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Abstract. Let X = {Xn}n∈IN be a hidden process andY = {Yn}n∈IN be an observed process. We
assume that(X,Y) is a (pairwise) Markov Chain (PMC). PMC are more general than Hidden
Markov Chains (HMC) and yet enable the development of efficient parameter estimation and
Bayesian restoration algorithms. In this paper we propose a fast (i.e.,O(N)) algorithm for computing
the entropy of{Xn}N

n=0 given an observation sequence{yn}N
n=0.
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INTRODUCTION

Let (X,Y) = {Xn,Yn}n∈IN be a joint process in whichX is unobserved andY is observed.
We assume thatX andY are both discrete withXn ∈ {1, · · · ,K} andYn ∈ {1, · · · ,M} for
all n∈ IN. Let Xi: j = {Xn}i≤n≤ j , Yi: j = {Yn}i≤n≤ j , xi: j = {xn}i≤n≤ j andyi: j = {yn}i≤n≤ j
(upper case letters denote random variables (r.v.) and lower case letters their realiza-
tions). Let alsop(xi: j |yi: j), say, denote the conditional probability thatXi: j = xi: j given
Yi: j = yi: j . In some applications it is relevant to compute the entropy ofX0:N = {Xn}N

n=0
given an observationy0:N = {yn}N

n=0, i.e. we want to compute

H(X0:N|y0:N) =−∑
x0:N

p(x0:N|y0:N) logp(x0:N|y0:N). (1)

The brute force computation of (1) requiresO(KN) elementary operations. However,
a fast (i.e.,O(K2N)) algorithm for computing (1) has been proposed recently [1] in the
framework of Hidden Markov Chains (HMC) (see e. g. the recent tutorials [2] [3]), i.e.
of processes(X,Y) satisfying

p(xn+1|x0:n) = p(xn+1|xn) ; (2)

p(y0:N|x0:N) =
N

∏
n=0

p(yn|x0:N) ; (3)

p(yn|x0:N) = p(yn|xn) for all n, 0≤ n≤ N . (4)

Now, HMC have been generalized recently to Pairwise Markov Chains (PMC) [4],
i.e. to joint processes(X,Y) which satisfy

p(xn,yn|x0:n−1,y0:n−1) = p(xn,yn|xn−1,yn−1). (5)



As we see from the definition, a PMC can be seen as a (vector) Markov chain in which
one component is observed and the other one is hidden. Now, (2)-(4) imply (5), so any
HMC is a PMC. The converse is not true, as can be seen at the local level, since in a
PMC the transition probability reads

p(xn,yn|xn−1,yn−1) = p(xn|xn−1,yn−1)p(yn|xn,xn−1,yn−1); (6)

so an HMC is indeed a PMC in whichp(xn|xn−1,yn−1) reduces top(xn|xn−1) and
p(yn|xn,xn−1,yn−1) reduces top(yn|xn). In other words, making use of PMC enables to
model rather complex physical situations, since at timen, conditionnally on the previous
statexn−1, the probability of the current statexn may still depend on the previous
observationyn−1; and conditionnally onxn, the probability of observationyn may still
depend on the previous statexn−1 and on the previous observationyn−1.

It happens that it is possible to extend from HMC to PMC [4] the existing efficient
Bayesian restoration or parameter estimation algorithms. As we shall see in this paper,
it is also possible in the context of PMC to computeH(X0:N|y0:N) efficiently. More
precisely, our aim here is to extend to PMC the algorithm of [1]; the algorithm we obtain
remainsO(K2N).

EFFICIENT ENTROPY COMPUTATION IN PMC

From now on we assume that(X,Y) is a PMC, i.e. that (5) holds. Let us first recall [5]
the following basic properties of entropy :

h(U,V/w) = h(U/w)+h(V/U,w), (7)
h(V/U,w) = ∑

u
h(V/u,w)p(u|w). (8)

Let us now address the computation ofH(X0:N|y0:N). Let 0≤ n≤ N. From (7), (8) we
get

H(X0:n|y0:n) = H(Xn|y0:n)+H(X0:n−1|Xn,y0:n)
= H(Xn|y0:n)+∑

xn

H(X0:n−1|xn,y0:n)p(xn|y0:n). (9)

On the other hand, from (5) we get

p(x0:n−2|xn−1,xn,y0:n) = p(x0:n−2|xn−1,y0:n−1), (10)

soH(X0:n−1|xn,y0:n) in (9) can be computed recursively by

H(X0:n−1|xn,y0:n) = H(Xn−1|xn,y0:n)+H(X0:n−2|Xn−1,xn,y0:n)
= H(Xn−1|xn,y0:n)+ ∑

xn−1

H(X0:n−2|xn−1,xn,y0:n)p(xn−1|xn,y0:n)

(10)
= H(Xn−1|xn,y0:n)+ ∑

xn−1

H(X0:n−2|xn−1,y0:n−1)p(xn−1|xn,y0:n).(11)



It remains to computep(xn|y0:n) andp(xn−1|xn,y0:n) efficiently. This can be performed
by an algorithm which extends to PMC [4] the (forward pass of) the Forward-Backward
algorithm [6] [7] [8] [9], and which we now recall

p(xn−1,xn|y0:n) =
p(xn−1,xn,y0:n)

∑xn−1,xn
p(xn−1,xn,y0:n)

(5)
=

p(xn,yn|xn−1,yn−1)p(xn−1|y0:n−1)p(y0:n−1)
∑xn−1,xn

p(xn,yn|xn−1,yn−1)p(xn−1|y0:n−1)p(y0:n−1)

=
p(xn,yn|xn−1,yn−1)p(xn−1|y0:n−1)

∑xn−1,xn
p(xn,yn|xn−1,yn−1)p(xn−1|y0:n−1)

, (12)

p(xn|y0:n) = ∑
xn−1

p(xn−1,xn|y0:n), (13)

p(xn−1|xn,y0:n) =
p(xn−1,xn|y0:n)

p(xn|y0:n)
. (14)

Let us summarize the discussion. We got the following algorithm :

Fast algorithm for computing H(X0:N|y0:N).

• At time n−1 :
– assume that we have{H(X0:n−2|xn−1,y0:n−1)}K

xn−1=1, {p(xn−1|y0:n−1)}K
xn−1=1.

• Iterationn−1→ n :
– compute{p(xn|y0:n)}K

xn=1 and {p(xn−1|xn,y0:n)}K
xn−1,xn=1 via (12), (13) and

(14);
– compute{H(Xn−1|xn,y0:n)=−∑xn−1

p(xn−1|xn,y0:n) logp(xn−1|xn,y0:n)}K
xn=1;

– compute{H(X0:n−1|xn,y0:n)}K
xn=1 via (11);

– computeH(Xn|y0:n) =−∑xn
p(xn|y0:n) logp(xn|y0:n);

– computeH(X0:n|y0:n) via (9).

Note that the algorithm isO(K2N), as was the original algorithm of [1]. Finally, we
assumed thatYn is a discrete r.v., but the extension to continuous emission probability
densities is straightforward.
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