
A Bayesian Approach to Calculating Free
Energies in Chemical and Biological Systems

Andrew Pohorille ∗ and Eric Darve †

∗NASA Ames Research Center,
Exobiology Branch, MS 239–4

Moffett Field, California 94035–1000, USA
†Department of Mechanical Engineering,

Stanford University
Stanford, California 94025, USA

Abstract. A common objective of molecular simulations in chemistry and biology is to calculate
the free energy difference between systems of interest. We propose to improve estimates of these
free energies by modeling the underlying probability distribution as a the square of a “wave
function”, which is a linear combination of Gram-Charlier polynomials. The number of terms,
N , in this expansion is determined by calculating the posterior probability, P (N | X), where X
stands for all energy differences sampled in a simulation. The method offers significantly improved
free energy estimates when the probability distribution is broad and non-Gaussian, which makes it
applicable to challenging problems, such as protein-drug interactions.
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INTRODUCTION

To understand and control chemical and biological processes at a molecular level,
it is often necessary to examine their underlying free energy behavior. This is the
case, for instance, in protein folding, protein-ligand, protein-protein and protein-DNA
interactions, and in drug partitioning across the cell membrane.

The Helmholtz free energy, A in the canonical ensemble can be expressed in terms of
the partition function, Q

A =−β−1 lnQ =−β−1 ln
1

N !h3N

∫
exp[−βH (x,px)]dxdpx (1)

where N is the number of particles, h is the Planck constant, β = 1/kT , k is the
Boltzmann constant and T is temperature. Thus, calculating A is equivalent to estimating
Q, which is usually very difficult. In practice, however, we are interested in free energy
differences, ∆A, between two systems, say 0 and 1, which can be expressed as [1]:

∆A =−β−1 ln

∫
exp[−βU1 (x)]dx∫
exp[−βU0 (x)]dx

=−β−1 ln〈exp{−β (∆U)}〉0 (2)

Here, U0(x), and U1(x), are potential energies for systems 0 and 1, respectively, ∆U =
U1(x)−U0(x) and 〈. . .〉0 denotes an average over the ensemble 0. This indicates that



∆A can be calculated by sampling system 0 only. Since ∆A is evaluated as the average
of a quantity that depends only on ∆U , it can be expressed as a one-dimensional integral
over energy difference:

∆A =−β−1 ln

∫
exp(−β∆U) P0(∆U) d∆U (3)

where P0(∆U) is the probability distribution of ∆U sampled for system 0. If energies
were the functions of a sufficient number of identically distributed random variables,
then P0(∆U) would be a Gaussian, as a consequence of the central limit theorem. In
practice, it deviates from a Gaussian, but is still “Gaussian-like”. To yield free energy,
P0(∆U) is integrated with the Boltzmann weighting factor exp(−β∆U). This means
that the poorly sampled, negative ∆U tail of the distribution provides the dominant
contribution to the integral, whereas the contribution from the well sampled region
around the peak of P0(∆U) is small. This is illustrated in Figure 1.
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FIGURE 1. P0(∆U) (open squares) and the integrand in equation (3), exp(−β∆U)P0(∆U) (trian-
gles). Only the right side of the integrand is sampled, which precludes accurate estimation of the integral.

It would be natural to exploit our knowledge of the whole P0(∆U), rather than its
low ∆U tail only. The simplest strategy is to model P0(∆U) as an analytical function
or a series expansion whose adjustable parameters are determined primarily from the
well sampled region of the function. In general, such approach fails, because its reliabil-
ity deteriorates away from this region. Here, however, we might be successful, because
P0(∆U) is smooth and Gaussian–like. So far, there have been only a few attempts at
modeling P0(∆U). One is to represent it as a linear combination of Gaussian func-
tions [2]. Another model is sometimes called the “universal” probability distribution
function [3], because it has been suggested that it suitable for a broad class of systems
characterized by strong correlations and self–similarity. Below we propose a different
model and a more systematic approach to the problem.



A BAYESIAN APPROACH TO MODELING THE PROBABILITY
DISTRIBUTION

We expand P0(∆U) using Gram–Charlier polynomials, which are the products of Her-
mite polynomials and a Gaussian function [4] and are particularly suitable for describing
near–Gaussian functions. To ensure that P0(∆U) is always positive, we take

P0(∆U) =

(
∞∑

n=0

cnϕn (∆U)

)2

(4)

where cn is the n–th coefficients of the expansion and φn is the n–th normalized Gram–
Charlier polynomial and related to the n–th Hermite polynomial by:

ϕn (x) =
1√

2nπ1/2n!
Hn (x)exp

(
−x2/2

)
(5)

The coefficients {cn} are constrained by the normalization condition for P0(∆U)∑
n

c2
n = 1 (6)

In practice only the first few coefficients can be determined with sufficient accuracy.
This means that (4), or any other expansion, is useful only if it converges quickly. This
raises a question: how to determine the optimal order of the expansion, N , and the
coefficients {cn}, n ≤ N in (4)? If the expansion is truncated too early, some terms
that contribute importantly to P0(∆U) are lost. On the other hand, terms above some
threshold carry no information, and only add noise to the probability distribution.

We follow a standard Bayesian approach to find the optimal N . The data consist
of M statistically independent samples of ∆U collected in computer simulations. For
convenience, the energies are taken in units of β, rescaled to x = U/

√
2σ, where σ is

the variance of P0(∆U), and shifted such that zero of energy is equal to the average
∆U . The M -dimensional vector with the values of x and the N -dimensional vector with
the coefficients in the expansion (4) are denoted X and CN , respectively. The goal is
to calculate the posterior probability, P (N | X), that the data were generated from the
expansion (4) truncated after the first N +1 terms

P (N |X) =
P (X |N)P (N)

P (X)
. (7)

If the prior, P (N), is uniform for all N between 0 and Nmax the posterior becomes
proportional to the likelihood function, P (X |N). The probability, P (X |N) of gener-
ating data X given N depends on CN . Since we are not interested in this dependence
here, we marginalize CN

P (X |N) =

∫
P (X,CN |N)dCN =

∫
P (X | CN ,N)P (CN |N)dCN (8)

where dCN stands for dc0 . . .dcN and the second equality follows from the product rule.



Next, we expand P (X | CN ,N) around P (X | C0
N ,N), where C0

N stands for the N-
dimensional vector with the maximum likelihood (ML) coefficients, c0

n. To obtain C0
N

we find the extremum of lnP (X | CN ,N), subject to the normalization constraint (6)
using Lagrange multipliers. We first note that for statistically independent samples

P (X | CN ,N) =
M∏

µ=1

P (xµ | CN ,N) (9)

where P (xµ | CN ,N) is the probability of generating a sample point xµ from an expan-
sion of P0(∆U) to order N . After substituting the explicit form of P (xµ | CN ,N) from
(4), the function to be minimized is:

f(C,N) = 2
∑

µ

[ln
∑

n

cnϕn(xµ)]+λ
∑

n

c2
n. (10)

where λ is the Lagrange multiplier. For f(C,N) to be an extremum, its first derivatives
with respect to {cn} must vanish. This leads to a set of N +1 equations for {cn}∑

µ

ϕm (xµ)∑
n cnϕn (xµ)

+λcm = 0 (11)

which are solved simultaneously with (6).
The value of λ can be found to be:

λ = λ
∑
m

c2
m =−λ

∑
µ

∑
m cmϕm (xµ)∑
n cnϕn (xµ)

=−M (12)

Equation (11) has a simple interpretation. If we apply the relation

1

M

∑
µ

f(xµ)≈
∫

f(x)P (x)dx. (13)

for a discrete sample of a function f(x) to the sum on the left hand side of (11) and take
advantage of orthonormality of ϕn we obtain

∑
n

[
1

M

∑
µ

ϕm(xµ)ϕn(xµ)

(
∑

p cpϕp(xµ))2

]
cn =

∑
n

cn

∫
ϕm(x)ϕn(x)dx = cm. (14)

This means that (11) are N +1 equations that enforce orthonormality conditions on ϕn

sampled at {xµ}.
Returning to P (X | CN ,N), we first note that the direct expansion of this probability

density around P (X | C0
N ,N) diverges. Instead, we represent P (X | CN ,N) as:

P (X | CN ,N) = exp[lnP (X | CN ,N)] (15)

and expand lnP (X | CN ,N) in the Taylor series. This yields:



lnP (X | CN ,N) = lnP (X | C0
N ,N)+2

∞∑
k=1

(−1)k+1 1

k

∑
µ

(Sµ)k (16)

where

Sµ =

∑
m ∆cmϕm (xµ)∑

n c0
nϕn (xµ)

(17)

and ∆cn = cn− c0
n. If we truncate the expansion in (16) after second–order

P (X | CN ,N) = P
(
X | C0

N ,N
)
exp

(
2
∑

µ

Sµ−
∑

µ

S2
µ

)
. (18)

In the absence of the normalization constraint the linear term would vanish. In this
case, however, it does not, but it can be easily evaluated:

2
∑

µ

Sµ = 2
∑
m

∆cm

∑
µ

ϕm (xµ)∑
n c0

nϕn (xµ)
= 2M

∑
m

∆cmc0
m =−M

∑
m

∆c2
m. (19)

In the second equality we used (11), and in the third we took advantage of the relation
2
∑

n ∆cnc
0
n =−

∑
n ∆c2

n. The linear term can be represented in a matrix notation:

2
∑

µ

Sµ =−∆CTM∆C (20)

where ∆C is a N +1 dimensional vector with the coefficients ∆cn, ∆CT is its transpose
and M is an (N +1)× (N +1) matrix, whose entries are Mδmn.

We can proceed similarly with the second-order term. Using (17) we obtain:∑
µ

S2
µ = ∆CTA∆C (21)

where A is a (N +1)× (N +1) matrix, whose entries are:

Anm =
∑

µ

ϕn (xµ)ϕm (xµ)

[
∑

n c0
nϕn (xµ)]2

. (22)

After substituting (20) and (21) to (18) and defining Λ = A+M, we obtain:

P (X | CN ,N) = P
(
X | C0

N ,N
)
exp

(
−∆CTΛ∆C

)
(23)

which we substitute to (8) to obtain

P (X |N) = 2P
(
X | C0

N ,N
)∫

exp
(
−∆CTΛ∆C

)
P (CN |N)dCN (24)

where the extra factor of 2 comes from the fact that our definition of cn (see Eq.(4))
admits solutions C0

N and −C0
N .



We take the prior, P (CN |N), to be uniform, subject to the constraint (6). This means
that it is uniform on a N -dimensional unit hypersphere and is zero otherwise.

P (X |N) = P
(
X | C0

N ,N
)∫

exp
(
−∆CTΛ∆C

)
dCN . (25)

To calculate this integral, let’s first observe that the matrix A is such that:

Anm =
∑

µ

ϕn (xµ)ϕm (xµ)[∑
q c0

qϕq (xµ)
]2 ≈M

∫
ϕn(x)ϕm(x)dx = Mδnm (26)

Therefore, Λ = M + A is close to 2MI. In practice M is very large and
exp

(
−∆CTΛ∆C

)
is sharply peaked around C0

N . To a good approximation, we
can replace the integral over the sphere by an integral over the plane tangent to the
sphere at C0

N . This allows calculating the integral analytically. This can be done by
defining the rotation matrix R such that RC0

N = (1,0, · · · ,0)T . Then, the plane tangent
at C0

N is mapped onto the plane tangent at (1,0, · · · ,0). Define N ×N matrix Λr as:

[Λr]ij = [RΛRT ]i+1,j+1 (27)

We now change basis using the rotation R:

∆CTΛ∆C = (R∆C)TRΛRT (R∆C) (28)

Using standard techniques to calculate multivariate Gaussian integrals, we obtain:

∫
exp

(
−∆CTΛ∆C

)
dCN =

∫
exp(−ZTΛrZ) dz1 · · ·dzN =

√
πN

|detΛr|
(29)

The determinant of Λr can be simply related to Λ. Observe first that C0
N is an

eigenvector of Λ with eigenvalue 2M :

[AC0
N ]n =

∑
µ

ϕn (xµ)
∑

m c0
nϕm (xµ)[∑

q c0
qϕq (xµ)

]2 =
∑

µ

ϕn (xµ)∑
q c0

qϕq (xµ)
= Mc0

n (30)

This implies that:

RΛRT (1,0, · · · ,0)T = (2M,0, · · · ,0)T (31)

The matrix RΛRT is therefore of the form:

RΛRT =

[
2M ∗
0 Λr

]
(32)

Consequently:

det(Λ) = 2M det(Λr) (33)



We finally obtain a very simple approximation for our Gaussian integral over a sphere:∫
exp

(
−∆CTΛ∆C

)
dCN =

√
2MπN

|detΛ|
(34)

This yields the final expression for P (X |N):

lnP (X |N) = lnP
(
X | C0

N ,N
)
− 1

2

(
ln |detΛ|−N lnπ− ln8M

)
(35)

Note that ln |detΛ| ≈ (N +1)ln2M so that the term in parenthesis is positive. This
is as expected; the solution consists of two terms which change oppositely with N .
The first term, which is the optimal (ML) solution, always increases with N towards
its asymptotic value. The second term, which represents an “Ockham razor” penalty for
increasing the number of terms in the expansion, decreases with N .

SIMULATION RESULTS

For a numerical test of (35) we chose a challenging case, in which P0(∆U) is broad and
clearly non-Gaussian. Instead of considering a real chemical system, we constructed a
synthetic P0(∆U), which resembled those of systems with ionic interactions, but was a
linear combination of 3 Gaussians, pi (∆U). The mean values, 〈∆U〉i, variances, σi, and
weights wi of each Gaussian were: (3.0, 4.0, 0.3), (0.0, 7,0, 0.5) and (-3.0, 9.0, 0.2) The
resulting P0(∆U) is shown in Fig. 1. The main advantages of a multi-Gaussian P0(∆U)
are that it can be easily sampled and the free energy, ∆A, can be calculated exactly.

For this system we generated 20 datasets of 100,000 statistically independent values
of x. We also generated a dataset of 2,000,000 values of x by combining the previous
datasets. For each dataset, we calculated the free energy from (3) and from the expansion
(4) for 0 ≤ N ≤ 20, with the ML coefficients C0

N determined from (11). The results
averaged over all 20 datasets, are displayed in Fig 2. As can be seen, the free energy
decreases nearly monotonically with N . Note that N = 0 is the Gaussian approximation
for P0(∆U), equivalent to the second-order free energy perturbation theory.

Next, we calculated lnP (X | N) from (35) for each dataset. Its typical behavior is
shown in the right panel of Fig 2. It increases for small N , passes through a maximum
and then slowly decreases with N . From this dependence we identified the ML values of
N , which is between 9 and 11 for different datasets, and determined the corresponding
free energies. Averaged over all 20 datasets, the free energy is -40.4 ± 0.4, which is
close to the exact value of -41.9. In contrast, the free energies obtained directly from
(3) and from the second-order (Gaussian) approximation reproduce the correct values of
∆A rather poorly . The average free energies in these two approaches are -28.3 ± 0.6
and -24.6 ± 0.5, respectively. For the sample of 2,000,000, the value of N increases
to 13, because this dataset contains more information. The free energy in this case
is -44.9. Numerical tests indicate that the second order approximation in (18) and the
approximation to detΛ from the end of the previous section are both accurate.

In addition, we generated datasets of 100,000 values of x sampled from a Gaussian
with the mean zero and σ = 8. The ML solution for N was always zero (pure Gaussian).
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FIGURE 2. Left panel: the ML free energies calculated from (4) and averaged over 20 datasets as
functions of the number of terms, N in the expansion. The solid horizontal line represents the exact
free energy. Right panel: a typical result for lnP (X | N) (triangles) lnP

(
X | C0

N ,N
)

(squares) and the
“Ockham penalty" (diamonds), calculated from (35), as functions of N .

CONCLUSIONS

We have shown that modeling probability densities of ∆U as a series well suited to
describe Gaussian-like distributions, combined with a ML approach to determining
the number of terms and the coefficients of the expansion, yields markedly improved
estimates of free energy differences between two states of a system. The improvement
is particularly evident in the difficult cases when P0(∆U) is broad and skewed, which
means that the two states are fairly dissimilar. In such cases, the method is a promising
alternative to more expensive strategies of stratification and importance sampling.

In the future, we will systematically investigate how the quality of the approximation
depends on the shape of the distribution and sample size, and apply our method to data
generated in molecular dynamics simulations of chemical and biological systems.
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