use a canonical PT (see
[15, 6]) with M = 10,A = {am = 6m : m≤M} and∆ = 128. We averaged 20000 draws
of the Gibbs sampler after 10000 burn-in iterations. Conditional means of the mixing
distributions are plotted on Figure 1 and Figure 2.
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FIGURE 1. Uranium oxide (UO2) energy spectrum. (R1) region : histogram (green), PT background
spectrum (black), DP peaks spectrum (red).

CONCLUSION

We proposed a hierarchical model for physical spectra which allows efficient Gibbs sam-
pling. As expected by the mixed DP / PT model, experimental results show separation
capabilities of the algorithm. In addition, posterior draws of DP and PT random mix-
ing distributions produce separated nonparametric deconvoluted spectra. A consistency
study of the estimator will be developed in future works.
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FIGURE 2. Uranium oxide (UO2) energy spectrum. (R2) region : histogram (green), PT background
spectrum (black), DP peaks spectrum (red).
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